attachment 3 to the

94
Attachment 3 to the SETTLEMENT AGREEMENT AMONG THE UNITED STATES OF AMERICA, TAOS PUEBLO, THE STATE OF NEW MEXICO, THE TAOS VALLEY ACEQUIA ASSOCIATION AND ITS 55 MEMBER ACEQUIAS, THE TOWN OF TAOS, EL PRADO WATER AND SANITATION DISTRICT, AND THE 12 TAOS AREA MUTUAL DOMESTIC WATER CONSUMERS’ ASSOCIATIONS Part I: Documentation of OSE Taos Area Calibrated Groundwater Flow Model T17.0, January 11, 2006, by Peggy Barroll, PhD and Peter Burck, CGWP, NMOSE. 37 pages, plus Appendices A, B and C. Part II: Development of the T17sup.M7 Superposition Version of the Taos Area Groundwater Model, and Water Rights Administration under the Taos (Abeyta) Settlement; April 16, 2012. by Peggy Barroll, PhD, NM OSE. 17 pages, plus Appendices A, B, C, D and E.

Upload: others

Post on 03-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Attachment 3 to the

Attachment 3 to the

SETTLEMENT AGREEMENT AMONG THE UNITED STATES OF AMERICA, TAOS PUEBLO, THE STATE OF NEW MEXICO, THE TAOS VALLEY ACEQUIA

ASSOCIATION AND ITS 55 MEMBER ACEQUIAS, THE TOWN OF TAOS, EL PRADO WATER AND SANITATION DISTRICT, AND THE 12 TAOS AREA MUTUAL DOMESTIC

WATER CONSUMERS’ ASSOCIATIONS

Part I: Documentation of OSE Taos Area Calibrated Groundwater Flow Model T17.0, January 11, 2006, by Peggy Barroll, PhD and Peter Burck, CGWP, NMOSE. 37 pages, plus Appendices A, B and C.

Part II: Development of the T17sup.M7 Superposition Version of the Taos Area Groundwater Model, and Water Rights Administration under the Taos (Abeyta) Settlement; April 16, 2012. by Peggy Barroll, PhD, NM OSE. 17 pages, plus Appendices A, B, C, D and E.

Page 2: Attachment 3 to the

Attachment 3Part I

Documentation of OSE Taos Area Calibrated Groundwater Flow Model T17.0, January 11, 2006,

by Peggy Barroll, PhD and Peter Burck, CGWP, NMOSE. 37 pages, plux Appendices A, B and C.

Page 3: Attachment 3 to the

DOCUMENTATION OF OSE TAOS AREA

CALIBRATED GROUNDWATER FLOW MODEL T17.0 1/11/2006

by

Peggy Barroll, Ph.D. and Peter Burck, CGWP New Mexico Office of the State Engineer

with

Taos Area Hydrogeologic Framework Discussion and Attachment by

Paul Drakos, Jay Lazarus, Mustafa Chudnoff and Meghan Hodgins of Glorieta Geoscience Inc.

Prepared by the New Mexico Office of the State Engineer

Water Resource Allocation Program Technical Services Division

Page 4: Attachment 3 to the

ii

TABLE OF CONTENTS Page

Executive Summary ………………………………………………………….. 1

1 Introduction …………………………………………………………………. 1

1.1 Project Overview ……………………………………….……..…. 1

1.2 Code and Software ……………………………………………… 4

1.3 Modeled Area …………………………………………………..… 4

1.4 Conceptual Model …………………………………………….… 4

1.5 Stream-Aquifer Interaction …………………………………….. 6

1.6 Hydrogeology ……………………………………………………. 7

2 Groundwater Model Design and Input Parameters …………………... 9

2.1 Model Temporal Discretization ………………………………… 9

2.2 Model Structure …………………………………………………. 9

2.3 Areal Recharge and Mountain Front Recharge ……………… 11

2.4 Irrigation Return Flows …………………………………………. 12

2.5 Surface Water Features ………………………………………... 13

2.6 Evapotranspiration ………………………………………………. 14

2.7 Groundwater Diversions ………………………………………… 15

2.8 Hydraulic Properties ……………………………………………... 16

3 Model Calibration …………………………………………………………. 18

3.1 Calibration Overview …………………………………………….. 18

3.2 Calibration Targets ………………………………………………. 18

3.3 Calibration Results ………………………………………………. 19

4 Summary and Conclusions……………………………………………… 22

5 References…………………………………………………….…………. 23

Figures ………………….……………………………………………………. 28-37

Appendix A: Water Level Data for Calibration

Appendix B: Distribution of Hydraulic Properties, Stresses and Calibration Results

Appendix C: Hydrologic Characteristic of Basin-Fill Aquifers in the Southern San Luis Basin, New Mexico by Paul Drakos, Jay Lazarus, Bill White, Chris Banet, Meghan Hodgins, Jim Riesterer and John Sandoval, 2004.

Appendix D: CD with T17.0 Model Input Files: Calibrated Model and Future Projection Input Files.

Page 5: Attachment 3 to the

iii

LIST OF FIGURES

Figures follow text: pages 28-37 Figure 1 Location map Figure 2 Observed water-level contour map (after Spiegel and Couse, 1969; and

Purtymun, 1969), with new exploration wells posted. Figure 3 Model grid and selected model boundary features superimposed on base

map. Figure 4 Model grid, selected model features with information on upper-most active

model layer, and stream reach identifiers. Figure 5 Schematic cross section of the Taos Valley showing geological layers

represented in the Taos Groundwater model. Figure 6 Cross-section, to scale, but with vertical exaggeration, showing model

layers with topography and water table superimposed. Figure 7 Enlarged cross-section, to scale, but with vertical exaggeration, showing

model layers with topography and water table superimposed. Enlarged to show uppermost layers in more detail.

Figure 8 Calibration Results for Taos Groundwater Model: All head observations

plotted vs. simulated heads. A perfect model would have all points landing on the 1:1 line (shown).

Figure 9 Calibration Results for Taos Groundwater Model: Frequency Distribution

of Residuals: Residual = observed head minus simulated head. Figure 10 Diagram of Model Grid with Vertical Hydrologic Gradient Sites.

Page 6: Attachment 3 to the

iv

LIST OF TABLES

Table Page

Table 1 Participating Member of Taos Technical Committee 2

Table 2 Model Layer Descriptions…………………………………………… 10

Table 3 Transmissivity and Storage Values from Pumping Tests ……… 17

Table 4 Model Calibration Statistics………………………………………… 20

Table 5

Vertical Head Differences between Shallow and Deep Wells: Observed and Simulated…………………………………………….

21

Table 6 Model Water Budget………………………………………………… 22

Page 7: Attachment 3 to the

1

EXECUTIVE SUMMARY

A calibrated groundwater model has been developed for the Taos Valley. This

model is the result of several years of collaboration between the NM Office of the State

Engineer, the U.S. Bureau of Reclamation, and other professional hydrologists with

considerable experience in the Taos Valley, representing the Parties to the Abeyta

Adjudication Settlement negotiations. The model was developed in response to 1) a

need for a tool to evaluate the effects of groundwater development proposed during

Adjudication Settlement Negotiations, especially groundwater diversions from deep

levels of the aquifer system, and 2) a need for a tool to administer the wells subject to

the Settlement Agreement.

Given the hydrogeologic complexity of the Taos area, this groundwater flow

model does a relatively good job matching observed water levels, the discharge from

the springs at Buffalo Pasture, and the observed large downward vertical gradients.

Simulation of the large vertical gradients constrains model vertical anisotropy, and

allows the model to simulate the interaction between the deep and shallow aquifer

systems with reasonable reliability. The model was designed, in part, to evaluate the

hydrologic effects of wells proposed under the Taos Adjudication settlement, and it is

recommended that the model be used in evaluating the hydrologic impacts of those

wells. Determination of how and whether the model should be applied to the hydrologic

evaluation of other wells should be made on a case-by-case basis.

1. INTRODUCTION 1.1 Project Overview

At the request of the Parties to the Abeyta Adjudication Settlement negotiations,

the New Mexico Office of the State Engineer (OSE) Hydrology Bureau developed a

regional, 7-layer, groundwater flow model of the Taos Valley, New Mexico using the

USGS groundwater flow simulator MODFLOW-2000. The OSE developed the model

with input from members of the Taos Technical Committee. (Table 1) The Taos

Technical Committee is comprised of geohydrologists representing the major parties

involved in Taos Settlement negotiations (State of New Mexico ex rel. State Engineer v.

Page 8: Attachment 3 to the

2

Abeyta and State of New Mexico ex rel. State Engineer v. Arellano, Civil Nos. 7896-BB and

7939-BB (consolidated) (“Abeyta”)). Numerous model versions were generated during

this process. This report documents the version released in 2004 as version T17.0,

which was adopted by the Parties to the settlement negotiations for the purpose of

evaluating hydrologic aspects of the Settlement Agreement.

Table 1 Participating Members of Taos Technical Committee Names From Party Represented Peggy Barroll Peter Burck

NM Office of the State Engineer (OSE)

State of New Mexico

Robert Talbot Tom Bellinger

US Bureau of Reclamation (USBOR)

United States

Lee Wilson Roger Miller

Lee Wilson and Associates Taos Pueblo

Mustafa Chudnoff Jay Lazarus Meghan Hodgins Paul Drakos

Glorieta Geoscience

Town of Taos

John Shomaker John Shomaker and Associates, Inc.

Taos Valley Acequia Association

Maryann Wasiolek Michael Spinks

Hydroscience Associates Inc. El Prado Water and Sanitation District

Chris Banet Bill White John Sandoval

US Bureau of Indian Affairs (USBIA)

Taos Pueblo

This model incorporates results from recent hydrogeologic investigations,

including a recent Town of Taos/Taos Pueblo cooperative deep drilling and hydrologic

testing project sponsored by the USBOR. The geologic and hydrogeologic framework

and aquifer coefficients used in the model are presented in Drakos et al. (2004c), which

summarizes and interprets results from the deep drilling program and other Taos Valley

geologic and hydrologic investigations. The Drakos Report is presented in Appendix C

of this report. The model also incorporates the most recent geologic/hydrologic mapping

by the New Mexico Bureau of Geology and Mineral Resources. Water level data

collected by many agencies and consultants were used as calibration targets, including

new data from the deep drilling project that allowed quantification of the large vertical

hydraulic gradients present in the valley.

The model simulates groundwater flow in about 3000 feet of alluvial and volcanic

materials. Geologic strata represented in the model include Quaternary alluvial fan

Page 9: Attachment 3 to the

3

deposits, Tertiary Servilleta basalt flows, and Tertiary Santa Fe Group sediments. Key

hydrologic processes are simulated, including natural recharge, irrigation seepage,

evapotranspiration, and the interaction between groundwater and surface water

features including the Rio Grande, its tributaries, and Buffalo Pasture springs.

The groundwater model is designed to calculate the effects of groundwater

diversions on aquifer water levels and depletion to the Rio Grande, its tributaries and

springs, including the Buffalo Pasture springs on Taos Pueblo. The tributaries supply

water for irrigation to Taos Pueblo and to members of the Taos Valley Acequia

Association. The Buffalo Pasture springs have great cultural significance to Taos

Pueblo, and the Pueblo places a high value on protecting these springs.

The groundwater model can be and has been used to evaluate scenarios in

settlement negotiations in the on-going Abeyta water rights adjudication. In addition, it

is anticipated that the model will form the basis of an administrative tool that will be

used, as appropriate on a case-by-case basis, to administer water rights and evaluate

the hydrologic impacts of proposed groundwater diversions, especially deep

groundwater diversion such as the wells proposed in the Taos Settlement Agreement as

of October 2005. (It may be preferable to use other methods to evaluate the effects of

shallow wells).

The model was run in steady state mode using long-term average stress inputs,

and calibrated to the measured water levels from area wells and groundwater discharge

estimated to occur to the Rio Grande and Buffalo Pasture. The calibrated model

simulates observed heads and groundwater discharges reasonably well, and captures

major groundwater features such as large downward vertical gradients, thus allowing

the interaction of the shallow and deep aquifer systems to be well simulated. Transient

calibration runs were made using historical metered and estimated groundwater

diversions. These transient runs gave reasonable results, but groundwater development

in the area has so far been very limited, and the available data do not show any

significant aquifer response to groundwater development.

This model was developed in conjunction with a surface water model of the Taos

Valley that was produced by the USBOR. The development of the surface water model

assisted in the development of some groundwater model input parameters, such as

irrigation return flow and evapotranspiration by riparian and wetlands vegetation.

Page 10: Attachment 3 to the

4

However, now that these basic inputs have been developed, no other data from the

surface water model are required in order to evaluate groundwater diversions. The

groundwater model can be run independently of the surface water model in the

evaluation of development alternatives.

1.2 Code and Software The model was constructed using the modular three-dimensional finite-difference

groundwater flow code developed by the United States Geological Survey (USGS)

commonly known as MODFLOW (McDonald and Harbaugh, 1988, and Harbaugh and

McDonald, 1996). MODFLOW-2000 was used in this application (Harbaugh et al.,

2000; Hill et al., 2000). The model uses days (d) for the time unit, and the length units

are in feet (ft). Thus, head measurements are given in feet above mean sea level

(amsl), transmissivity values are in feet squared per day (ft2/d), and flow values are

reported in cubic feet per day (ft3/d).

1.3 Modeled Area

This model simulates the alluvial/volcanic aquifer system within the Taos Valley

in Northern New Mexico (Figure 1). A detailed description of the model structure is

presented in Section 2.2. The model is bounded by the mountain-front of the Sangre de

Cristo Mountains on the east, the Rio Grande on the west, and the Rio Hondo on the

north. The southern boundary is defined by the foothills of the Picuris Mountains and the

confluence of the Rio Grande and Rio Pueblo de Taos (Figure 2). The model area

includes the areas in and near the Town of Taos, Taos Pueblo, and surrounding

communities (e.g., Ranchos de Taos, Los Cordovas, Cañon, Talpa, El Prado, Arroyo

Seco, and Arroyo Hondo). The model grid is shown in Figure 3 and 4.

1.4 Conceptual Model

The Taos Valley surface water system (Figure 2) consists of the Rio Grande and

a number of tributaries that rise in the Sangre de Cristo Mountains and discharge into

the Rio Grande. These tributaries include, from north to south, the Rio Hondo, Arroyo

Seco, Rio Lucero, Rio Pueblo de Taos, Rio Fernando, Rio Chiquito and Rio Grande del

Page 11: Attachment 3 to the

5

Rancho. The Rio Grande is deeply incised into the Servilleta basalts at the bottom of

the Taos Gorge, and the tributaries generally become more deeply incised close to their

confluence with the Rio Grande.

Recharge enters the Taos groundwater system from 1) precipitation in the

Sangre de Cristo Mountains, 2) seepage of tributary flow, 3) local precipitation, and 4)

return flow and seepage from surface water irrigation. In general, groundwater in the

shallow combined Servilleta/alluvial aquifer system flows in a southwesterly direction

from the Sangre de Cristo mountain-front, subsequently discharging into the Rio Grande

(Drakos et al. 2004c Figure 5). Based on limited data available from 12 deep wells

(Drakos et al 2004c Figure 6), groundwater in the deeper alluvial aquifer, below the

Servilleta basalts, appears to flow from east to west. Water leaves the aquifer via

discharge to surface water features, pumping, and evapotranspiration. There may be

some underflow components to and from adjacent basins, but these are not well

quantified, and have been neglected in the current analysis. A schematic cross-section

of the Taos Valley showing geologic layers represented in the model is presented in

Figure 5.

The model area includes a shallow unconfined alluvial aquifer system in the

eastern part of the Taos Valley, underlain by layers of Servilleta basalt that extend

westward to the Rio Grande. Below the Servilleta basalts, a deep aquifer system

consisting of older Santa Fe Group basin fill deposits extends to depths greater than

3000 feet. Large downward gradients are observed between the shallow and deep

systems, reflecting the drainage of groundwater from the shallow aquifer system

downward into the deep aquifer. Within the deep system itself, piezometer data from the

deep drilling project indicates moderate vertical gradients, mostly downward, but data

from two sites indicates modest upward gradients (Drakos et al., 2004c).

Groundwater development in the Taos Valley has been minor. On the order

2,500 acre-feet per year (AF/yr) of groundwater is diverted from wells, and the available

water level data do not shown any significant or regional drawdown in response to this

diversion. The few wells for which more than one water level is available do not show

any systematic response to regional pumping, but rather, water level variations appear

to reflect seasonal changes in conditions (USBIA wells near the Buffalo Pasture), or the

difference in recharge between wet and dry years.

Page 12: Attachment 3 to the

6

A number of springs discharge groundwater in the upper Taos Valley (within a

few miles of the mountain front, where the water table is relatively shallow). The most

significant of these are associated with the Buffalo Pasture on Taos Pueblo. Much of

the spring discharge in the Taos valley appears to represent reappearing surface water

that had seeped into the ground upstream of the springs, from streams, acequias or

applied irrigation water.

Evapotranspiration from phreatophytic vegetation and wetlands consumes water

in some parts of Taos Valley, most significantly in the vicinity of the Buffalo Pasture.

Evapotranspiration along the edges of streams probably intercepts infiltrating surface

water before it could reach the regional water table, whereas wetlands farther away

from streams are assumed to directly deplete shallow groundwater.

1.5 Stream-Aquifer Interaction

The Rio Grande gains water throughout the river reach downstream of the Rio

Hondo to the confluence of the Rio Grande and the Rio Pueblo de Taos, and acts as a

drain to the groundwater system. Gains from groundwater seepage to the Rio Grande

include subsurface gains along the riverbed and gains from springs in the canyon walls.

Seepage studies and evaluation of gage data indicate that this reach gains about 20 to

25 cubic feet per second from groundwater (cfs) (Tetra Tech, 2003). The Rio Grande in

this reach also gains water from surface inflows from the Rio Hondo and the Rio Pueblo

de Taos.

The tributary streams in the Taos area vary in how well they are connected to the

groundwater system. The upper Rio Pueblo de Taos, near Taos Pueblo, is known to

gain water from the groundwater system, as do various sub-reaches of the Rio Pueblo

and Rio Lucero (USBOR, 2002). These reaches are clearly connected to the shallow

groundwater system, and groundwater pumping could intercept water that otherwise

would have discharged into these reaches. Other tributary reaches are unlikely to be

well connected to the groundwater system. Except in its uppermost reaches at or near

the mountain front, Arroyo Seco is a losing stream that is often dry, with lengthy reaches

perched well above the water table. As a result, the connection between Arroyo Seco

and the groundwater system is limited. Similarly, Rio Lucero above the Buffalo Pasture

Page 13: Attachment 3 to the

7

is a losing stream that appears to be perched well above the water table; therefore

groundwater pumping would not affect surface water flow in that reach. There are fewer

observational data available for other tributary reaches such as the Rio Fernando, Rio

Grande del Rancho and Rio Chiquito. It is assumed in the model that t these streams

are connected to the groundwater system.

The Buffalo Pasture itself is a large wetland located in and around the lower Rio

Lucero, upstream from its confluence with the Rio Pueblo de Taos. The Buffalo Pasture

is fed by the discharge of groundwater at numerous springs. Total groundwater

discharge from the Buffalo Pasture appears to vary, and measurements and estimates

of this discharge range from 2 to 15 cfs. In 2001, the total discharge measured from

several large springs in the Buffalo Pasture totaled 7.41 cfs (USBOR, 2001). It is likely

that much of the groundwater discharge from the Buffalo Pasture originated as seepage

from the Rio Lucero and upstream acequias and also from mountain front recharge.

The location of the springs may be geologically controlled: a low-permeability

sedimentary unit may occur close to the surface under the Buffalo Pasture, forcing

groundwater to the surface (Chris Banet, USBIA, personal communication, 8/22/2003).

1.6 Hydrogeology

The Taos region is known to have at least four discrete groundwater zones or

layers within 2500 feet below land surface. Figure 5 is a schematic cross section of the

model area. There appear to be at least two water-bearing zones within the alluvial fan

sediments above the Pliocene Servilleta basalt, one at depths approximately from 5 to

200 feet and another at depths approximately from 400 to 750 feet. Water in the fan

sediments is sometimes perched and may be widespread across the eastern part of the

valley as a result of historic irrigation practices. A third water-producing interval is

located between the Upper and Middle Servilleta basalts and is informally referred to as

the Aqua Azul Aquifer (Drakos, 2004a). The thickness of the entire Servilleta Formation

(including interbedded sediments) ranges from 0 to 650 ft (Dungan et al., 1984). The

sediments below the Servilleta are correlated with Miocene Santa Fe Group clays, silts,

sands and gravels exposed in outcrop near Pilar, NM. These materials are rift fill

sediments (Galusha and Blick, 1971) and consist of moderate to poorly sorted sands

Page 14: Attachment 3 to the

8

with clasts of intermediate volcanic rock, quartzite, and other metamorphic rocks (Bauer

and Kelson, 1998).

Groundwater generally flows from recharge areas near the Sangre de Cristo

Mountains westward toward the Rio Grande. In the eastern part of the Valley, the water

table is well above the Servilleta basalts in shallow alluvial deposits only tens of feet

below the surface. Farther west the water table is 150 ft or deeper within the Servilleta

basalts and interbedded sediments.

These geologic units are crosscut by numerous faults, generally associated with

the development of the Rio Grande Rift. The faults generally trend north-south, and step

down toward the west. Pumping test data from wells near these faults (part of the

recent USBOR drilling program) indicate that some faults act as a partial barrier to the

flow of groundwater (Drakos et al., 2004c).

The Sangre de Cristo mountain block east of the Taos Valley has significantly

different lithologic and hydrologic properties than the shallow alluvial or deeper basin fill

aquifers. The mountain block is comprised of Paleozoic sedimentary rocks, Oligocene

intrusives, and Precambrian granites. Groundwater flow within the mountain block is

assumed to be small, and its effects are simulated in the model by a mountain front

recharge term. To the north and south, the valley is constricted by the mountains and

foothills. There may be some subsurface hydrologic connection between the Taos

Valley and other valleys along the Rio Grande to the north and south, but these

connections are poorly understood and not quantified. West of the Rio Grande, data

are sparse and the hydrology is relatively poorly understood.

Page 15: Attachment 3 to the

9

2. GROUNDWATER MODEL DESIGN AND INPUT PARAMETERS

2.1 Model Temporal Discretization

The model was first run in steady-state mode using long-term averages of natural

recharge and irrigation related return flow, and long-term average surface inflows to

tributary streams. A 40-year transient run followed, in which the average recharge and

stream-inflows from the steady-state run were continued, with the addition of increasing

historically metered and estimated groundwater diversions.

Relatively little groundwater development has occurred in the Taos Valley and a

trend of declining water levels in response to groundwater development has not been

observed. Therefore the most important and reliable part of the calibration is the

steady-state run. The transient run was made to confirm that simulated water levels

remained relatively stable, and are consistent with historically observed water levels.

2.2 Model Structure

As shown in Figures 3 and 4, the model grid encompasses a 225-square mile

area from the Rio Grande on the west, to the Taos range of the Sangre de Cristo

Mountains on the east, and from the Rio Hondo on the north, to the confluence of the

Rio Grande with the Rio Pueblo de Taos on the south. The model area measures 15

miles by 15 miles and has 60 rows, 60 columns, and 7 layers. Rows and columns are

evenly spaced and measure 1,320 feet (1/4 of a mile) on each side. The southwest

corner of the model grid is tied to the southwest corner of Section 2 of Township 24

North, Range 11 East, New Mexico Coordinate System. The grid is oriented north-

south and east-west.

Figures 3 and 4 show the extent of the hydrologically active model cells, and

some of the model boundary conditions. Model cells located in the mountain areas to

the east and the area west of the Rio Grande are inactive. The lateral boundaries of the

model are all specified flux and no-flow boundaries. These boundaries were not

simulated as head-dependent-flux boundaries because of the lack of hydrologic

information about how, or even whether, the Taos Valley aquifers extend continuously

Page 16: Attachment 3 to the

10

beyond the boundaries here defined, and therefore it was decided that groundwater flow

across those boundaries should be strictly limited.

Figure 5 depicts a schematic geologic cross section of the model area. Layer

descriptions and nominal thickness are given in Table 2. Figures 6 and 7 show a cross

section of the model grid itself, with the observed water table superimposed. The total

model thickness is more than 3,000 feet. Land surface elevations range from about

6,100 feet amsl in the southwest to just under 8,000 feet in the northeast. Upper layers

thin and pinch out toward the west (Figure 5, 6 and 7). Consequently, rivers and

streams cut down from higher to lower layers as they flow west. Figure 4 shows a plan

view of the model, with the uppermost active layers of the model designated by color.

For reasons of model stability, the model simulates all layers as “Type 0” layers,

in which transmissivity does not change as aquifer water levels change. MODFLOW-

2000 requires input of aquifer storativity, and for the parts of Taos model layers that are

unconfined, storativity values are set so that appropriate unconfined storages are

calculated. The assumption of constant transmissivity layers is acceptable since

historical drawdowns have been very small, and anticipated drawdowns in the shallow

unconfined system are anticipated to remain small.

Geologic deposits simulated include Quaternary alluvial fan materials derived

from the Taos Range of the Sangre de Cristo Mountains (Layers 1 through 4), Pliocene

Servilleta basalt flows and interbedded sediments (Layer 5), and Miocene Santa Fe

TABLE 2. MODEL LAYER DESCRIPTIONS

LAYER GEOLOGIC DESCRIPTION THICKNESSES

(ft)

1, 2 Youngest alluvial fan deposits derived from Sangre de Cristo Mountains. . 20, 30

3

Youngest alluvial fan deposits derived from Sangre de Cristo Mountains. (Northern Basin: Reworked alluvial fan materials)

50 (up to 700)

4

Reworked alluvial fan materials and other basin fill deposits including poorly to well sorted silts, sands, and gravels <100 to 550

5 Pliocene Servilleta basalt flows and interbedded sediments 400

6, 7

Miocene Santa Fe Group sediments composed of fluvial, eolian, and lacustrine clays, silts, sands, and gravels 500, 1700

Page 17: Attachment 3 to the

11

Group sediments consisting of clay, silt, sand, and gravel of fluvial, aeolian, and

lacustrine origin (Layer 6 and 7).

Several mapped faults are represented using the MODFLOW horizontal flow

barrier (HFB) package. These faults – Los Cordovas, Town Yard, and other unnamed

faults – generally trend north and are typically down to the west. Two types of faults,

out of numerous mapped faults, were explicitly simulated with the MODFLOW HFB

package: 1) faults for which water level and pumping test data suggest a hydrologic

influence (Drakos, et al, 2004c) and 2) a number of other representative major faults.

The faults were simulated as less transmissive than the surrounding aquifer material,

thereby slowing the east-west flow of groundwater in the deeper layers.

2.3 Areal Recharge and Mountain Front Recharge

Areal recharge is estimated at 4% of the average annual precipitation (12.55

inches per year, Garrabrant, 1993) or 0.5 inches. Areal recharge is simulated with the

MODFLOW recharge package and is distributed uniformly over the uppermost active

cells in model layers 1 through 4, where the water table is within ~200 feet of the

surface. The total amount of areal recharge applied is 1,820 acre-feet per year. Mountain front recharge of about 5,310 acre-feet per year is applied along the

mountain front on the eastern and part of the southern boundary (see diagram in

Appendix B), through the MODFLOW WEL package, which applies specified flux

stresses to the groundwater system. The amount of mountain front recharge was

originally based on discussions with the Taos Technical Committee and water budget

calculation for the area (Keller and Blisner, 1995), and modified during calibration to

improve the agreement between simulated and observed water levels and groundwater

discharge. The final amount of mountain front recharge (5,310 acre-feet per year) is

equal to about 1.3% of the estimated average annual precipitation over the

mountainous part of the watershed, which is not inconsistent with results obtained by

the USGS using chloride mass balance methods for other watersheds in the Sandia

(0.7% to 15 %) and Sangre de Cristo (3% to 6%) Mountains (Anderholm 2001 and

1994), although it is on the low side. In comparison, surface water runoff represents

about 23% of the estimated mean annual precipitation in the mountainous part of the

Page 18: Attachment 3 to the

12

watershed. The distribution of mountain front recharge in the model area was originally

based on a water budget study by Mike Johnson (2003) and modified during calibration.

Mountain front recharge is applied in model layers 1 through 4, at rates decreasing with

depth, to represent both infiltration of streamflow at the mountain-front, and smaller

amounts of deeper flow from the mountain-block.

2.4 Irrigation Return Flows

Irrigation return flows consist of recharge from acequia/ditch/lateral seepage and

on-farm deep percolation. The amount and distribution of the return flow referred to as

“groundwater accretions” was derived from the U.S. Bureau of Reclamation’s Taos

Valley surface water model (Bellinger, 2003). Groundwater accretions represent a

fraction of the surface water diverted for irrigation of about 12,000 acres of land

(Bellinger, 2003). The surface water model calculates groundwater accretions on a

seasonal basis for a variety of surface water reaches. These reaches were correlated

with zones of cells in the groundwater model corresponding to the locations of the

conveyances and irrigated lands. A long-term average of the groundwater accretions

from the surface water model was applied to the groundwater model, on a zone-by-zone

basis (see diagram in Appendix B).

Groundwater accretions include only the part of irrigation return flows that

actually recharge the regional aquifer. Groundwater accretions do not include excess

irrigation water that remains on the surface or that only seeps into the shallow

subsurface and quickly reappears as surface water. Such water is treated in the surface

water model as being available to downstream irrigators. The groundwater accretion

components were applied in zones defined using Geographic Information System (GIS)

coverage identifying irrigated lands. Specified flux cells in the MODFLOW WEL

package were used to simulate this process. Groundwater accretions account for a

total of about 11,910 AFY, reflecting about 1 AFY of deep percolation to the aquifer per

acre of irrigated land resulting from both canal seepage and on-farm return flows.

Page 19: Attachment 3 to the

13

2.5 Surface Water Features

Eight river reaches are simulated in the model:

• Rio Grande

• Rio Hondo

• Arroyo Seco

• Rio Lucero

• Rio Pueblo de Taos

• Rio Fernando de Taos

• Rio Chiquito, and

• Rio Grande del Rancho.

The Rio Grande is simulated using the RIV package of MODFLOW, and the

tributaries are simulated using the STR package. The RIV package simulates head-

dependent flux to and from the groundwater from a simple surface water body. The STR

package is a more complex version of RIV that allows for some accounting of the

amount of surface water in the tributaries, and allows the tributaries to go dry when all

the surface water is lost. Long-term average annual stream flow values derived from

USGS stream gage measurements are applied to the upper end of the tributary STR

cells. Since the Rio Grande is perennial and gaining in this reach, it was decided that it

was not necessary to use the more complex STR package to simulate the Rio Grande.

The model is designed such that the various reaches incise more deeply into the

model from east to west. That is, the upper (eastern) portions of the tributaries are

simulated by cells in layers 1 through 3, farther west these tributaries drop into layers 4

and 5, and the Rio Grande itself is in layers 5 and 6.

The Buffalo Pasture springs cover a roughly 600-acre marshy area on both sides

of the Rio Lucero. These springs are represented as cells in two reaches of the Rio

Lucero using MODFLOW STR package.

Input elevations associated with all STR and RIV cells were determined from

USGS Digital Elevation Model data and from topographic maps. Conductances for

tributary STR cells were initially set assuming a vertical hydraulic conductance of about

1 ft/d, and modified slightly during calibration. Final conductance values for most of the

tributary reaches ranged from 10,000 to 50,000 ft2/d. The conductances of cells

Page 20: Attachment 3 to the

14

representing the heart of the Buffalo Pasture were much higher in order to represent the

large area of groundwater discharge, and to simulate the observed spring discharge.

The final conductance value for cells in the heart of the Buffalo Pasture was 500,000

ft2/d. The RIV cells representing the Rio Grande were also given large conductances

(550,000 ft2/d), representing the high degree of hydrologic connection that exists

between the Rio Grande and the geologic units which discharge into it.

2.6 Evapotranspiration

Non-crop evapotranspiration (ET) is simulated with the MODFLOW ET package.

The ET package was applied to all of the uppermost active cells of the model, but an

extinction depth of 6 feet was specified, which meant that ET was only active in a limited

part of the model. In most cells, a maximum evaporation rate of 2.2 feet per year was

specified based on calculation of CIR for phreatophytes made by Brian Wilson of the

OSE (Wilson and Smith, 2004). In cells containing stream reaches, the maximum ET

rate is reduced to one-fifth of that in other cells. This reduction is made in stream cells to

account for the fact that much of the water consumed by stream-side vegetation is

probably intercepted surface water, a physical process which is accounted for in the

water budget of the USBOR surface water model.

Total ET from the groundwater model is simulated to be about 5,370 acre-feet

per year, which is a reasonable value consistent with other estimates of non-crop

evapotranspiration, but not well constrained by observational measurements. A

comparison of spatial locations of model cells experiencing ET with GIS coverage of

soggy soils/wet meadows (from the National Resources Conservation Service Soil

Survey Geographic Database, SSURGO) shows relatively good agreement between the

two1.

1 The best available information regarding locations where ET actually occurs in the field is

reportedly the SSURGO data, which shows the spatial distribution of soils that developed under anoxic

conditions because of perennial or seasonal high water levels, and also soils that occur in association

with hydric conditions on the loosely defined valley floors (Roger Miller, personal communication,

7/29/2003).

Page 21: Attachment 3 to the

15

2.7 Groundwater Diversions

Groundwater diversions from a variety of water users are represented (see

diagrams in Appendix B). The model includes the following groundwater diversions

(with recent diversion amounts):

1) Town of Taos municipal wells (currently about 840 acre-feet per year),

2) El Prado Water and Sanitation District (64 acre-feet per year),

3) about one dozen mutual domestic water users associations (about 400 acre-

feet per year)

4) approximately 1,900 individual private domestic wells (pumping 560 acre-feet

per year),

5) multiple household domestic wells (pumping 300 acre-feet per year), and

6) commercial sanitary wells using 190 acre-feet per year.

Wells were identified from OSE records and by data provided by Taos Technical

Committee members.

Metered diversions were available for public water supply wells. Diversions for

other wells were estimated at 0.25 AFY per well for domestic wells serving single

dwellings, 3.0 AFY per well for domestic wells serving multiple dwellings, and 3.0 AFY

for wells listed in OSE records as “Sanitary” type wells.

2.8 Hydraulic Properties

The model defines zones of hydraulic conductivity (K), which are then multiplied

by layer thicknesses (b) to generate transmissivity. Model hydraulic conductivities were

in part defined based upon the results of 46 aquifer tests (Drakos et al. 2004c, Tables 1,

2, 3, 4, 5; Table 3 this report), and in part based on available lithologic data.

Adjustments were made to both K values in zones and the boundaries between zones

during calibration, while keeping model values consistent with the magnitude and trends

of the available well test data. Transmissivity (T) values from aquifer tests in the shallow

system range from 250 to 6,000 ft2/d although no values are available for the shallowest

stream-channel sediments. Transmissivity in the lower aquifer system tends to be lower,

ranging from 100 to 1,600 ft2/d.

Page 22: Attachment 3 to the

16

The final hydraulic conductivities in the calibrated model produce T values that

are consistent in trend and magnitude with the aquifer test values (see diagrams in

Appendix B). Model hydraulic conductivities in the shallow system range from 1.0 to

90.0 ft/d, yielding T values in the range from 500 to 10,000 ft2/d. A very low K and T are

given to cells within Buffalo Pasture, representing low permeability “Marsh” sediments,

and the underlying Blueberry Hill deposit, which are thought to force groundwater to

discharge in this area (verbal communication, Chris Banet, US BIA). Model hydraulic

conductivities for the deeper layers (6 and 7) are systematically lower, ranging from 0.1

to 3.0 ft/d, yielding T values of around 200 to 400 ft2/d in the central part of the Taos

Valley, and T values between 1,000 and 2,500 ft2/d for the western and southern parts

of the deep system. The higher values of T in the western part of layers 6 and 7 are

consistent with an aquifer test from the River View Acres well of 1250 ft2/d, near the Rio

Grande, but are otherwise poorly constrained by well test data.

There are few pumping tests with observation wells in the shallow aquifer in the

Taos area. Therefore, storage values for the Taos model were based on standard

hydrologic texts (Freeze and Cherry, 1979) and other alluvial aquifer models in New

Mexico (McAda and Barroll, 2002; McAda and Wasiolek, 1988). For reasons of

stability, the model simulates all layers as “Type 0”, in which a specific storage value is

multiplied by the layer thickness. Specific storage was set so as to generate the

appropriate unconfined storage coefficient (0.15) for areas that are not confined. That

is, specific storage for each cell is set equal to 0.15 divided by the saturated thickness

of the cell. For parts of the model that are confined, the specific storage is set at 2 x

10-6 per foot, which is consistent with the theoretical storage due to the compressibility

of water with adjustment for aquifer compressibility, and consistent with other water

resource groundwater models of alluvial basins (McAda and Barroll, 2002).

There is evidence that the vertical anisotropy (the ratio of horizontal hydraulic

conductivity to vertical) is large. This evidence includes the presence of 1) large

observed vertical hydraulic gradients (up to 50 feet of head decline per 100 feet of

increasing depth), and 2) horizontal low permeability beds, including thick horizontal

basalt layers. Model anisotropy was determined during calibration, in order to accurately

simulate the observed vertical gradients, and ranges from 25:1 near the edges of

certain alluvial layers, to 1400:1 in the basalt layer.

Page 23: Attachment 3 to the

17

Table 3 Transmissivity and Storage Values from Pumping Tests Well Name Screened Depth Transmissivity (ft2/d) Storage (unitless)

Arroyo Park Shallow 495 – 561 0.00053 Baird Joint Venture Shallow 1150 – 2308 0.001 Barranca del Pueblo Shallow 454 – 882 BOR 2A Shallow 230 Buffalo Pasture Shallow 2000 – 6300 0.003 – 0.1 Cameron Shallow 414 – 588 Ceja de Colonias Shallow 235 – 282 Cielo Azul Shallow 390 Clinic Shallow 900 Colonias Point Shallow 976 – 1497 Cooper Shallow 187 – 401 Don’s Shallow 810 Hail Creek Deep Shallow 5000 0.0063 Howell Well Shallow 4278 – 7753 Kit Carson Shallow 1069 – 1764 La Fontana Shallow 2807 – 4679 La Percha Shallow 481 – 976 Riverbend Shallow 1600 0.000085 River View Acres Shallow 1250 San Juan-Chama Shallow 400 – 468 0.00025 – 0.00027 Ski & Tennis Ranch Shallow 35 – 504 TP-2 Taos North Shallow 930 Tract A PW2 Shallow 175 El Prado Shallow+Deep 3000 Airport Deep Deep est. 250 BOR 1 (RG-73095) Deep 520 – 1400 BOR 2B Deep 260 – 290 BOR 2C Deep 370 – 1470 BOR 3 (RG-74545-EX) Deep 450 – 710 0.0005 BOR 4 Deep 121 – 334 BOR 5 Deep 110 – 119 BOR 6 Deep 270 – 800 BOR 7 Deep 109 Karavas 2 (Screen 2) Deep 90 – 200 0.0014 – 0.019 Karavas 3 Deep 100 – 210 Mariposa Deep 530 National Guard Domestic Deep 760 Rio Pueblo 2000 Deep 280 – 700 Rio Pueblo 2500 Deep 115 – 140 Taos Yard Deep 400 Tract A PW Deep 300 Tract B PW Deep 600 0.0002 Tract B PW2 Deep 220 Tract B Tip – BIA 10 Deep 275 0.001 Tract B Tip – BIA 11 Deep 310 UNM Taos Deep 176 – 706

Page 24: Attachment 3 to the

18

3. MODEL CALIBRATION 3.1 Calibration Overview

The model was started under steady-state conditions, which represented

conditions before substantial groundwater pumping, followed by a transient historical

period simulation of 40 years during which historical groundwater diversions were

applied. The model was calibrated to observed water level data, estimated discharge

from the Buffalo Pasture springs and discharge to the Rio Grande. Calibration was

done using trial-and-error methods.

Little change in model water levels or discharges was simulated to occur during

the transient simulation in most areas of the model, which is consistent with the

available observational data. Observed well hydrographs show only climatically

induced variability, and not any trend indicative of groundwater development. Therefore,

no attempt was made to simulate the observed well hydrographs; instead the simulated

change in water levels over the transient period was checked to ensure that

unreasonably large values had not been simulated.

3.2 Calibration Targets Water level data used to calibrate the model were obtained from various sources

including:

• U.S. Geological Survey (USGS) Ground-Water Site Inventory (GWSI)

• Office of the State Engineer well records (including WATERS database)

• Bauer et al. (1999)

• Garrabrant (1993)

• Glorieta Geoscience, Inc. reports

• Lee Wilson and Associates, Inc. report (1978)

• Taos Pueblo well inventory

• Purtymun (1969)

These water level data are tabulated in Appendix A.

The range of water levels is similar to the range in land surface elevation in the

model, from about 6,100 feet amsl at the Rio Grande to nearly 8,000 feet amsl near the

mountain front. There is considerable scatter in the observed water level data, in part

because of issues of hydrogeologic complexity and the presence of large hydrologic

Page 25: Attachment 3 to the

19

gradients, but also in part because of variable data quality. The recent USBOR drilling

program provides high quality data from a number of piezometer nests, allowing

quantification of the vertical gradient. Calibration was performed so as to match both

individual water levels and to match the overall large downward vertical gradient

between the shallow and deep aquifer systems. No attempt was made to simulate the

much smaller observed upward gradient within the deep aquifer, which is assumed to

be associated with a local geologic structure (Drakos et al., 2004c).

Additional calibration targets included groundwater discharge to the Rio Grande

within the reach simulated by the model (estimated at about 1 cfs per mile or 20 cfs),

the estimated discharge from the Buffalo Pasture (estimated at various times between 2

and 15 cfs), and the general distribution of gaining and losing reaches on the tributaries,

including some seepage loss data from the Rio Lucero and Rio Pueblo de Taos.

For convenience, water level targets and the discharge target for the Buffalo

Pasture were including in MODFLOW-2000 observation package input files.

MODFLOW-2000 automatically provided output on how well these targets were

matched, which simplified evaluation of trial-and-error calibration runs.

3.3 Calibration Results

Trial-and-error calibration resulted in a model whose hydraulic properties are

relatively consistent with observed values, and that simulates observed water levels,

vertical gradients and groundwater discharges adequately. The distribution of hydraulic

properties in the calibrated model is provided Appendix B in diagram form. The match of

simulated and observed water levels (also provided in Appendix B) is generally good,

but shows considerable scatter, which is expected considering the large amount of

scatter in the available water level data. In general, the shallow system is simulated

more closely than the deep system. Model calibration statistics are given in Table 4.

50% of simulated water levels are within 20 feet of observed values, and 82% are within

50 feet, which is acceptable given the scatter in the data and the large range of

observed water levels across the model area (1267 feet). Most large residuals are

associated with wells at the edge of the basin, or wells of suspect location or screening

(we did not attempt to eliminate such outliers). Figure 8 shows observed vs. modeled

water level elevations, and Figure 9 is a chart of the distribution of residuals. The

Page 26: Attachment 3 to the

20

residual is the difference between the observed head and the model simulated heads at

the same locations (observed head minus model-simulated head). Ideally, for a perfect

model, all residuals would be zero. Figures 8 and 9 show a reasonable distribution of

residuals for a regional model of this complex system. Residuals are mostly of

reasonable size, and their distribution is centered on zero.

The fact that the upper model layers pinch out to the west as the water table cuts

down through the geologic section causes some anomalous conditions at the limits of

these layers. In the layers 1, 2 and 3 this is treated by increasing the vertical

conductance at the western edge of the pinching layer, thus allowing water from an

upper layer to flow westward, in accordance with the hydrologic gradient, into the next

layer. This creates minor anomalies in simulated heads, especially near the western

edge of layer 4 where simulated heads drop precipitously, creating more of a “step” than

can be observed in field data. However, observed data are sparse in this area, west of

Arroyo Seco, where the water table drops hundreds of feet below land surface as the

shallow aquifer system gives way to a deeper hydrologic system. What data there are

suggest that the shallow hydrologic system represented by model layers 1-4 may not be

in direct connection with the deeper hydrologic system represented in layers 5, 6 and 7

in this area. Without more detailed local data it probably would not be worthwhile

attempting to improve the simulation of this area.

TABLE 4. Model Calibration Statistics

PARAMETER ALL LAYERS Number of Observations 354 Residual Mean (feet) 0.95 Residual Standard Deviation (feet) 44.5 Sum of Squared Residuals (feet squared) 695,424 Absolute Residual Mean (feet) 30.0 Minimum Residual (feet) -143 Maximum Residual (feet) 229 Observed Head Range (feet) 1267 Minimum Observed Head (feet) 6452 Maximum Observed Head (feet) 7719 Std. Deviation/Head Range 3.5 % Percent of Residuals within 100’ 96 % Percent of Residuals within 50’ 82 % Percent of Residuals within 30’ 67 % Percent of Residuals within 20’ 51 % Percent of Residuals within 10’ 30 %

Page 27: Attachment 3 to the

21

This model closely simulates the large vertical gradients observed between the

shallow (layers 1-4) and deep (layers 5-7) aquifer system in the Taos Valley. Observed

difference in water level between deep and shallow wells and /or piezometers at the

same location range from 100 to over 400 feet (the deeper well having the lower water

level), and this phenomenon was well simulated by the model (see Table 5). These

well-quantified downward vertical gradients constrained model vertical anisotropy, which

in many models is a highly uncertain and unconstrained parameter because of the lack

of definitive calibration data from multi-level piezometers.

TABLE 5. Vertical Head Difference Between Shallow and Deep Wells and Corresponding Model Layers.

All Gradients Listed Reflect Lower Heads at Deeper Depths WELL OBSERVED

(feet) SIMULATED

(feet) BOR 1/ National Guard 62 104 BOR 2 and 3 218 212 BOR 4 and 6 424 405 BOR 5 132 104 BOR 7 253 260 Cielo Azul 208 217 Grumpy 137 (?) 473 Karavas 2 and 3 255 260 L25/L27 41 46 Rio Pueblo 2500 131 117

The groundwater model also adequately simulates observed groundwater

discharge targets. Analysis of recorded flows in the Rio Grande from the confluence of

the Rio Grande and Rio Hondo to the Taos Junction stream gage shows a gain of about

20 - 25 cfs (or about 1 cfs per mile). The model simulates approximately 21 cfs

discharge from groundwater in this reach. At the Buffalo Pasture, modeled discharge

from groundwater is about 5 cfs or 3,800 acre-feet per year, compared with 2 to15 cfs

range of observed discharge (which may contain a direct surface water return

component not simulated here in the model).

In addition, other qualitative flow and discharge targets were simulated

successfully. These targets include large observed losses from the upper reach of the

Rio Lucero and gains to the upper reach of the Rio Pueblo de Taos. Arroyo Seco was

Page 28: Attachment 3 to the

22

also correctly simulated to have large losses, and as going dry over an extended reach.

The water budget from the calibrated model at the end of the transient run is provided in

Table 6. The difference between total recharge and total discharge is less than 0.05%,

and is well within acceptable limits.

TABLE 6. Groundwater Model Water Budget, End of Simulation (Present-Day Conditions)

Recharge AF/Y Discharge AF/Y

Areal Recharge from Precipitation 1,820 Discharge at Buffalo Pasture Springs 3,960Mountain Front Recharge 5,310 Evapotranspiration 5,350Irrigation Seepage 11,910 Groundwater Pumping 2,540Tributary Recharge (to aquifer) 18,810 Discharge to Tributaries 11,420Water Released from Aquifer Storage

370 Discharge to Rio Grande 14,940

Total Recharge 38,220 Total Discharge 38,210

4. SUMMARY, CONCLUSIONS, DISCUSSION The T17.0 model is the result of several years of collaboration between the OSE,

and the US Bureau of Reclamation with input from other professional hydrologists with

considerable experience in the Taos Valley representing the Parties to the Abeyta

Adjudication Settlement negotiations. The model was developed in response to 1) a

need for a tool to evaluate the effects of groundwater development proposed during

Adjudication Settlement Negotiations, especially groundwater diversions from deep

levels of the aquifer system, and 2) a need for a tool to administer the wells subject to

the Settlement Agreement. New hydrologic data became available from a deep-drilling

program funded by the U.S. Bureau of Reclamation, which was integral to the

development of a regional model of the Taos Valley that provides reasonable and

reliable results when simulating deep-aquifer pumping.

Given the hydrogeologic complexity of the Taos area, this groundwater flow

model does a relatively good job matching observed water levels, the discharge from

the springs at Buffalo Pasture, and the observed large downward vertical gradients.

Simulation of the large vertical gradients constrains model vertical anisotropy, and

allows the model to simulate the interaction between the deep and shallow aquifer

systems with reasonable reliability. This model provides reasonable and useful

Page 29: Attachment 3 to the

23

predictions of the impacts of proposed wells. The model was designed, in part, to

evaluate the hydrologic effects of wells proposed under the Taos Adjudication

settlement, and it is recommended that the model be used in evaluating the hydrologic

impacts of those wells. Determination of how and whether the model should be applied

the hydrologic evaluation of other wells should be made on a case-by-case basis.

5. REFERENCES

Anderholm, S.K., 1994, Groundwater Recharge near Santa Fe, North-central New

Mexico. USGS Water-Resources Investigation Report 94-4078. Anderholm, S.K., 2001, Mountain-front Recharge Along the Eastern Side of the Middle

Rio Grande Basin, Central New Mexico: USGS Water-Resources Investigations Report 00-4010.

Banet, C., USBIA, personal communication, 8/22/2003 Bauer, P.W., Johnson, P.S., and Kelson, K.I., 1999, Geology and Hydrology of the

Southern Taos Valley, Taos County, New Mexico, New Mexico Bureau of Mines and Mineral Resources, Socorro, NM.

Bauer, P., and Kelson, K., 1998, Geology of Ranchos de Taos Quadrangle, Taos

County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Open-file Digital Geologic Map OF-DGM 33.

Bellinger, T.R., 2003. Taos Valley Surface Water Hydrologic Model Development and

Baseline Results. Draft USBOR Technical Report, Denver Technical Center. Burck, P., Barroll, P., Core, A. and Rappuhn, D., 2004,. Taos Regional Groundwater

Flow Model. New Mexico Geological Society Guidebook, 55th Field Conference, Geology of the Taos Region, p 433-439.

Drakos, P., Lazarus, J., Riesterer, J., White, B., Banet, C., Hodgins, M., and Sandoval,

J., 2004a. Subsurface Stratigraphy in the Southern San Luis Basin, New Mexico. New Mexico Geological Society Guidebook, 55th Field Conference, Geology of the Taos Region, p 374-382.

Drakos, P., Sims, K., Riesterer, J., Blusztajn, J., Lazarus, J., 2004b. Chemical and

Isotopic Constraints on Source-Waters and Connectivity of Basin-Fill Aquifers in the Southern San Luis Basin, New Mexico. New Mexico Geological Society Guidebook, 55th Field Conference, Geology of the Taos Region, p 405-414.

Page 30: Attachment 3 to the

24

Drakos, P., Lazarus, J., White, B., Banet, C., Hodgins, M., Riesterer, J., and Sandoval, J., 2004c. Hydrologic Characteristics of Basin-Fill Aquifers in the Southern San Luis Basin, New Mexico. New Mexico Geological Society Guidebook, 55th Field Conference, Geology of the Taos Region, p 391-404.

Dungan, M. A., Muehlberger, W.R., Leininger, L., Peterson, C., McMillan, N.J., Gunn,

G., Lindstron, M., and Haskin, L., 1984. Volcanic and sedimentary stratigraphy of the Rio Grande gorge and the late Cenozoic geologic evolution of the southern San Luis Valley, in New Mexico Geological Society Guidebook 35th Field Conference, Rio Grande Rift: Northern New Mexico, p. 157-170.

Freeze, R.A. and Cherry, J.A., 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs,

N.J. 604 p. Galusha, T., and Blick, J., 1971, Stratigraphy of the Santa Fe Group, New Mexico:

Bulletin of the American Museum of Natural History, v. 144, Article 1. Garrabrant, L.A., 1993, Water Resources of Taos County, New Mexico, U.S. Geological

Survey Water-Resources Investigations Report 93-4107, Albuquerque, NM. Glorieta Geoscience, Inc., June, 1991, Geohydrology of the Pinones de Taos, Taos

County, New Mexico, Consultant Report prepared for Stephen Natelson and Fred Fair, OSE file copy.

Glorieta Geoscience, Inc., March, 1995, Town of Taos San Juan/Chama Diversion

Project Phase 2, Volume 1, Production Well and Observation Well Installation, Testing, and Determination of Aquifer Coefficients, Consultant Report prepared for the Town of Taos and Lawrence Ortega & Associates, OSE file copy.

Glorieta Geoscience, Inc., August, 1997, Pumping Test Analysis, Arroyo Seco School

Well, Taos County, New Mexico, Consultant Report prepared by Paul Drakos for Fennell Drilling Co., OSE file copy.

Glorieta Geoscience, Inc., 2000, Drilling and Testing Report, Bureau of Reclamation

2000-Feet Deep Nested Piezometer/Exploratory Well (BOR #1), Taos, NM, Consultant Report prepared by Paul Drakos and Meghan Hodgins for the Town of Taos.

Glorieta Geoscience, Inc., 2002, Drilling and Testing Report, Bureau of Reclamation

2000-Feet Deep Nested Piezometer/Exploratory Well (BOR #2), and 2100-Feet Deep Production Well (BOR #3) Paseo del Ca�on West Site, Taos, NM, Consultant Report prepared by Paul Drakos and Meghan Hodgins for the Town of Taos.

Harbaugh, A.W and M.G. McDonald, 1996, User’s Documentation of MODFLOW-96, an

update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model, U.S. Geological Survey Open-File Report 96-485, Reston, VA.

Page 31: Attachment 3 to the

25

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000,

the U.S. Geological Survey modular ground-water model -- User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92, 121 p.

Hill, M.C., Banta, E.R., Harbaugh, A.W., and Anderman, E.R., 2000, MODFLOW-2000,

the U.S. Geological Survey modular ground-water model -- User guide to the Observation, Sensitivity, and Parameter-Estimation Processes and three post-processing programs, U.S. Geological Survey Open-File Report 00-184, 210 p.

Johnson, M., 2003. “Taos Groundwater Model Recharge Study.” Internal OSE Draft

Memorandum dated June 30, 2003. Keller and Bliesner, 1995, Taos Valley Water Balance (1958 – 1988). 1 page table. McAda D.P., and Barroll, P., 2002. Simulation of Groundwater Flow in the Middle Rio

Grande Basin between Cochiti and San Acacia, New Mexico. U.S. Geological Survey Water-Resources Investigations Report 02-4200.

McAda D.P. and Wasiolek, M., 1988; Simulation of the Regional Geohydrology of the

Tesuque Aquifer System near Santa Fe, New Mexico. U.S. Geological Survey Water-Resources Investigations Report 87-4056.

McDonald, M.G. and A.W. Harbaugh, 1988, A Modular Three-Dimensional Finite-

Difference Ground-Water Flow Model, Techniques of Water Resources Investigations of the United States Geological Survey, Book 6, Chapter A1, USGPO, Washington, D.C.

Miller, R. Personal Communication, 7/29/2003. New Mexico Office of the State Engineer, 2000, Well Records stored in the Water

Administration Technical Engineering Resource System (WATERS) Database. Purtymun, W.D., 1969, General ground-water conditions in Taos Pueblo, Tenorio Tract,

and Taos Pueblo Tracts A and B, Taos County, New Mexico. US Department of the Interior, Geological Survey, Albuquerque, NM.

Spiegel, Z. and Couse, I.W., 1969, Availability of groundwater for supplemental

irrigation and municipal-industrial uses in the Taos Unit of the U.S. Bureau of Reclamation San-Juan Chama Project, Taos County, New Mexico. New Mexico State Engineer, Open-File Report, 22 p.

Soil Survey Staff, Natural Resources Conservation Service, United States Department

of Agriculture. Soil Survey Geographic (SSURGO) Database for Taos County and Parts of Rio Arriba and Mora Counties, New Mexico. Available URL: "http://soildatamart.nrcs.usda.gov" Accessed 2003.

Page 32: Attachment 3 to the

26

Taos Federal Negotiation Team, undated, Hydrology and Water Management in the

Taos Basin: A Guide for Decision-Makers. (Informally known as the Taos Data Book). Prepared in cooperation with Taos Pueblo, New Mexico State Engineer Office, Taos Valley Acequia Association, Town of Taos, New Mexico.

Taos Pueblo Well Inventory, 2000. Provided by Chris Banet of the U.S. Bureau of

Indian Affairs. Tetra Tech, 2003. Rio Grande Seepage Final Study Report, Taos Box Canyon, Report.

Prepared for the U.S. Bureau of Reclamation USBR Contract No. 00-CA-30-0027, Delivery Order 00-C5-40-0027, Dated April 2003.

USBIA, 2001, U.S. Bureau of Indian Affairs, Site Completion Report for Subsurface

Drilling, Sampling, and Testing of BOR #5 at West Deep Site, Taos Pueblo, Taos County, New Mexico. Prepared by USBIA, Southwest Regional Office (SWRO), Branch of Water Rights, Geohydrology Section. Prepared for Proposal for Technical Studies Conducted to Assist Settlement Discussions in the NM v. Abeyta, Drilling Program, Pueblo Portion, October 2001.

USBIA, 2003, U.S. Bureau of Indian Affairs, BOR 4 Site Completion Report for the

Pueblo Portion at Taos Pueblo, Taos County, New Mexico. Prepared by USBIA, Southwest Regional Office (SWRO), Branch of Water Rights, Geohydrology Section. Prepared for Proposal for Technical Studies Conducted to Assist Settlement Discussions in the NM v. Abeyta, Drilling Program, Pueblo Portion, March 2003.

USBIA, 2003, U.S. Bureau of Indian Affairs, BOR 5 Site Completion Report for the

Pueblo Portion at Taos Pueblo, Taos County, New Mexico. Prepared by USBIA, Southwest Regional Office (SWRO), Branch of Water Rights, Geohydrology Section. Prepared for Proposal for Technical Studies Conducted to Assist Settlement Discussions in the NM v. Abeyta, Drilling Program, Pueblo Portion, March 2003.

USBIA, 2003, U.S. Bureau of Indian Affairs, BOR 6 Site Completion Report for the

Pueblo Portion at Taos Pueblo, Taos County, New Mexico. Prepared by USBIA, Southwest Regional Office (SWRO), Branch of Water Rights, Geohydrology Section. Prepared for Proposal for Technical Studies Conducted to Assist Settlement Discussions in the NM v. Abeyta, Drilling Program, Pueblo Portion, March 2003.

USBIA, 2003, U.S. Bureau of Indian Affairs, BOR 7 Site Completion Report for the

Pueblo Portion at Taos Pueblo, Taos County, New Mexico. Prepared by USBIA, Southwest Regional Office (SWRO), Branch of Water Rights, Geohydrology Section. Prepared for Proposal for Technical Studies Conducted to Assist Settlement Discussions in the NM v. Abeyta, Drilling Program, Pueblo Portion, March 2003.

Page 33: Attachment 3 to the

27

USBOR, 2002. Summary of Discharge Measurements Performed on Taos Valley Streams and Canals in 1983, 1989, 2000, and 2001. Denver Technical Center, February 2002.

USGS, 2000, United States Geological Survey Ground-Water Site Inventory (USGS

GWSI). Wilson, B.C. and M. Smith, 2004, Taos Pueblo and Rio Pueblo de Taos drainage basin,

Taos County, New Mexico; Quantification of Irrigation Water Requirements. OSE Memorandum dated 2/13/2004.

Wilson, L., Anderson, S.T., Jenkins, D.N., and Lovato, P., 1978, Water availability and

water quality, Taos County, New Mexico: Consultant report prepared for the Taos County Board of Commissioners by Lee Wilson and Associates, Inc., Santa Fe, New Mexico.

Page 34: Attachment 3 to the

C o l o r a d oC o l o r a d o

N e w M e x i c oN e w M e x i c o

Ari

zo

na

Ar i

zo

na

Ut a

hU

t ah

O k .O k .

Te

xa

sT

ex

as

M E X I C O

Rio

Gra

nde

R io G

rande

Rio Grande

OdessaSunlandPark

Midland

CarlsbadLasCrucesDeming Hobbs

ArtesiaAlamogordo

SilverCity

RoswellLevelland

PortalesClovis

HerefordLos Lunas

Albuquerque

RioRancho

LasVegas

Santa FeGallup

Farmington

Durango

Pueblo

Taos

T a o s M o d e l L o c a t i o nT a o s M o d e l L o c a t i o n

É0 25 50 75 10012.5

Miles28

Page 35: Attachment 3 to the

Figure 2. Observed Water Level Contour Map, contour elevations given in feet amsl (after Spiegel and Couse, 1969; and Purtymun, 1969). Also shown: locations of key wells.

29

Page 36: Attachment 3 to the

Figure 3. Model Grid and Selected Model Boundary Features. Numbered Cells Represent MODFLOW STR Segments.

30

Page 37: Attachment 3 to the

Diagram of STR Reach Numbers. OSE Taos Model T17.0 Uppermost Active LayerSplit between 1 and 16 designates location of last diversion on Rio Hondo 1 Reach 1 5 SimulatedSplit between 14 and 15 designates location of last diversion on Rio Pueblo de Taos Number 3 6 Faults

row 41 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1 2 3 4 1 1 1 1 5 16 16 16 16 1 1 1 1 1 1 1 1 6 16 16 16 16 16 16 16 16 1 1 1 1 1 1 1 1 1 1 7 16 16 8 9

10 2 2 2 2 2 2 11 2 2 12 2 2 13 2 14 2 3 3 3 15 2 2 3 3 16 2 3 17 2 3 18 2 3 19 2 3 20 2 3 21 2 3 22 2 2 3 23 2 3 24 2 3 25 2 3 26 2 3 27 2 3 28 2 3 29 2 3 30 2 3 31 2 4 4 5 32 2 4 4 5 5 7 7 7 7 33 2 4 5 5 7 34 2 2 6 5 7 35 2 6 7 36 2 2 6 6 7 37 2 9 9 7 7 7 38 2 2 9 9 39 2 9 9 40 2 2 9 41 2 9 42 2 9 9 43 2 10 9 9 8 8 8 8 8 44 2 10 10 10 8 8 8 8 45 2 10 8 8 8 46 15 14 14 14 14 14 8 47 15 15 13 8 48 15 15 13 8 49 15 13 8 50 15 15 13 13 51 15 15 13 13 52 15 15 13 53 15 15 15 13 54 15 15 13 55 15 15 13 56 15 15 15 13 13 57 15 15 13 58 15 15 12 11 59 15 12 12 11 60 15 12 12 11

column

31

Page 38: Attachment 3 to the

Figure 5. Schematic Cross-Section of the Taos Valley Showing Geologic Layers Represented in the Taos Regional Groundwater Model. Layer Thickness information provided in Table 2.

32

Page 39: Attachment 3 to the

Cro

ss S

ectio

n of

Mod

el L

ayer

s, O

SE T

aos

Gro

undw

ater

Mod

el T

17.0

, 200

4

3500

4000

4500

5000

5500

6000

6500

7000

7500

02

46

810

1214

Dis

tanc

e (m

iles)

Elevation (feet amsl)

Land

Sur

face

Ele

vatio

n

Wat

er T

able

(Spi

egel

and

Cou

se, 1

969)

Laye

r 7

Laye

r 6

Laye

r 5 -

Bas

altsLa

yer 4

Laye

r 1La

yer 2

Laye

r 3

Eas

t

Rio

Gra

nde

Taos

Pue

blo

33

Page 40: Attachment 3 to the

Cro

ss S

ectio

n of

Mod

el L

ayer

s, O

SE T

aos

Gro

undw

ater

Mod

el T

17.0

, 200

4

5500

6000

6500

7000

7500

02

46

810

1214

Dis

tanc

e (m

iles)

Elevation (feet above MSL)

Land

Sur

face

Ele

vatio

n

Wat

er T

able

(Spi

egel

and

Cou

se, 1

969)

Laye

r 7Laye

r 6

Laye

r 5 -

Bas

alts

Laye

r 4

Laye

r 1La

yer 2

Laye

r 3

Rio

Gra

nde

Eas

t

Taos

Pue

blo

34

Page 41: Attachment 3 to the

resi

dual

s-17

upda

ted.

xls

5/23

/200

5 2

:36

PM

Cal

ibra

tion

Res

ults

: Tao

s G

roun

dwat

er M

odel

ver

sion

T17

.0 1

/04

Obs

erve

d vs

. Sim

ulat

ed H

eads

All

Laye

rs

6300

6400

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

6300

6400

6500

6600

6700

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

7800

Obs

erve

d H

eads

(fee

t abo

ve m

eans

sea

leve

l)

Model Simulated Heads

35

Page 42: Attachment 3 to the

5/23

/200

5 r

esid

uals

-17u

pdat

ed.x

ls

Cal

ibra

tion

Res

ults

Tao

s m

odel

T17

1/0

4Fr

eque

ncy

Dis

trib

utio

n of

Res

idua

lsA

neg

ativ

e re

sidu

al in

dica

tes

that

sim

ulat

ed v

alue

s ar

e to

o hi

gh

010203040506070<-100

-100 to -90

-90 to -80

-80 to -70

-70 to -60

-60 to -50

-50 to -40

-40 to -30

-30 to -20

-20 to -10

-10 to 0

0 to 10

10 to 20

20 to 30

30 to 40

40 to 50

50 to 60

60 to 70

70 to 80

80 to 90

90 to 100

>100

Ran

ge o

f Res

idua

l (ft)

Frequency

36

Page 43: Attachment 3 to the

Location Map for Vertical Hydraulic Gradient Datamodel: columns Well Location on Model Gridrow 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

1234 Rio Hondo56789 Arroyo Seco

101112 Cielo Azul13 Rio Lucero141516 BOR 717 Grumpy181920212223 BOR 4/BOR 6 BOR 524

252627

28293031 Buffalo Pasture

3233 Rio Pueblo34 de Taos

353637 Karavas 2/Karavas 3

38 Taos Town Wells394041 Rio L97/ L91

42 Grande43 Rio 44 Fernando

45 Taos Yard46

47 BOR 2/ BOR 348 Rio Pueblo 250049

50 L25/ L27515253 Rio Grande54 Rio Pueblo del Rancho55 de Taos5657 BOR 1/ National Guard58 Rio Chiquito5960

37

Page 44: Attachment 3 to the

APPENDIX A

Water Level Data Used for Calibration of Taos Groundwater Model T17.0

Water level data compiled by OSE personnel from a variety of sources:

• U.S. Geological Survey (USGS) Ground-Water Site Inventory (GWSI)

(Source ID: A##)

• Office of the State Engineer Well Records (including WATERS database)

(Source ID: D##)

• Bauer et al. (1999) (Source ID: B##)

• Garrabrant (1993) (Source ID: G##)

• Glorieta Geoscience, Inc. Reports (Source ID: GG##)

• Lee Wilson and Associates, Inc. Report (1978) (Source ID: L##)

• Taos Pueblo Well Inventory (Source ID: P##)

• Purtymun (1969) (Source ID: Y##)

Well locations for many wells were derived from PLSS or other data using GIS

techniques.

Row, column and offset values designated in red were adjusted to place

observation at the center of cells located at edge of active model domain, in

order to permit MODFLOW-2000 to calculate residuals.

Row, column and offset values designated in blue were estimated based on

available PLSS data.

Appendix A page 1

Page 45: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

OW

-9 S

hallo

wP4

0P

4044

9210

4037

410

121

41-0

.23

0.24

7460

4074

2041

OW

-9 D

eep

P39

P39

4492

1040

3741

01

2141

-0.2

30.

2474

6048

7412

65W

est W

ell -

BIA

-19

P21

BIA

1944

7320

4036

100

124

370.

03-0

.45

7242

4571

9776

Ace

quia

Wel

l - B

IA 1

2P1

3B

IA12

4482

7040

3501

01

2739

-0.2

7-0

.09

7198

3471

6465

OW

-1P2

9P

2944

8750

4035

010

127

40-0

.27

0.10

7207

3871

6958

OW

-8P3

8O

W8

4497

5040

3461

01

2843

-0.2

7-0

.41

7215

3671

7937

MW

-2P3

0P

3044

9150

4033

970

129

410.

320.

1071

2210

7112

32R

G-2

7258

L194

L194

4473

3540

3361

51

3037

0.20

-0.4

170

935

7088

40M

W-4

P32

P32

4492

2040

3365

01

3041

0.11

0.27

7110

1670

9426

MW

-3P3

1P

3144

9350

4033

660

130

420.

09-0

.41

7110

1570

9535

OW

-5-s

hal

P34

OW

5S44

9540

4033

380

131

42-0

.21

0.06

7093

1070

8337

OW

-5-d

eep

P33

OW

5D44

9540

4033

380

131

42-0

.21

0.06

7093

1670

7711

5O

W-6

-sha

lP3

6O

W6S

4495

4040

3341

01

3142

-0.2

90.

0670

9612

7084

40O

W-6

-dee

pP3

5O

W6D

4495

4040

3341

01

3142

-0.2

90.

0670

9614

7082

58O

W-7

P37

OW

744

9530

4033

390

131

42-0

.24

0.04

7095

1170

8440

RG

-263

62L2

02L2

0245

1203

4033

134

131

460.

400.

2071

4520

7125

49R

G-3

465

L197

L197

4478

5640

3249

11

3338

0.00

-0.1

270

327

7025

30R

G-3

464

L198

L198

4478

3640

3251

51

3338

-0.0

6-0

.17

7030

870

2245

RG

-248

96L4

1, A

rchu

leta

L41

4511

8740

3232

41

3346

0.41

0.16

7105

1270

9348

RG

-669

96D

474

D47

444

8285

4031

620

135

390.

16-0

.06

6983

1569

6850

Hai

l Cre

ek S

hallo

w -

BIA

22

P24

P24

4487

4540

3116

11

3640

0.30

0.09

6965

969

5625

BIA

Y5Y

544

9665

4031

279

136

420.

010.

3870

102

7008

4R

G-2

7625

L81

L81

4493

8440

3014

41

3942

-0.1

7-0

.32

7006

2069

8650

Ant

onio

Rom

ero

Y11

Y11

4495

5040

2994

51

3942

0.32

0.09

7035

7069

6585

RG

-204

5L6

9L6

944

9019

4029

517

140

410.

39-0

.23

6997

569

9233

RG

-125

70L9

9L9

944

7860

4029

005

142

38-0

.34

-0.1

169

308

6922

42R

G-3

71L9

0L9

044

8237

4028

608

143

39-0

.35

-0.1

769

1320

6893

52R

G-5

407

L97

L97

4486

4240

2863

91

4340

-0.4

3-0

.17

6936

4368

9380

RG

-194

55L8

7L8

744

9174

4028

091

144

41-0

.07

0.15

6966

669

6025

RG

-542

2L1

22L1

2244

8110

4027

186

146

390.

18-0

.49

6963

5269

1190

RG

-178

96L1

91L1

9144

6915

4034

794

227

360.

27-0

.46

7162

871

5475

Sout

h W

ell S

hallo

w -

BIA

16

P18

P18

4502

9040

3473

02

2744

0.43

-0.0

772

0073

7127

116

RG

-553

93D

401

D40

144

6781

4034

595

228

35-0

.23

0.21

7143

4670

9710

0R

G-3

370

L192

L192

4469

3040

3317

02

3136

0.31

-0.4

270

7512

7063

53R

G-2

9506

L199

L199

4481

3440

3283

22

3239

0.15

-0.4

370

563

7053

64R

G-2

6306

L42

L42

4509

8840

3215

72

3446

-0.1

8-0

.34

7093

1070

8356

RG

-160

42L4

9L4

944

8487

4031

602

235

390.

210.

4569

908

6982

60R

G-2

3218

L51

L51

4484

9540

3155

42

3539

0.32

0.47

6982

1269

7070

RG

-277

41L4

6L4

644

8554

4031

574

235

400.

28-0

.38

6987

769

8050

RG

-577

3L4

5L4

544

8531

4031

546

235

400.

34-0

.44

6982

1269

7056

RG

-238

74L5

2L5

244

8523

4031

582

235

400.

26-0

.46

6988

2069

6862

RG

-275

91L5

7L5

744

7347

4031

204

236

370.

19-0

.38

6957

1269

4580

RG

-221

08L5

6L5

644

7359

4031

189

236

370.

23-0

.36

6955

2069

3560

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

pbar

roll

H

OB

S-7

L.xl

s lP

age

110

/28/

2005

App

endi

x A

pag

e 2

Page 46: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

RG

-276

23L6

8L6

844

8928

4030

418

238

410.

15-0

.46

6967

569

6271

Ann

Bar

low

Y8Y

844

9919

4030

519

238

43-0

.10

0.01

6990

969

8175

RG

-203

87L7

7L7

744

8189

4030

132

239

39-0

.14

-0.2

969

368

6928

64R

G-1

5856

L71

L71

4485

0340

2999

72

3939

0.19

0.49

6943

669

3765

RG

-156

59L7

0L7

044

8527

4029

974

239

400.

25-0

.45

6942

669

3662

3624

5910

5340

701

A2/

G12

A2

4490

2240

3008

22

3941

-0.0

2-0

.22

6980

1769

6380

RG

-863

3L8

2L8

245

0095

4030

013

239

430.

150.

4470

7140

7031

94R

G-2

7284

L80

L80

4501

1940

2999

32

3944

0.20

-0.5

070

7355

7018

110

RG

-701

42D

553

D55

344

7312

4029

484

240

370.

000.

0068

9018

6872

75R

G-1

5786

L83

L83

4499

1640

2981

52

4043

-0.3

50.

0070

7345

7028

85R

G-6

5827

D57

6D

576

4490

6540

2834

92

4341

0.29

-0.1

269

5815

6943

60R

G-5

6131

D58

4D

584

4493

0740

2820

92

4441

-0.3

60.

4969

7218

6954

82R

G-3

419

L121

L121

4479

6740

2752

42

4538

0.34

0.15

6932

5068

8210

0R

G-2

950

L93

L93

4482

4940

2778

22

4539

-0.3

0-0

.14

6932

4468

8810

0R

G-6

0855

D61

7D

617

4494

8240

2764

32

4542

0.05

-0.0

869

8124

6957

75R

G-2

2432

D62

1D

621

4494

5140

2755

22

4542

0.27

-0.1

669

7930

6949

71R

G-2

2701

L114

L114

4473

7540

2711

12

4637

0.00

0.00

6931

5068

8198

RG

-979

4L1

23L1

2344

8078

4027

202

246

380.

140.

4369

5940

6919

100

RG

-360

10D

628

D62

844

8047

4027

372

246

38-0

.28

0.35

6953

5069

0310

5R

G-3

2196

D11

6D

116

4485

8140

4273

93

840

-0.4

8-0

.32

7693

160

7533

300

RG

-608

77D

119

D11

944

8642

4042

708

38

40-0

.40

-0.1

776

9719

575

0230

0R

G-6

9484

D12

8D

128

4487

3240

4258

43

840

-0.0

90.

0676

9716

075

3732

0R

G-2

0938

L168

L168

4493

0540

4185

03

1041

-0.2

70.

4876

7814

7664

5036

3207

1053

4070

1A

3/G

19G

1944

9425

4041

584

310

420.

39-0

.22

7681

776

7420

4R

G-6

7419

D22

9D

229

4495

7240

4156

83

1042

0.44

0.14

7701

3076

7116

0R

G-6

410

L166

L166

4483

7640

4138

13

1139

-0.1

00.

1775

9545

7550

85R

G-6

6201

D24

0D

240

4490

2240

4148

43

1141

-0.3

6-0

.22

7639

1876

2128

0R

G-7

146

L169

L169

4470

4240

4104

03

1236

-0.2

5-0

.14

7517

155

7362

221

RG

-244

53L1

70L1

7044

6950

4041

139

312

36-0

.50

-0.3

775

2313

073

9315

7R

G-6

7170

D27

0D

270

4486

1940

4097

13

1240

-0.0

8-0

.22

7579

4075

3916

0R

G-6

207

L162

L162

4502

1840

4113

93

1244

-0.5

0-0

.25

7776

5777

1995

RG

-656

14C

ielo

Azu

l GG

3G

G3

4464

1740

4036

03

1334

0.44

0.30

7450

136

7314

353

RG

-103

44L1

71L1

7144

7038

4040

647

313

36-0

.28

-0.1

574

9496

7398

375

Nor

th W

ell -

BIA

18

P20

BIA

1844

8430

4039

800

315

39-0

.17

0.31

7550

3575

1516

0R

G-2

0608

L178

L178

4470

6240

3912

23

1736

-0.4

9-0

.10

7401

6073

4111

5G

rum

py W

ell S

hallo

w -

BIA

25

P27

BIA

2544

7440

4038

540

318

37-0

.04

-0.1

573

9840

7358

213

Mid

-Poi

nt W

ell -

BIA

17

P19

BIA

1744

8840

4038

340

318

400.

460.

3275

0086

7414

470

RG

-178

74L1

80L1

8044

6919

4037

982

319

360.

35-0

.45

7327

6072

6712

5R

G-5

4924

D31

6D

316

4468

4040

3773

33

2035

-0.0

30.

3573

2660

7266

145

RG

-106

38L1

79L1

7944

6216

4037

272

321

340.

11-0

.20

7257

7971

7812

9R

G-6

4366

D32

5D

325

4464

6440

3691

53

2234

0.00

0.42

7254

4272

1214

0R

G-6

8541

D32

6D

326

4464

3340

3685

53

2234

0.15

0.34

7251

6071

9112

5R

G-1

828X

L185

L185

4465

3740

3677

53

2235

0.35

-0.4

072

4736

7211

135

pbar

roll

H

OB

S-7

L.xl

s pa

ge 2

10/2

8/20

05

App

endi

x A

pag

e 3

Page 47: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

OW

-10

P41

P41

4484

5040

3698

03

2239

-0.1

60.

3673

7383

7290

127

RG

-709

00D

337

D33

744

6367

4036

521

323

34-0

.02

0.18

7233

6271

7112

5R

G-7

239

L181

L181

4466

3340

3633

93

2335

0.43

-0.1

672

2863

7165

115

RG

-182

8-S

L186

L186

4465

8540

3633

53

2335

0.44

-0.2

872

2555

7170

300

RG

-182

8-R

EPLA

CE

L187

L187

4466

1340

3632

33

2335

0.47

-0.2

172

2565

7160

152

RG

-935

9L1

83L1

8344

6990

4036

390

323

360.

000.

0072

5223

7229

85R

G-6

0457

D35

6D

356

4462

0940

3606

53

2434

0.11

-0.2

172

0340

7163

101

RG

-594

85D

354

D35

444

6561

4036

198

324

35-0

.22

-0.3

472

2240

7182

110

RG

-695

79D

357

D35

744

6514

4036

062

324

350.

12-0

.46

7216

6071

5612

5R

G-1

828

L184

L184

4465

3740

3597

33

2435

0.34

-0.4

072

2653

7173

160

RG

-592

83D

363

D36

344

4986

4035

777

325

31-0

.17

-0.2

571

9414

370

5120

3R

G-5

6560

D36

4D

364

4462

9740

3576

03

2534

-0.1

30.

0071

8840

7148

112

RG

-554

01D

365

D36

544

6510

4035

757

325

35-0

.12

-0.4

772

1640

7176

120

RG

-182

2L1

82L1

8244

6720

4035

787

325

35-0

.20

0.06

7202

6071

4210

4R

G-1

828-

A-S

/RG

-280

97-X

D35

9/D

360

D35

944

6889

4035

877

325

35-0

.42

0.48

7222

4571

7727

536

2759

1053

5480

1A

19/G

20A

1944

6541

4035

644

325

350.

16-0

.39

7205

5371

5228

0Sk

i & T

enni

s R

anch

GG

4G

G4

4463

5340

3542

43

2634

-0.2

90.

1472

2845

7183

150

RG

-250

08L1

88L1

8844

7316

4035

183

326

370.

30-0

.46

7192

5071

4211

5R

G-6

2300

Col

onia

s Po

int G

G2

GG

244

4914

4034

924

327

31-0

.05

-0.4

371

6055

7105

127

RG

-795

5L1

90L1

9044

6930

4034

774

327

360.

32-0

.42

7157

5571

0210

4A

cequ

ia W

ell -

BIA

13

P14

P14

4482

7040

3504

03

2739

-0.3

4-0

.09

7201

4471

5719

5So

uth

Wel

l Dee

p - B

IA 1

6P1

7P

1745

0290

4034

730

327

440.

43-0

.07

7200

118

7082

138

RG

-325

5 C

LWL1

89L1

8944

6736

4034

591

328

35-0

.22

0.10

7151

4271

0920

1R

G-5

5314

D42

4D

424

4456

0340

3394

03

2932

0.39

0.28

7054

8669

6814

0R

G-6

4970

D42

5D

425

4457

0740

3378

63

3033

-0.2

2-0

.46

7061

4770

1490

RG

-272

34L1

96L1

9644

9039

4033

730

330

41-0

.08

-0.1

871

3116

7115

75 to

12 0

3626

3610

5365

801

A29

/G18

A29

4447

8240

3309

73

3130

0.49

0.24

7038

6069

7812

0R

G-1

6891

L193

L193

4469

1140

3319

83

3136

0.24

-0.4

770

8615

7071

100

RG

-522

61D

448

D44

844

5739

4032

720

332

330.

43-0

.38

7067

100

6967

170

RG

-174

90L1

95L1

9544

7343

4032

821

332

370.

18-0

.39

7035

6069

7511

0R

G-2

5253

L44

L44

4484

2340

3231

63

3339

0.43

0.29

7024

3869

8610

2Ta

os P

uebl

o C

omm

. Bld

g.Y1

2Y

1245

1034

4032

524

333

46-0

.09

-0.2

270

9023

7067

105

RG

-218

32D

459

D45

944

8507

4032

288

334

39-0

.50

0.50

7024

2470

0010

8B

IAY1

Y1

4514

4340

3210

63

3447

-0.0

5-0

.20

7125

3970

8613

8B

IAY2

Y2

4515

9540

3204

43

3447

0.00

0.00

7130

3570

9524

0R

G-5

150

L54

L54

4468

2740

3168

93

3535

-0.0

10.

3270

3462

6972

120

RG

-339

99D

473

D47

344

6868

4031

638

335

350.

120.

4270

3573

6962

120

RG

-597

7L5

5L5

544

6958

4031

609

335

360.

000.

0070

2351

6972

105

RG

-245

77L5

8L5

844

6938

4031

625

335

360.

15-0

.40

7026

8069

4613

0R

G-2

0048

362

5531

0534

5501

A15

/G10

A15

4478

3640

3175

33

3538

-0.1

7-0

.17

6996

2169

7513

1R

G-6

0299

Cej

a de

Col

onia

sD

490

4452

7840

3123

23

3631

0.12

0.47

7007

9269

1518

8H

ail C

reek

Dee

p - B

IA 2

1P2

3P

2344

8745

4031

171

336

400.

280.

0969

6523

6942

180

RG

-184

37D

493

D49

344

8888

4031

155

336

400.

320.

4469

7530

6945

105

pbar

roll

HO

BS

-7L.

xls

Pag

e 3

10/2

8/20

05

App

endi

x A

pag

e 4

Page 48: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

Don

's O

WP2

8P

2844

9410

4031

180

336

420.

25-0

.26

7000

869

92N

AR

G-7

339-

S-5

How

ell T

aos

6 G

G15

Taos

644

8420

4030

917

337

39-0

.09

0.28

6960

1269

4850

036

2531

1053

4320

1A

8/G

11A

844

8553

4030

763

337

400.

29-0

.39

6952

769

4550

0R

G-5

2040

Cha

twin

chat

338

300.

000.

0069

5812

068

3816

1K

arav

as 1

P44

K1

4467

0040

3059

03

3835

-0.2

80.

0169

2334

6889

100

Kar

avas

2 s

cree

n 7

P49

K2-

744

6690

4030

630

338

35-0

.38

-0.0

269

2534

6891

206

Taos

Cer

ro P

roje

ct; O

P-TP

-1A

L76

L76

4481

8540

3048

63

3839

-0.0

2-0

.30

6925

569

2050

7R

G-6

5955

D52

0D

520

4488

1940

3054

63

3840

-0.1

70.

2769

5915

6944

110

RG

-256

13L8

4L8

444

9690

4030

406

338

420.

180.

4470

1030

6980

105

RG

-733

9-S2

/ 36

2453

1053

4140

1A

4/G

13/T

aos

3Ta

os3

4488

9140

2989

53

3940

0.45

0.45

6950

3869

1233

0C

linic

Wel

l - B

IA 1

P1P

144

9770

4029

980

339

430.

24-0

.36

7040

9269

4840

0R

G-1

2138

/Upp

er R

anch

itos

MD

L59

L59

4471

8140

2928

33

4036

0.00

0.00

6886

568

8110

0R

G-7

339

/ 362

4381

0534

2901

A10

, Tow

n W

ell 1

Taos

144

8576

4029

599

340

400.

18-0

.33

6950

3869

1220

4R

G-7

339-

S / 3

6243

6105

3420

01A

7/G

14Ta

os2

4485

9840

2960

53

4040

0.17

-0.2

869

7038

6932

204

Nic

he W

ell -

BIA

23

P25

BIA

2344

9310

4029

600

340

410.

180.

4970

2593

6932

225

Clin

ic W

ell -

BIA

1P1

BIA

145

0017

4029

743

340

43-0

.17

0.25

7090

9269

9840

0Tr

ibal

Wel

l RW

P-6,

BIA

3P3

BIA

345

0530

4029

850

340

45-0

.44

-0.4

771

6018

069

8023

5R

G-5

9900

Coo

per G

G1

GG

144

3864

4029

117

341

280.

38-0

.04

6910

9668

1419

0R

G-1

7178

Kit

Car

son

KC

4489

1240

2924

13

4141

0.07

-0.5

068

7064

6806

270

RG

-733

9-S4

Taos

#5

L95

/B33

Taos

544

8581

4029

040

342

40-0

.43

-0.3

269

3516

6919

330

3624

0710

5372

801

A31

/G5

A31

4440

0640

2851

13

4328

-0.1

10.

3168

8511

867

6722

5R

G-4

82L9

1L9

144

8574

4028

548

343

40-0

.20

-0.3

469

3180

6851

125

RG

-218

36L8

8L8

844

9182

4028

298

343

410.

420.

1769

5925

6934

100

RG

-590

05A

rroy

o Pa

rk G

G9

D5 8

D58

344

3639

4028

237

344

27-0

.43

0.40

6900

105

6795

262

RG

-133

08L1

00L1

0044

8860

4027

996

344

400.

170.

3869

4748

6899

150

RG

-200

81; T

aos

Cer

ro P

roje

ct; D

H-T

6L8

5D

H-T

644

9714

4027

976

344

420.

220.

5070

1340

6973

500

RG

-655

53D

596

D59

644

9609

4028

037

344

420.

070.

2469

8850

6938

140

RG

-151

11L1

24L1

2444

7776

4027

540

345

380.

30-0

.32

6915

7268

4316

0R

G-5

8140

D62

3D

623

4478

9640

2748

13

4538

0.45

-0.0

269

2950

6879

158

RG

-567

3L9

8L9

844

8277

4027

794

345

39-0

.33

-0.0

869

3320

6913

100

RG

-191

74L8

6L8

644

8689

4027

849

345

40-0

.47

-0.0

569

4180

6861

120

RG

-579

39D

625

D62

544

9206

4027

464

345

410.

490.

2369

8676

6910

138

RG

-188

84L1

31L1

3144

9559

4027

540

345

420.

300.

1169

8725

6962

97O

wne

r Rec

ord

B55

B55

4504

2440

2766

43

4544

-0.0

10.

2671

0516

069

4519

0R

G-5

4136

B22

B22

4506

8840

2745

73

4545

0.00

0.00

7185

165

7020

240

RG

-225

67L1

13L1

1344

7570

4027

357

346

37-0

.24

0.17

6912

6068

5211

0R

G-5

3513

D62

6D

626

4474

0840

2745

73

4637

0.00

0.00

6900

7668

2412

0R

G-6

7772

D63

0D

630

4475

8940

2733

23

4637

-0.1

80.

2269

1572

6843

150

RG

-200

42L1

18L1

1844

9035

4027

452

346

41-0

.48

-0.1

969

7560

6915

125

RG

-627

56D

634

D63

445

0056

4027

209

346

430.

000.

0070

4680

6966

160

RG

-387

02B

21B

2145

0378

4027

030

346

440.

000.

0071

0580

7025

165

RG

-288

26D

648

D64

845

0118

4026

839

346

440.

000.

0070

8970

7019

115

RG

-663

66D

662

D66

245

0141

4026

690

346

440.

000.

0071

2490

7034

147

pbar

roll

HO

BS

-7L.

xls

Pag

e 4

10/2

8/20

05

App

endi

x A

pag

e 5

Page 49: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

Dril

ler

B49

B49

4504

2540

2688

33

4644

0.00

0.00

7165

175

6990

180

RG

-303

90B

15B

1545

0449

4026

943

346

440.

000.

0071

5516

069

9518

5R

G-4

5997

B13

B13

4503

4640

2689

43

4644

0.00

0.00

7135

150

6985

200

RG

-259

88L1

16L1

1644

6859

4026

817

347

350.

100.

4069

0646

6860

108

RG

-258

76L1

11L1

1144

6899

4026

829

347

350.

070.

5069

0954

6855

104

RG

-233

47L1

15L1

1544

6883

4026

785

347

350.

180.

4669

0652

6854

63R

G-2

0232

L119

L119

4484

3940

2680

93

4739

0.12

0.33

6975

6069

1510

2R

G-1

7991

L125

L125

4484

7940

2681

73

4739

0.10

0.43

6976

8068

9622

9R

G-2

0533

L132

L132

4498

9240

2686

63

4743

-0.0

2-0

.06

7046

9369

5318

3R

G-6

9217

D67

4D

674

4445

6140

2648

83

4830

-0.0

8-0

.31

6816

1668

0010

036

2304

1053

6500

1A

27/G

7A

2744

4940

4026

564

348

31-0

.27

-0.3

768

2016

6804

80B

OR

2-a

BO

R2-

AB

OR

2A44

6240

4026

553

348

34-0

.25

-0.1

468

6861

6807

291

RG

-176

71L1

12L1

1244

7531

4026

649

348

37-0

.48

0.07

6946

6068

8610

4R

G-4

8434

XD

673

D67

344

8371

4026

499

348

39-0

.11

0.16

6995

8069

1518

0R

G-4

02L1

20L1

2044

8768

4026

369

348

400.

210.

1570

1860

6958

109

RG

-644

64D

686

D68

644

9130

4026

276

348

410.

440.

0470

4710

569

4217

0R

G-6

5512

D67

9D

679

4491

9240

2636

73

4841

0.22

0.20

7037

120

6917

200

RG

-648

63D

687

D68

744

9282

4026

274

348

410.

450.

4270

4314

069

0329

0R

G-2

3095

L133

L133

4496

8640

2640

43

4842

0.12

0.43

7050

155

6895

225

RG

-603

83B

56B

5644

9737

4026

393

348

430.

15-0

.45

7060

4770

1314

0R

G-1

9145

L117

L117

4493

0740

2590

33

4941

0.37

0.49

7090

105

6985

170

RG

-681

10D

693

D69

344

8976

4026

187

349

41-0

.34

-0.3

470

4613

769

0919

5R

G-1

7601

L24

L24

4450

7240

2574

03

5031

-0.2

2-0

.04

6879

1568

6438

3622

2810

5364

301

A26

/G8

A26

4451

0740

2545

43

5031

0.49

0.05

6884

2768

5743

RG

-158

97L1

38L1

3844

6277

4025

833

350

34-0

.46

-0.0

568

9050

6840

105

RG

-660

29D

714

D71

444

6259

4025

765

350

34-0

.29

-0.0

968

9051

6839

105

RG

-581

51D

713

D71

344

6472

4025

793

350

34-0

.36

0.44

6890

7668

1412

0R

G-2

7644

L142

L142

4465

0240

2562

83

5035

0.05

-0.4

968

9670

6826

100

RG

-529

79D

744

D74

444

1497

4025

156

351

220.

230.

0768

1070

6740

145

RG

-584

6L2

8L2

844

3658

4025

107

351

270.

350.

4468

6210

6852

75R

G-2

5451

L27

L27

4452

7840

2509

23

5131

0.38

0.47

6893

6068

3311

0R

G-1

7617

L25

L25

4452

5940

2512

63

5131

0.30

0.42

6889

1568

7460

RG

-238

36L2

6L2

644

5386

4025

246

351

320.

00-0

.26

6901

1868

8352

RG

-550

97D

750

D75

044

6676

4025

089

351

350.

39-0

.05

6929

9568

3414

0R

G-6

3984

D74

6D

746

4469

2140

2514

73

5136

0.25

-0.4

469

3765

6872

147

RG

-203

78L1

41L1

4144

6910

4025

220

351

360.

07-0

.47

6929

6068

6912

0R

G-1

8720

L143

L143

4469

3940

2519

73

5136

0.12

-0.4

069

3260

6872

123

RG

-254

55L1

44L1

4444

6999

4025

089

351

360.

39-0

.25

6939

5968

8012

036

2208

1053

6070

1B

67/A

21/G

15A

2144

6000

4024

832

352

330.

030.

2769

5070

6880

181

GG

IB

9B

944

6390

4024

785

352

340.

150.

2469

4559

6886

202

RG

-545

31D

779

D77

944

6154

4024

730

352

340.

29-0

.35

6939

8068

5915

0R

G-6

5670

D77

6D

776

4463

6740

2475

83

5234

0.22

0.18

6940

5868

8220

2R

G-6

5589

La F

onta

na D

773

D77

344

6307

4024

789

352

340.

140.

0369

3757

6880

242

pbar

roll

H

OB

S-7

L.xl

s P

age

510

/28/

2005

App

endi

x A

pag

e 6

Page 50: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

RG

-679

05D

774

D77

444

6484

4024

787

352

340.

140.

4769

3682

6854

300

RG

-175

6 / R

anch

os d

e Ta

os M

DL1

37L1

3744

6464

4024

793

352

340.

130.

4269

3680

6856

188

RG

-162

62L1

39L1

3944

6674

4025

025

352

35-0

.45

-0.0

669

2763

6864

127

RG

-623

83D

765

D76

544

7039

4024

871

352

36-0

.06

-0.1

569

6160

6901

120

RG

-667

16D

759

D75

944

7131

4024

931

352

36-0

.21

0.08

6957

8268

7515

0R

G-5

6278

D75

4D

754

4471

0240

2502

33

5236

-0.4

40.

0169

4970

6879

160

RG

-180

40L1

40L1

4044

7164

4024

890

352

36-0

.11

0.16

6963

8068

8312

5R

G-5

8626

B28

B28

4498

1840

2503

73

5243

-0.4

8-0

.24

7240

147

7093

283

RG

-633

21B

29B

2944

9825

4024

562

352

430.

000.

0072

7021

070

6026

0R

G-6

2726

D78

9D

789

4465

1640

2448

23

5335

-0.1

0-0

.45

6952

7168

8116

0R

G-5

4323

B54

B54

4487

9040

2429

93

5340

0.36

0.20

7155

260

6895

325

RG

-567

72B

53B

5344

9130

4024

634

353

41-0

.48

0.05

7165

285

6880

375

Dril

ler

B42

B42

4497

0840

2454

83

5342

0.00

0.00

7245

275

6970

405

RG

-552

51B

51B

5144

9443

4024

472

353

42-0

.07

-0.1

872

3036

068

7044

0R

G-5

0637

B50

B50

4495

4840

2450

23

5342

0.00

0.00

7237

380

6857

490

RG

-562

79B

38B

3844

9682

4024

344

353

420.

000.

0072

7529

069

8536

0R

G-6

0396

B3

B3

4466

9640

2393

83

5435

0.25

0.00

7005

3569

7016

0R

G-5

3672

D82

7D

827

4487

6740

2414

83

5440

-0.2

70.

1471

6429

068

7438

0R

G-6

8369

B2

B2

4492

8840

2399

63

5441

0.00

0.00

7250

320

6930

440

RG

-573

77D

839

D83

944

9100

4023

961

354

410.

000.

0072

2129

069

3137

5R

G-5

2124

B62

B62

4495

8540

2424

03

5442

0.00

0.00

7275

400

6875

490

RG

-172

43L3

9L3

944

5127

4023

558

355

310.

200.

1068

7880

6798

110

3621

2710

5361

801

A22

/G9

A22

4457

1840

2357

03

5533

0.17

-0.4

369

5029

6921

54R

G-6

8646

B59

B59

4487

5540

2374

03

5540

-0.2

50.

1171

5030

068

5045

0R

G-1

8848

L40

L40

4453

4040

2334

43

5632

-0.2

7-0

.37

6894

135

6759

175

RG

-272

21L1

45L1

4544

6860

4023

299

356

35-0

.16

0.40

7034

100

6934

146

RG

-211

62L1

48L1

4844

7818

4023

116

356

380.

000.

0071

1717

069

4720

0R

G-5

4111

D90

7D

907

4480

5440

2321

23

5638

0.00

0.00

7140

227

6913

330

Ow

ner

B46

B46

4484

7540

2306

43

5639

0.00

0.00

7240

350

6890

400

RG

-552

92D

920

D92

044

8327

4023

087

356

390.

000.

0072

0624

069

6633

3R

G-1

7344

L32

L32

4409

7440

2287

03

5721

-0.0

9-0

.22

6927

8068

4712

5R

G-5

8553

B8

B8

4459

6140

2263

33

5733

0.50

0.17

6970

6169

0982

RG

-226

77L3

5L3

544

5816

4022

809

357

330.

06-0

.19

6943

3569

0895

RG

-615

34D

948

D94

844

6189

4022

779

357

340.

13-0

.26

7034

7869

5616

0R

G-6

4995

D95

8D

958

4463

0740

2247

33

5834

-0.1

00.

0370

5410

569

4916

536

2045

1053

5480

1A

18/G

3/B

66?

A18

4464

5840

2227

13

5834

0.40

0.40

7065

120

6945

300

Dril

ler

B40

B40

4461

8140

2234

53

5834

0.21

-0.2

870

4513

069

1516

0R

G-6

3128

D96

7D

967

4463

9640

2228

93

5834

0.35

0.25

7062

120

6942

160

RG

-675

81D

966

D96

644

6396

4022

289

358

340.

350.

2570

6214

769

1519

0R

G-5

4514

B12

B12

4471

8140

2224

53

5836

0.00

0.00

7115

147

6968

210

RG

-389

4-S

/ Lla

no Q

uem

ado

MD

B58

B58

4448

4240

2194

73

5930

0.20

0.39

7055

9469

6124

4R

G-6

5037

D98

3D

983

4451

2640

2184

83

5931

0.45

0.09

7023

140

6883

220

RG

-746

2L1

0L1

044

6409

4021

978

359

340.

130.

2870

6880

6988

130

pbar

roll

H

OB

S-7

L.xl

s P

age

610

/28/

2005

App

endi

x A

pag

e 7

Page 51: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

RG

-653

9L9

L944

6428

4021

936

359

340.

230.

3370

6514

069

2520

036

2029

1053

6430

1A

25/G

2A

2544

5084

4021

787

360

31-0

.40

-0.0

170

3910

969

3016

5R

G-4

995

L6L6

4450

8040

2173

23

6031

-0.2

6-0

.02

7042

9469

4811

2D

987

D98

744

6542

4021

800

360

35-0

.43

-0.3

969

98R

G-5

6388

D10

01D

1001

4466

2940

2143

33

6035

0.48

-0.1

770

4987

6962

135

RG

-610

59C

LW &

RG

-610

59D

996/

D99

7D

996

4466

3040

2152

43

6035

0.25

-0.1

770

5960

6999

252

RG

-545

01D

76D

7644

0879

4043

296

46

210.

14-0

.46

6853

3068

2382

RG

-381

99D

87D

8744

0816

4043

144

47

20-0

.48

0.38

6856

2568

3130

RG

-760

9 C

LW /

Upp

er A

rroy

o H

ondo

ML2

06L2

0644

2154

4042

513

48

240.

09-0

.29

7101

175

6926

230

RG

-618

08D

156

D15

644

2510

4042

208

49

25-0

.16

-0.4

172

1727

069

4738

8R

G-1

6107

/ Lo

wer

Des

Mon

tes

MD

L207

L207

4471

6540

4207

64

936

0.17

0.16

7389

RG

-701

52D

279/

W_1

358

D27

944

6417

4040

360

413

340.

440.

3074

5334

771

0685

0Tr

act B

Tip

Wel

l - B

IA 1

0P1

1B

IA10

4449

7040

3588

04

2531

-0.4

3-0

.29

7190

100

7090

608

Trac

t B T

ip W

ell -

BIA

11

P12

BIA

1144

4960

4035

870

425

31-0

.40

-0.3

271

8710

070

8776

0B

OR

4B

OR

4-S

BO

R4S

4450

2040

3568

04

2531

0.07

-0.1

771

8818

170

0790

0R

G-7

1635

D38

8D

388

4436

0540

3503

34

2727

-0.3

20.

3171

4925

268

9736

0R

G-6

5302

D38

4D

384

4434

5440

3506

54

2727

-0.4

0-0

.06

7152

280

6872

360

TP-2

Tao

s N

orth

BO

Rtp

24

2733

0.00

0.00

7115

2170

9450

0R

G-2

0045

A28

/G16

A28

4448

6740

3469

94

2830

-0.4

90.

4571

5257

7095

500

RG

-732

85C

amer

onC

AM

428

340.

000.

0071

5010

770

4335

0B

uffa

lo P

astu

re W

ell -

BIA

2P2

P2

4495

5040

3339

04

3142

-0.2

40.

0970

9518

7077

700

Don

's W

ell -

BIA

14

P15

BIA

1444

9420

4031

200

436

420.

20-0

.23

7000

-170

0161

3Ta

os C

erro

Pro

ject

; OH

-TP-

1BL4

8L4

844

8443

4030

883

437

39-0

.01

0.34

6956

569

5150

7K

arav

as 2

scr

een

6P4

8K

2-6

4466

9040

3061

04

3835

-0.3

3-0

.02

6925

1669

0934

8R

G-6

3808

La P

erch

a G

G11

GG

1144

6021

4030

196

439

33-0

.30

0.32

6990

105

6885

360

Trac

t A P

W2

- BIA

15

P16

BIA

1544

2420

4028

400

443

240.

160.

3769

2511

668

0922

5R

G-7

339-

S3; T

aos

#4L9

4Ta

os4

4480

3840

2839

94

4338

0.17

0.33

6905

1568

9030

0R

G-7

339X

-S?

B32

B32

4480

9640

2818

24

4438

-0.2

90.

4869

0515

6890

300

RG

-557

38B

16B

1645

0751

4027

469

445

450.

000.

0071

6518

069

8536

0R

G-4

7694

B23

B23

4505

9940

2747

74

4545

0.00

0.00

7155

200

6955

382

RG

-510

93B

47B

4745

0452

4027

370

446

440.

000.

0071

4017

069

7022

9R

G-5

0762

XB

48B

4845

0515

4027

440

446

440.

000.

0071

4517

569

7023

5R

G-7

0014

D65

7D

657

4485

2640

2674

14

4740

0.29

-0.4

669

8710

568

8225

0R

G-2

3015

L29

Sew

age

trea

tme n

Sew

4403

5040

2550

54

5019

0.36

0.22

6767

5267

1513

0R

G-6

6288

B10

B10

4496

7040

2543

04

5142

-0.4

50.

3971

9080

7110

365

RG

-552

79B

6B

644

9448

4025

279

451

42-0

.08

-0.1

671

7025

069

2032

5R

G-5

9381

D75

1D

751

4496

6340

2508

14

5142

0.41

0.37

7211

290

6921

360

RG

-477

20B

7B

744

9581

4024

847

452

42-0

.01

0.17

7225

320

6905

404

RG

-675

17B

4B

444

9710

4024

972

452

42-0

.32

0.49

7235

360

6875

460

Dril

ler

B39

B39

4494

3340

2470

44

5242

0.35

-0.2

072

0237

068

3241

0R

G-6

5604

D77

0D

770

4494

1540

2481

04

5242

0.09

-0.2

571

9427

069

2438

0D

rille

rB

52B

5244

9761

4024

702

452

430.

000.

0072

6530

069

6565

0R

G-7

3095

/ B

OR

1 S

hallo

wB

OR

1 Sh

allo

w G

G13

BO

R1S

4421

2440

2260

44

5824

-0.4

3-0

.37

6960

211

6749

460

pbar

roll

H

OB

S-7

L.xl

s P

age

7

10/

28/2

005

App

endi

x A

pag

e 8

Page 52: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

RG

-679

64B

1D

965

4460

3240

2235

54

5833

0.19

0.34

7045

235

6810

480

RG

-543

14D

980

D98

044

5021

4022

002

459

310.

07-0

.17

7023

255

6768

410

RG

-559

85B

19B

1944

7214

4021

743

459

360.

000.

0071

2512

570

0028

0R

iver

Vie

w A

cres

test

wel

lR

VA

R12

E S

ec 6

SW

1/4

57

100.

000.

0069

5545

664

9951

0R

G-6

8808

D17

6/W

_130

2D

176

4371

5940

4198

85

911

0.39

0.29

6854

350

6504

455

RG

-624

58M

arip

osa

Ran

ch G

G7

MA

R44

3925

4042

037

59

280.

270.

1173

3058

567

4580

0R

G-5

7312

D26

3/W

_128

3D

263

4364

3240

4116

05

119

0.45

0.49

6867

380

6487

410

RG

-702

36D

288/

W_1

331

D28

843

6509

4040

001

514

100.

33-0

.32

6957

470

6487

570

RG

-534

10D

291/

W_1

357

D29

144

0803

4039

792

515

20-0

.15

0.35

7137

550

6587

815

RG

-621

52D

303/

W_1

334

D30

343

7484

4038

845

517

120.

200.

1070

0149

365

0858

0Tr

act B

OW

- B

IA 7

sha

llow

P8B

IA7s

4443

5040

3909

05

1729

-0.4

10.

1773

1248

568

2759

0Tr

act B

PW

2 - B

IA 9

P10

BIA

944

4340

4039

090

517

29-0

.41

0.14

7312

470

6842

575

Gru

mpy

Wel

l - B

IA 2

4P2

6B

IA24

4474

5040

3855

05

1837

-0.0

6-0

.13

7398

177

7221

1000

RG

-640

59D

318/

W_1

336

D31

843

8942

4037

333

521

16-0

.04

-0.2

870

4650

265

4459

0R

G-6

8728

D32

8/W

_134

2D

328

4416

7840

3679

55

2223

0.30

-0.4

871

6452

566

3964

0R

G-4

066

L150

L150

4371

7140

3632

75

2311

0.46

0.32

6989

498

6491

561

Wes

t Dee

p W

ell -

BIA

20

P22

BIA

2044

7330

4036

110

524

370.

00-0

.43

7242

9971

4310

00R

G-7

5635

Taos

Lan

dfill

TL44

2398

4033

819

530

24-0

.31

0.31

7152

320

6832

510

RG

-748

03-E

XPEl

Pra

do W

tr &

San

ELP

R5

3440

0.00

0.00

6970

2469

4611

25K

arav

as 2

scr

een

5P4

7K

2-5

4466

9040

3061

05

3835

-0.3

3-0

.02

6925

2369

0250

8Ta

os Y

ard

Expl

orat

ory

Dee

pG

G17

/B61

TY44

7560

4027

036

547

37-0

.45

0.14

6920

115

6805

1020

RG

-355

18A

33/G

6 Ex

plor

ator

yA

3344

0130

4026

244

549

19-0

.48

-0.3

266

4037

6603

530

RG

-373

03 /

RG

-608

85-E

XTa

os S

JC G

G10

SJC

4404

5340

2609

85

4919

-0.1

10.

4866

5029

6621

180

Spec

ial O

SE fi

leL3

0L3

044

0409

4025

107

551

190.

350.

3767

3511

666

1913

6R

G-6

8034

Riv

erbe

ndR

IVB

4388

6940

2458

15

5316

-0.3

4-0

.46

6725

121

6604

215

RG

-501

40B

JV1

GG

5G

G5

4412

3140

2348

35

5521

0.38

0.41

6841

158

6683

240

RG

-653

92 E

XPB

arra

nca

del P

uebl

oB

AR

556

110.

000.

0066

8523

364

5232

0R

G-5

9563

-EX

UN

M/T

aos

GG

6U

NM

4415

9940

2260

15

5822

-0.4

20.

3369

9031

066

8012

00Tr

act B

OW

- B

IA 7

Dee

pP7

BIA

7d44

4350

4039

090

617

29-0

.41

0.17

7312

720

6592

1020

Trac

t B P

W -

BIA

8P9

BIA

844

4320

4039

080

617

29-0

.38

0.09

7310

719

6591

1005

BO

R 5

BO

R 5

BO

R5

4473

8040

3590

06

2537

-0.4

8-0

.30

7247

265

6982

1830

Taos

Airp

ort

deep

TA43

9404

4034

694

628

17-0

.48

-0.1

370

5050

065

5017

20K

arav

as 2

scr

een

2P4

6K

2-2

4466

9040

3061

06

3835

-0.3

3-0

.02

6925

261

6664

1117

Trac

t A O

W -

BIA

5P5

BIA

544

2420

4028

390

643

240.

190.

3767

8020

065

8010

00Tr

act A

PW

- B

IA 6

P6B

IA6

4424

0040

2839

06

4324

0.19

0.32

6785

200

6585

1000

RG

-736

68B

OR

2B

inte

rmed

iate

BO

R2B

4462

4040

2655

36

4834

-0.2

5-0

.14

6868

8467

8410

50R

io P

uebl

o 20

00up

per

RP

2Ku

4403

7540

2602

76

4919

0.06

0.29

6660

171

6489

1175

RG

-728

24N

at G

uard

Dom

estic

NG

4422

0940

2262

66

5824

-0.4

8-0

.16

6960

270

6690

1430

RG

-730

95B

OR

1 de

epB

OR

144

2124

4022

604

658

24-0

.43

-0.3

769

6028

166

7920

03B

OR

7B

OR

7B

OR

744

4280

4038

930

717

29-0

.01

-0.0

173

1572

065

9530

00B

OR

6B

OR

6B

OR

644

4798

4036

007

724

300.

260.

2871

8861

065

7820

00B

OR

4B

OR

4-D

BO

R4D

4450

2040

3568

07

2531

0.07

-0.1

771

8861

065

7818

00K

arav

as 2

scr

een

1P4

5K

2-1

4466

9040

3061

07

3835

-0.3

3-0

.02

6925

165

6760

1942

pbar

roll

HO

BS

-7L.

xls

Pag

e 8

10/2

8/20

05

App

endi

x A

pag

e 9

Page 53: Attachment 3 to the

Tabl

e A

1

Wel

l ID

Sour

ce ID

MO

DFL

OW

Ta

rget

ID

XU

TM

NA

D83

YU

TM

NA

D83

Mod

elLa

yer

Row

Col

Row

of

fset

Col

of

fset

Gro

und

Surf

ace

Elev

atio

n

Dep

th

to

Wat

er

Wat

er

Leve

l El

evat

ion

Tota

l D

epth

Elev

atio

n/D

epth

dat

a in

feet

Wat

er L

evel

Dat

a U

sed

as T

arge

ts fo

r the

Tao

s G

roun

dwat

er M

odel

Mod

el C

oord

inat

esW

ell L

ocat

ion

Wel

l ID

Kar

avas

3P5

0K

344

6690

4030

610

738

35-0

.33

-0.0

269

2727

166

5618

00R

G-7

3668

BO

R 2

C d

eep

BO

R2C

4462

4040

2655

37

4834

-0.2

5-0

.14

6868

271

6597

2024

BO

R 3

BO

R 3

BO

R3

4462

4740

2654

17

4834

-0.2

2-0

.12

6868

276

6592

2110

Rio

Pue

blo

2000

deep

RP

2Kd

4403

7540

2602

77

4919

0.06

0.29

6660

151

6509

2000

Rio

Pue

blo

2000

mid

dle

RP

2Km

4403

7540

2602

77

4919

0.06

0.29

6660

160

6500

1360

RG

-741

67R

io P

uebl

o 25

00R

P25

K44

0360

4026

053

749

190.

000.

2566

6515

565

1025

00

pbar

roll

H

OB

S-7

L.xl

s P

age

910

/28/

2005

App

endi

x A

pag

e 10

Page 54: Attachment 3 to the

APPENDIX B Distribution of Hydraulic Properties, Stresses and Calibration Residuals for

Taos Groundwater Model T17.0 This Appendix contains the following model information:

1) Hydraulic Conductivity (K) Diagrams, Layers 1 through 7

2) Transmissivity (T) Diagrams, Layers 1 through 7

3) Distribution of Irrigation Return Flow (Groundwater Accretions from

Irrigation)

4) Distribution of Mountain-Front Recharge

5) Table Summarizing Well Pumping Simulated in Model

6) Distribution of Municipal, Domestic and Sanitary Pumping Diagrams

7) Calibration Residuals Diagrams, Layers 1 through 7

All diagrams were generate using Microsoft Excel for illustrative purposes,

and are not to scale, and generally have some horizontal exaggeration. Model

cells are actually squares: ¼ mile by ¼ mile. Row values are listed along the left

hand side, and column values are listed along the top of each diagram.

These diagrams include a few basic model features. RIV and STR cells

that represent the Rio Grande and its tributaries are designated by bordered

cells. The Buffalo Pasture is denoted by bordered STR cells with pink font within.

The background colors of the cells indicate which layer contains the uppermost

active cell at each x, y location for the model as a whole.

• Light Blue Cells: the uppermost active cells are in layer 1.

• Yellow Cells: the uppermost active cells are in layer 3 (layers 1 and 2

are not active in these locations)

• Orange Cells: The uppermost active cells are in layer 4 (layers 1, 2

and 3 are not active in these locations)

• Green Cells: The uppermost active cells are in layer 5 (layers 1, 2, 3

and 4 are not active in these locations)

• White cells: Only the white cells representing the Rio Grande, which

are the bordered white cells along the left hand side of the active

model grid, are active. These cells are in layer 6.

Appendix B page 1

Page 55: Attachment 3 to the

Laye

r 1 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

K1

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

02

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

30

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

04

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

06

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

70

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

08

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

90

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

1010

1010

100

00

110

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

11

11

11

00

012

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

11

11

11

11

00

130

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

55

51

11

11

11

10

014

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

105

55

11

11

1010

1010

00

150

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

55

51

11

110

1010

10

016

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

105

55

190

9010

101

10

00

170

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

55

51

9090

101

11

00

018

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

105

55

190

901

11

00

00

190

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

55

590

9090

11

10

00

020

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

9090

901

11

00

00

210

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

590

9090

11

00

00

022

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

9090

901

10

00

00

230

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

590

9090

11

10

00

024

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

9090

901

11

10

00

250

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

590

9090

11

11

10

026

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

9090

9090

11

11

00

270

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

55

590

9090

901

11

10

028

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

9090

9090

11

11

00

290

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

55

590

9090

901

11

10

030

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

9090

9090

51

11

00

310

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

55

590

9090

905

51

10

032

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

11

190

510

1010

100

330

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

51

11

9010

51

11

034

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

51

110

55

11

10

350

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

1010

55

51

10

036

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

9090

9090

55

55

11

00

370

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

9090

9090

905

55

51

10

038

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

9090

1010

1010

55

55

10

00

390

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

9090

9010

1010

105

55

51

00

040

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

1010

1010

55

55

10

00

410

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

1010

105

55

10

00

042

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

1010

1010

55

51

00

00

430

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

090

9090

1010

105

51

00

00

044

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

2090

1010

55

10

00

00

450

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

2090

101

11

00

00

046

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

2020

2090

11

00

00

00

470

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

2020

2010

00

00

00

048

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

2020

100

00

00

00

490

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

201

100

00

00

050

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

11

00

00

00

510

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

052

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

530

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

054

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

550

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

056

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

570

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

058

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

590

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

060

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

App

endi

x B

pag

e 2

Page 56: Attachment 3 to the

Laye

r 2 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

K2

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

02

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

30

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

04

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

06

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

70

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

08

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

90

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

1010

1010

100

00

110

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

11

11

11

00

012

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

11

11

11

11

00

130

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

55

51

11

11

11

10

014

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

105

55

11

11

1010

1010

00

150

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

55

51

11

110

1010

10

016

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

105

55

190

9010

101

10

00

170

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

55

51

9090

101

11

00

018

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

105

55

190

901

11

00

00

190

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

55

590

9090

11

10

00

020

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

9090

901

11

00

00

210

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

590

9090

11

00

00

022

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

9090

901

10

00

00

230

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

590

9090

11

10

00

024

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

9090

901

11

10

00

250

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

590

9090

11

11

10

026

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

9090

9090

11

11

00

270

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

55

590

9090

901

11

10

028

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

9090

9090

11

11

00

290

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

55

590

9090

901

11

10

030

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

9090

9090

51

11

00

310

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

55

590

9090

905

51

10

032

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

11

190

510

1010

100

330

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

55

51

11

9010

51

11

034

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

105

55

51

110

55

11

10

350

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

105

55

1010

55

51

10

036

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

9090

9090

55

55

11

00

370

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

9090

9090

905

55

51

10

038

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

9090

1010

1010

55

55

10

00

390

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

9090

9010

1010

105

55

51

00

040

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

1010

1010

55

55

10

00

410

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

1010

1010

105

55

10

00

042

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1010

1010

1010

55

51

00

00

430

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

090

9090

1010

105

51

00

00

044

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

2090

1010

55

10

00

00

450

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

2090

101

11

00

00

046

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

2020

2090

11

00

00

00

470

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

2020

2010

00

00

00

048

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

2020

100

00

00

00

490

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

2020

201

100

00

00

050

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

11

00

00

00

510

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

052

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

530

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

054

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

550

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

056

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

570

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

058

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

590

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

060

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

App

endi

x B

pag

e 3

Page 57: Attachment 3 to the

Laye

r 3 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

K3

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00.

10.

10.

10.

10.

10.

10.

10

00

00

00

00

00

20

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

00

00

30

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10

00

00

00

04

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

00

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00.

50.

50.

50.

50.

10.

10.

10.

13

30

00

00

00

06

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

33

33

30.

10.

10.

10

00

00

07

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

80

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

30.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10

00

09

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

33

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

010

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

30.

50.

50.

50.

50.

53

33

33

33

00

011

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

33

0.5

0.5

0.5

33

0.1

0.1

0.1

0.1

0.1

0.1

00

012

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

33

33

30.

50.

10.

10.

10.

10.

10.

10.

10.

10

013

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

320

200.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10.

10

014

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

2020

30.

50.

50.

50.

10.

10.

10.

13

33

30

015

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

2020

30.

50.

50.

50.

10.

10.

10.

13

33

0.1

00

160

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

33

320

33

0.5

0.5

0.5

0.1

2020

33

0.1

0.1

00

017

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

203

30.

50.

50.

50.

120

203

0.1

0.1

0.1

00

018

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

33

320

33

30.

50.

50.

50.

120

200.

10.

10.

10

00

019

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

33

320

33

30.

50.

50.

520

2020

0.1

0.1

0.1

00

00

200

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

33

203

33

0.5

0.5

0.5

2020

200.

10.

10.

10

00

021

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

33

203

33

30.

50.

50.

520

2020

0.1

0.1

00

00

022

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

320

203

33

30.

50.

50.

520

2020

0.1

0.1

00

00

023

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

320

203

33

30.

50.

50.

520

2020

0.1

0.1

0.1

00

00

240

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

2020

33

33

0.5

0.5

0.5

2020

200.

10.

10.

10.

10

00

250

00

00

00

00

00

00

00

00

00

00

00

00

00

00

33

2020

33

33

0.5

0.5

0.5

2020

200.

10.

10.

10.

10.

10

026

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

320

203

33

30.

50.

50.

520

2020

200.

10.

10.

10.

10

027

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

320

203

33

30.

50.

50.

520

2020

200.

10.

10.

10.

10

028

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

320

33

33

30.

50.

50.

520

2020

200.

10.

10.

10.

10

029

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

2020

33

33

30.

50.

50.

520

2020

200.

10.

10.

10.

10

030

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

203

33

33

30.

50.

50.

520

2020

200.

50.

10.

10.

10

031

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

203

33

33

30.

50.

50.

520

2020

200.

50.

50.

10.

10

032

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

203

33

33

30.

50.

50.

50.

50.

50.

520

0.5

33

33

033

00

00

00

00

00

00

00

00

00

00

00

00

00

00

03

203

33

33

30.

50.

50.

50.

50.

50.

520

30.

50.

10.

10.

10

340

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

33

33

33

0.5

0.5

0.5

0.5

0.5

0.5

30.

50.

50.

10.

10.

10

350

00

00

00

00

00

00

00

00

00

00

00

00

00

00

203

33

33

33

30.

50.

50.

53

30.

50.

50.

50.

10.

10

036

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

33

33

33

33

2020

2020

0.5

0.5

0.5

0.5

0.1

0.1

00

370

00

00

00

00

00

00

00

00

00

00

00

00

00

020

33

33

33

33

2020

2020

200.

50.

50.

50.

50.

10.

10

038

00

00

00

00

00

00

00

00

00

00

00

00

00

020

203

33

33

33

2020

33

33

0.5

0.5

0.5

0.5

0.1

00

039

00

00

00

00

00

00

00

00

00

00

00

00

00

020

33

33

33

320

2020

33

33

0.5

0.5

0.5

0.5

0.1

00

040

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

33

33

33

203

33

33

33

0.5

0.5

0.5

0.5

0.1

00

041

00

00

00

00

00

00

00

00

00

00

00

00

00

203

33

33

320

33

33

33

33

0.5

0.5

0.5

0.1

00

00

420

00

00

00

00

00

00

00

00

00

00

00

00

020

33

33

33

203

33

33

33

30.

50.

50.

50.

10

00

043

00

00

00

00

00

00

00

00

00

00

00

00

00

203

320

2020

2020

2020

2020

203

33

0.5

0.5

0.1

00

00

044

00

00

00

00

00

00

00

00

00

00

00

00

00

203

2020

2020

2020

1515

1515

1520

33

0.5

0.5

0.1

00

00

045

00

00

00

00

00

00

00

00

00

00

00

00

00

2020

1515

2020

1515

1515

1515

1515

203

0.1

0.1

0.1

00

00

046

00

00

00

00

00

00

00

00

00

00

00

020

2020

2015

1515

1515

1515

1515

1515

1515

1520

0.1

0.1

00

00

00

470

00

00

00

00

00

00

00

00

00

00

015

1515

1520

1515

1515

1515

1515

1515

1515

1515

153

00

00

00

048

00

00

00

00

00

00

00

00

00

00

00

1515

1515

2015

1515

1515

1515

1515

1515

1515

1515

30

00

00

00

490

00

00

00

00

00

00

00

00

00

00

1515

1515

1520

1515

1515

1515

1515

1515

1515

1515

150.

13

00

00

00

500

00

00

00

00

00

00

00

00

00

1515

1515

1515

1515

2020

1515

1515

1515

1515

1515

1515

0.1

0.1

0.1

00

00

00

510

00

00

00

00

00

00

00

00

00

1515

1515

1515

1515

1520

2015

1515

1515

1515

1515

1515

0.1

0.1

00

00

00

052

00

00

00

00

00

00

00

00

00

015

1515

1515

1515

1515

1520

1515

1515

1515

1515

1515

150.

10.

10

00

00

00

530

00

00

00

00

00

00

00

00

00

1515

1515

1515

1515

1515

1520

1515

1515

1515

1515

150.

10.

10

00

00

00

054

00

00

00

00

00

00

00

00

00

015

1515

1515

1515

1515

1515

2015

1515

1515

1515

0.1

0.1

0.1

0.1

00

00

00

00

550

00

00

00

00

00

00

00

00

00

1515

1515

1515

1515

1515

1520

1515

1515

1515

0.1

0.1

0.1

0.1

00

00

00

00

056

00

00

00

00

00

00

00

00

00

015

1515

1515

1515

1515

1515

2020

1515

1515

0.1

0.1

0.1

00

00

00

00

00

057

00

00

00

00

00

00

00

00

00

015

1515

1515

1515

1515

1515

1520

1515

150.

10.

10

00

00

00

00

00

00

580

00

00

00

00

00

00

00

00

00

1515

1515

1515

1515

1515

1515

2020

150.

10.

10.

10

00

00

00

00

00

00

590

00

00

00

00

00

00

00

00

00

1515

1515

1515

1515

1515

1515

2015

150.

10.

10

00

00

00

00

00

00

060

00

00

00

00

00

00

00

00

00

015

1515

1515

1515

1515

150.

10.

10.

115

1515

00

00

00

00

00

00

00

0

App

endi

x B

pag

e 4

Page 58: Attachment 3 to the

Laye

r 4 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

K4

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

00

00

00

00

00

22

22

22

22

22

11

11

11

11

10

00

00

00

00

00

02

00

00

00

00

00

00

00

00

00

22

22

22

22

22

21

11

11

11

11

11

10

00

00

00

00

30

00

00

00

00

00

00

00

00

02

22

22

22

22

22

11

11

11

11

11

11

10

00

00

00

04

00

00

00

00

00

00

00

00

00

22

22

22

22

22

21

11

11

11

11

11

11

00

00

00

00

50

00

00

00

00

00

00

00

00

02

22

22

22

22

22

11

11

11

11

11

11

10

00

00

00

06

00

00

00

00

00

00

00

00

00

22

22

22

22

22

21

11

11

11

11

11

11

11

00

00

00

70

00

00

00

00

00

00

00

00

02

22

22

22

22

22

11

11

11

11

11

11

11

11

10

00

08

00

00

00

00

00

00

00

00

00

02

22

22

22

22

21

11

11

11

11

11

11

11

11

00

00

90

00

00

00

00

00

00

00

00

00

22

22

22

22

22

11

11

11

11

11

11

11

11

11

00

010

00

00

00

00

00

00

00

00

00

02

22

22

22

22

21

11

11

11

11

11

11

11

11

10

00

110

00

00

00

00

00

00

00

00

00

22

22

22

22

22

11

11

11

11

11

11

11

11

11

00

012

00

00

00

00

00

00

00

00

00

02

22

22

22

22

21

11

11

11

11

11

11

11

11

10

00

130

00

00

00

00

00

00

00

00

00

22

22

22

22

22

11

11

11

11

11

11

11

11

11

00

014

00

00

00

00

00

00

00

00

00

02

22

22

22

22

21

11

11

11

11

11

11

11

11

10

00

150

00

00

00

00

00

00

00

00

00

22

22

22

22

11

11

11

11

11

11

11

11

11

11

00

016

00

00

00

00

00

00

00

00

00

02

22

22

22

21

11

11

11

11

11

11

11

11

11

10

00

170

00

00

00

00

00

00

00

00

00

22

22

22

22

11

11

11

11

11

11

11

11

11

11

00

018

00

00

00

00

00

00

00

00

00

02

22

22

22

21

11

11

11

11

11

11

11

11

11

00

00

190

00

00

00

00

00

00

00

00

00

22

22

22

22

11

11

11

11

11

11

11

11

11

10

00

020

00

00

00

00

00

00

00

00

00

02

22

22

22

21

11

11

11

11

11

11

11

11

11

00

00

210

00

00

00

00

00

00

00

00

00

22

22

22

22

11

11

11

11

11

11

11

11

11

00

00

022

00

00

00

00

00

00

00

00

00

02

22

22

22

21

11

11

11

11

11

11

11

11

10

00

00

230

00

00

00

00

00

00

00

00

00

22

22

22

22

11

11

11

11

11

11

11

11

11

10

00

024

00

00

00

00

00

00

00

00

00

02

22

22

22

21

11

11

11

11

11

11

11

11

11

10

00

250

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

11

11

11

11

11

11

11

11

00

026

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

22

22

22

22

11

10

00

270

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

22

22

22

22

22

22

21

11

00

028

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

44

44

44

22

11

10

00

290

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

22

22

24

44

44

42

21

11

00

030

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

44

44

44

22

11

10

00

310

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

22

22

24

44

44

42

21

11

00

032

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

44

44

44

22

11

10

00

330

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

22

22

24

44

44

42

21

11

00

034

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

44

44

44

22

11

10

00

350

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

22

22

24

44

44

42

21

11

00

036

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

44

44

44

22

11

10

00

370

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

22

22

24

44

44

42

21

11

00

038

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

44

44

44

22

11

10

00

390

00

00

00

00

00

00

00

00

00

22

22

22

22

22

22

22

22

24

44

44

42

21

11

00

040

00

00

00

00

00

00

00

00

00

02

22

22

22

22

22

22

22

22

44

44

44

22

11

10

00

410

00

00

00

00

00

00

00

00

00

11

11

22

22

22

22

22

22

24

44

44

44

41

10

00

042

00

00

00

00

00

00

00

00

00

01

11

12

22

22

22

22

22

22

44

44

44

44

11

00

00

430

00

00

00

00

00

00

00

00

00

11

11

22

22

22

22

22

22

24

44

44

44

41

00

00

044

00

00

00

00

00

00

00

00

00

01

11

12

22

22

22

22

22

22

44

44

44

44

10

00

00

450

00

00

00

00

00

00

00

00

00

11

11

11

11

11

11

11

22

24

44

44

44

41

00

00

046

00

00

00

00

00

00

00

00

00

11

11

11

11

11

11

11

12

22

44

44

44

44

00

00

00

470

00

00

00

00

00

00

00

00

01

11

11

11

11

11

11

12

22

24

44

44

44

00

00

00

048

00

00

00

00

00

00

00

00

00

11

11

11

11

11

11

11

22

22

44

44

44

40

00

00

00

490

00

00

00

00

00

00

00

00

01

11

11

11

11

11

11

12

22

24

44

44

44

40

00

00

050

00

00

00

00

00

00

00

00

00

11

11

11

11

11

11

14

44

44

44

44

44

44

00

00

00

510

00

00

00

00

00

00

00

01

11

11

11

11

11

11

11

44

44

44

44

44

44

00

00

00

052

00

00

00

00

00

00

00

00

11

11

11

11

11

11

11

14

44

44

44

44

44

40

00

00

00

530

00

00

00

00

00

00

00

11

11

11

11

11

11

11

11

44

44

44

44

44

40

00

00

00

054

00

00

00

00

00

00

00

01

11

11

11

11

11

11

11

14

44

44

44

44

44

00

00

00

00

550

00

00

00

00

00

00

00

11

11

11

11

11

11

11

11

44

44

44

44

44

00

00

00

00

056

00

00

00

00

00

01

11

11

11

11

11

11

11

11

11

14

44

44

44

40

00

00

00

00

00

570

00

00

00

00

00

11

11

11

11

11

11

11

11

11

11

44

44

44

00

00

00

00

00

00

058

00

00

00

00

00

01

11

11

11

11

11

11

11

11

11

14

44

44

40

00

00

00

00

00

00

590

00

00

00

00

00

11

11

11

11

11

11

11

11

11

11

44

44

40

00

00

00

00

00

00

060

00

00

00

00

00

00

11

11

11

11

11

11

11

11

11

14

44

40

00

00

00

00

00

00

00

App

endi

x B

pag

e 5

Page 59: Attachment 3 to the

Laye

r 5 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

Laye

r 5 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

K5

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

010

1010

101

11

11

11

11

11

11

11

11

11

11

11

10

00

00

00

00

00

02

00

00

00

00

010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

00

00

00

30

00

00

00

00

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

00

00

04

00

00

00

00

010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

00

00

00

50

00

00

00

00

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

00

00

06

00

00

00

00

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

00

00

70

00

00

00

010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

08

00

00

00

010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

00

90

00

00

00

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

010

00

00

00

010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

110

00

00

010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

012

00

00

010

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

130

00

00

1010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

014

00

00

010

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

150

00

00

1010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

016

00

00

010

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

170

00

00

010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

018

00

00

00

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

00

190

00

00

1010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

020

00

00

010

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

00

210

00

010

1010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

00

00

022

00

00

1010

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

00

230

00

00

1010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

024

00

00

010

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

10

00

250

00

00

1010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

41

00

026

00

00

010

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

10

00

270

00

00

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

41

00

028

00

00

010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

40

00

290

00

00

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

44

00

030

00

00

010

1010

1010

1010

101

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

40

00

310

00

00

1010

1010

1010

1010

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

44

00

032

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

40

00

330

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

44

00

034

00

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

44

40

00

350

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

44

00

036

00

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

44

40

00

370

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

44

00

038

00

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

44

40

00

390

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

44

00

040

00

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

44

40

00

410

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

40

00

042

00

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

44

44

00

00

430

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

44

00

00

044

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

41

40

00

00

450

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

44

11

00

00

046

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

41

00

00

00

470

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

00

00

00

048

00

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

41

40

00

00

00

490

00

00

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

44

40

00

00

050

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

44

44

41

44

00

00

00

510

00

00

01

11

11

11

11

11

11

11

11

11

11

11

11

11

11

14

44

44

41

00

00

00

052

00

00

00

11

11

11

11

44

44

44

44

44

44

44

44

44

44

44

44

44

44

40

00

00

00

530

00

00

01

11

11

11

14

44

44

44

44

44

44

44

44

44

44

44

44

44

40

00

00

00

054

00

00

01

11

11

11

14

44

44

44

44

44

44

44

44

44

44

44

44

44

44

00

00

00

00

550

00

00

11

11

11

11

44

44

44

44

44

44

44

44

44

44

44

44

44

44

00

00

00

00

056

00

00

01

11

11

11

44

44

44

44

44

44

44

44

44

44

44

44

44

40

00

00

00

00

00

570

00

00

11

11

11

44

44

44

44

44

44

44

44

44

44

44

44

44

00

00

00

00

00

00

058

00

00

11

11

11

14

44

44

44

44

44

44

44

44

44

44

44

44

40

00

00

00

00

00

00

590

00

01

11

11

14

44

44

44

44

44

44

44

44

44

44

44

44

40

00

00

00

00

00

00

060

00

00

11

11

14

44

44

44

44

44

44

44

44

44

44

44

44

40

00

00

00

00

00

00

00

App

endi

x B

pag

e 6

Page 60: Attachment 3 to the

Laye

r 6 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

Laye

r 6 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

K6

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

03

33

33

33

33

33

33

33

33

33

33

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

00

00

00

00

20

00

00

00

00

33

33

33

33

33

33

33

33

33

33

33

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

00

00

03

00

00

00

00

03

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

00

04

00

00

00

00

03

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

00

05

00

00

00

00

03

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

00

06

00

00

00

00

33

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

07

00

00

00

00

33

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

08

00

00

00

03

33

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

09

00

00

00

03

33

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

100

00

00

00

33

33

33

33

33

33

33

33

33

33

33

33

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

011

00

00

00

33

33

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

120

00

00

33

33

33

33

33

33

33

33

33

33

33

33

33

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

013

00

00

03

33

33

33

33

33

33

33

33

33

33

33

33

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

140

00

00

33

33

33

33

33

33

33

33

33

33

33

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

150

00

00

33

33

33

33

33

33

33

33

33

33

33

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

160

00

00

33

33

33

33

33

33

33

33

33

33

33

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

170

00

00

33

33

33

33

33

33

33

33

33

33

33

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

180

00

03

33

33

33

33

33

33

33

33

33

33

33

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

019

00

00

33

33

33

33

33

33

33

33

33

33

33

33

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

200

00

33

33

33

33

33

33

33

33

33

33

33

33

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

021

00

03

33

33

33

33

33

33

33

33

33

33

33

33

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

022

00

03

33

33

33

33

33

33

33

33

33

33

33

33

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

023

00

03

33

33

33

33

33

33

33

33

33

33

33

33

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

240

00

03

33

33

33

33

33

33

33

33

33

33

33

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

250

00

03

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

026

00

00

33

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

270

00

03

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

028

00

00

33

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

290

00

03

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

030

00

00

33

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

310

00

03

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

032

00

00

33

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

330

00

00

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

034

00

00

00

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

350

00

00

03

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

036

00

00

00

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

20.

20.

20.

20.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

370

00

00

03

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.2

0.2

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

038

00

00

00

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

20.

20.

20.

20.

20.

20.

10.

10.

10.

10.

10.

10.

10.

10

00

390

00

00

03

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

040

00

00

00

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

10.

10.

10.

10.

10.

10.

10.

10

00

410

00

00

03

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

420

00

00

03

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

430

00

00

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

00

00

044

00

00

03

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

00

00

045

00

00

03

33

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10

00

00

460

00

00

33

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

00

00

00

470

00

00

33

33

33

33

33

33

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

00

00

00

048

00

00

33

33

33

33

33

33

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10

00

00

00

490

00

03

33

33

33

33

33

33

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

00

00

00

500

00

03

33

33

33

33

33

33

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

00

00

00

510

00

00

33

33

33

33

33

33

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

00

00

00

052

00

00

03

33

33

33

33

33

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

00

00

00

053

00

00

33

33

33

33

33

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10

00

00

00

054

00

00

33

33

33

33

33

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

00

00

00

00

550

00

03

33

33

33

33

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10

00

00

00

00

560

00

03

33

33

33

33

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50

00

00

00

00

00

570

00

33

33

33

33

33

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50

00

00

00

00

00

00

580

00

33

33

33

33

33

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50

00

00

00

00

00

00

590

00

33

33

33

33

33

30.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50

00

00

00

00

00

00

060

00

03

33

33

33

33

33

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

00

00

00

00

00

00

00

0

App

endi

x B

pag

e 7

Page 61: Attachment 3 to the

Laye

r 7 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

Laye

r 7 H

ydra

ulic

Con

duct

ivity

(ft/d

ay)

K7

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10

00

00

00

00

00

02

00

00

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

00

00

30

00

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

00

00

40

00

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

00

00

50

00

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

00

00

60

00

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

07

00

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

80

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

90

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

010

00

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

110

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

120

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

013

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

140

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

015

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

160

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

017

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

180

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

019

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

200

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

210

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

022

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

00

230

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

240

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

250

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

260

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

270

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

280

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

290

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

300

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

310

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

320

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10.

10

00

330

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

034

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

035

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

036

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.2

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

037

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.2

0.2

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

038

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.2

0.2

0.2

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

039

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

040

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

041

00

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.1

0.1

0.1

0.1

0.1

0.1

0.1

00

00

420

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

10.

10.

10.

10.

10.

10.

10

00

043

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10

00

00

440

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

00

00

045

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

150.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10.

10

00

00

460

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

00

00

00

470

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

00

00

00

048

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

00

00

00

049

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

0.1

00

00

00

500

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10.

10

00

00

051

00

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10.

10

00

00

00

520

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

0.1

00

00

00

053

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

00

00

00

00

540

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

10.

10.

10

00

00

00

055

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

00

00

00

00

056

00

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

00

00

00

00

00

057

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50

00

00

00

00

00

00

580

00

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

00

00

00

00

00

00

059

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50

00

00

00

00

00

00

060

00

00.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50.

50

00

00

00

00

00

00

00

App

endi

x B

pag

e 8

Page 62: Attachment 3 to the

T1C

olum

n:T1

7.0

Tran

smis

sivi

ty L

ayer

1

ft2/d

ayR

ow1

23

45

67

89

1011

1213

1415

1617

1819

2021

2223

2425

2627

2829

3031

3233

3435

3637

3839

4041

4243

4445

4647

4849

5051

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

20

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

30

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

40

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

60

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

70

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

80

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

90

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

100

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

030

030

030

030

00

00

011

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

2020

2030

300

00

012

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

010

020

2020

2020

3030

300

00

130

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

100

100

100

2020

2020

2030

3030

00

014

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

100

100

100

2020

2020

200

300

300

300

00

015

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

100

100

100

2020

2020

200

300

300

300

00

160

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

010

010

010

020

1800

1800

200

200

3030

00

00

170

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

010

010

010

020

1800

1800

200

2030

300

00

018

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

100

100

100

2018

0018

0020

2030

00

00

019

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

100

100

100

1800

1800

1800

2020

300

00

00

200

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

100

100

100

1800

1800

1800

2020

300

00

00

210

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

100

100

100

1800

1800

1800

2020

00

00

00

220

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

100

100

100

1800

1800

1800

2020

00

00

00

230

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

100

100

100

1800

1800

1800

2020

200

00

00

240

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

100

100

100

1800

1800

1800

2020

2030

00

00

250

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

100

100

100

1800

1800

1800

2020

3030

300

00

260

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

010

010

010

018

0018

0018

0018

0020

3030

300

00

270

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

010

010

010

018

0018

0018

0018

0020

3030

300

00

280

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

010

010

010

018

0018

0018

0018

0020

3030

300

00

290

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

010

010

010

018

0018

0018

0018

0020

3030

300

00

300

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

010

010

010

018

0018

0018

0018

0010

030

3030

00

031

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

200

100

100

100

1800

1800

1800

1800

100

150

3030

00

032

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

200

100

100

100

2020

2018

0010

030

030

030

030

00

033

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

010

010

010

020

2020

1800

200

150

3030

300

034

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

010

010

010

010

020

2020

015

015

030

3030

00

350

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

200

100

100

100

200

200

100

150

150

3030

00

036

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

018

0018

0018

0018

0010

010

015

015

030

300

00

370

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

1800

1800

1800

1800

1800

100

100

150

150

3030

00

038

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

018

0018

0020

020

020

020

010

010

010

015

030

00

00

390

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1800

1800

1800

200

200

200

200

100

100

100

150

300

00

040

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

020

020

020

020

010

010

010

015

030

00

00

410

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

020

020

020

020

020

010

010

010

030

00

00

042

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

200

200

200

200

200

200

100

100

100

300

00

00

430

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

018

0018

0018

0020

020

020

010

010

020

00

00

00

440

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

040

040

040

018

0020

020

010

010

020

00

00

00

450

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

040

040

040

040

018

0020

020

2020

00

00

00

460

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

040

040

040

040

040

018

0020

200

00

00

00

470

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

040

040

040

040

040

040

020

00

00

00

00

048

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

040

040

040

040

040

020

00

00

00

00

049

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

400

400

400

400

2030

00

00

00

00

500

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

300

00

00

00

510

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

520

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

530

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

540

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

550

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

560

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

570

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

580

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

590

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

600

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

App

endi

x B

pag

e 9

Page 63: Attachment 3 to the

T2C

olum

n:T1

7.0

Tran

smis

sivi

ty L

ayer

2

ft2/d

ayR

ow:

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

10

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

02

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

30

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

04

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

06

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

70

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

08

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

90

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

010

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

400

400

400

400

00

011

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

030

3030

3040

400

00

120

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

150

3030

3030

3040

4040

00

130

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

150

150

150

3030

3030

3040

4040

00

140

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

015

015

015

030

3030

3030

040

040

040

00

015

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

150

150

150

3030

3030

300

400

400

400

016

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

150

150

150

3027

0027

0030

030

040

400

00

170

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

015

015

015

030

2700

2700

300

3040

400

00

180

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

015

015

015

030

2700

2700

3030

400

00

019

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

150

150

150

2700

2700

2700

3030

400

00

020

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

015

015

015

027

0027

0027

0030

3040

00

00

210

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

150

150

150

2700

2700

2700

3030

00

00

022

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

015

015

015

027

0027

0027

0030

300

00

00

230

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

150

150

150

2700

2700

2700

3030

500

00

024

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

015

015

015

027

0027

0027

0030

3050

400

00

250

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

150

150

150

2700

2700

2700

3030

4040

400

026

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

150

150

150

2700

2700

2700

2700

3040

4040

00

270

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

030

015

015

015

027

0027

0027

0027

0030

4040

400

028

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

150

150

150

2700

2700

2700

2700

3040

4040

00

290

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

030

015

015

015

027

0027

0027

0027

0030

4040

400

030

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

150

150

150

2700

2700

2700

2700

150

4040

400

031

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

150

150

150

2700

2700

2700

2700

150

200

4040

00

320

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

030

015

015

015

030

3030

2700

150

400

400

400

400

033

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

015

015

015

030

3030

2700

300

200

4040

400

340

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

150

150

150

150

3030

300

100

200

4040

400

350

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

150

150

150

300

300

150

100

200

4040

00

360

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

2700

2700

2700

2700

150

150

100

200

4040

00

370

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

2700

2700

2700

2700

2700

150

150

100

200

4040

00

380

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

2700

2700

300

300

300

300

150

150

150

200

400

00

390

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2700

2700

2700

300

300

300

300

150

150

150

200

400

00

400

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

300

300

300

300

300

300

150

150

150

200

400

00

410

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

030

030

030

030

015

015

015

040

00

00

420

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

030

030

030

030

030

015

015

015

040

00

00

430

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

027

0027

0027

0030

030

030

015

015

030

00

00

044

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

600

600

600

2700

300

300

150

150

300

00

00

450

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

060

060

060

060

027

0030

030

3030

00

00

046

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

600

600

600

600

600

2700

3030

00

00

00

470

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

060

060

060

060

060

060

030

00

00

00

00

480

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

600

600

600

600

600

300

00

00

00

049

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

600

600

600

600

3040

00

00

00

050

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

3040

00

00

00

510

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

052

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

530

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

054

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

550

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

056

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

570

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

058

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

590

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

060

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

App

endi

x B

pag

e 10

Page 64: Attachment 3 to the

T3C

olum

n:T1

7.0

Tran

smis

sivi

ty L

ayer

3

ft2/d

ayR

ow:

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

491

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

1515

1519

2845

-266

00

00

00

00

00

20

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

015

1515

1825

3235

4563

00

00

00

00

30

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

075

7567

1722

2733

4052

680

00

00

00

40

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

075

7569

8621

2530

3643

550

00

00

00

50

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

075

7575

9021

2529

3311

1911

810

00

00

00

60

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

045

050

547

657

766

976

182

995

510

5543

5970

00

00

07

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

586

625

9010

122

2528

3339

4858

6875

860

00

80

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

847

703

720

9910

410

911

313

835

4249

5766

7484

00

09

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

084

370

357

299

104

109

113

142

3846

5157

6573

8086

00

100

00

00

00

00

00

00

00

00

00

00

00

00

00

00

081

983

269

656

859

410

411

011

515

021

313

2914

5315

7517

3719

7622

2823

870

011

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

810

820

686

559

587

622

111

119

158

1205

1274

4550

5865

7077

00

120

00

00

00

00

00

00

00

00

00

00

00

00

00

00

079

380

367

154

557

560

966

561

264

714

836

4146

5361

6671

760

130

00

00

00

00

00

00

00

00

00

00

00

00

00

00

076

978

065

052

655

739

1841

4695

103

118

2936

4350

5963

6974

014

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

738

751

624

506

3550

3714

458

8593

9925

3239

4917

5118

8620

6622

310

150

00

00

00

00

00

00

00

00

00

00

00

00

00

00

070

171

458

947

733

9235

6243

278

8590

2229

3444

1735

1788

1918

710

160

00

00

00

00

00

00

00

00

00

00

00

00

00

00

065

667

054

630

031

3849

840

173

7984

2256

5059

1211

0715

1053

610

017

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

602

619

495

300

2900

455

366

6774

8021

5384

5602

1083

4248

570

018

00

00

00

00

00

00

00

00

00

00

00

00

00

00

065

053

656

330

020

0030

040

932

962

7179

2049

2451

4031

3743

00

019

00

00

00

00

00

00

00

00

00

00

00

00

00

00

061

948

730

030

020

0030

030

029

057

6883

3886

4310

4570

2633

390

00

200

00

00

00

00

00

00

00

00

00

00

00

00

00

00

577

436

300

300

2000

300

150

238

5163

7936

2639

1639

6023

3037

00

021

00

00

00

00

00

00

00

00

00

00

00

00

00

00

053

138

430

020

0030

030

015

019

043

5570

3240

3464

3438

2027

00

00

220

00

00

00

00

00

00

00

00

00

00

00

00

00

00

487

489

2000

2000

300

300

150

150

2546

6027

8429

7829

2217

220

00

023

00

00

00

00

00

00

00

00

00

00

00

00

00

00

044

645

120

0020

0030

030

015

015

025

2548

2276

2454

2380

1316

50

00

240

00

00

00

00

00

00

00

00

00

00

00

00

00

00

553

410

2000

2000

300

300

150

150

2525

2510

0018

9010

005

55

50

025

00

00

00

00

00

00

00

00

00

00

00

00

00

00

050

836

720

0020

0030

030

015

015

025

2525

1000

1000

1000

55

55

50

260

00

00

00

00

00

00

00

00

00

00

00

00

00

00

461

300

2000

2000

300

150

150

150

2525

2510

0010

0010

0010

005

55

50

270

00

00

00

00

00

00

00

00

00

00

00

00

00

00

407

300

2000

2000

300

150

150

150

2525

2510

0010

0010

0010

005

55

50

280

00

00

00

00

00

00

00

00

00

00

00

00

00

00

499

300

2000

300

300

150

150

150

2525

2510

0010

0010

0010

005

55

50

290

00

00

00

00

00

00

00

00

00

00

00

00

00

00

439

2954

2000

300

300

150

150

150

2525

2510

0010

0010

0010

005

55

50

300

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

2000

300

300

300

150

150

150

2525

2510

0010

0010

0010

0025

55

50

310

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

2000

300

300

300

150

150

150

2525

2510

0010

0010

0010

0025

255

50

320

00

00

00

00

00

00

00

00

00

00

00

00

00

00

300

2000

300

300

300

150

150

150

2525

2525

2525

1000

2515

015

015

015

033

00

00

00

00

00

00

00

00

00

00

00

00

00

00

030

020

0030

030

030

030

015

015

025

2525

2525

2510

0015

025

55

534

00

00

00

00

00

00

00

00

00

00

00

00

00

00

020

0020

0030

030

030

030

015

015

025

2525

2525

2515

025

255

55

350

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2000

300

300

300

300

300

150

150

150

2525

2515

015

025

2525

55

036

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2000

2000

300

300

300

300

300

150

150

150

1000

1000

1000

1000

2525

2525

55

037

00

00

00

00

00

00

00

00

00

00

00

00

00

00

2000

300

300

300

300

300

300

150

150

1000

1000

1000

1000

1000

2525

2525

55

038

00

00

00

00

00

00

00

00

00

00

00

00

00

020

0020

0030

030

030

030

030

030

015

010

0010

0015

015

015

015

025

2525

255

00

390

00

00

00

00

00

00

00

00

00

00

00

00

00

2000

300

300

300

300

300

300

300

1000

1000

1000

150

150

150

150

2525

2525

50

040

00

00

00

00

00

00

00

00

00

00

00

00

00

1000

2000

300

300

300

300

300

300

2000

150

150

150

150

150

150

150

2525

2525

50

041

00

00

00

00

00

00

00

00

00

00

00

00

00

1000

300

300

300

300

300

300

2000

300

300

150

150

150

150

150

150

2525

255

00

042

00

00

00

00

00

00

00

00

00

00

00

00

00

1000

300

300

300

300

300

300

2000

300

300

150

150

150

150

150

150

2525

255

00

043

00

00

00

00

00

00

00

00

00

00

00

00

00

1000

300

300

2000

2000

2000

2000

2000

2000

2000

1000

1000

1000

150

150

150

2525

50

00

044

00

00

00

00

00

00

00

00

00

00

00

00

00

1000

300

2000

2000

2000

2000

2000

2000

1500

1500

750

750

750

1000

150

150

2525

50

00

045

00

00

00

00

00

00

00

00

00

00

00

00

00

1000

2000

1500

1500

2000

2000

1500

1500

1500

1500

750

750

750

750

1000

150

55

50

00

046

00

00

00

00

00

00

00

00

00

00

00

010

0010

0010

0010

0015

0015

0015

0015

0015

0015

0015

0015

0015

0075

075

075

075

075

010

005

50

00

00

470

00

00

00

00

00

00

00

00

00

00

075

075

075

075

010

0015

0015

0015

0015

0015

0015

0015

0015

0015

0075

075

075

075

075

075

015

00

00

00

048

00

00

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

750

750

750

750

750

150

00

00

00

490

00

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

750

750

750

750

515

00

00

00

500

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

105

50

00

00

510

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1010

00

00

00

520

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1010

00

00

00

530

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

1500

1500

1500

1500

1500

1500

1500

1500

1500

1010

00

00

00

054

00

00

00

00

00

00

00

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0020

0015

0015

0015

0015

0015

0015

0015

0010

1010

100

00

00

00

550

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

1500

1500

1500

1500

1500

1500

1010

1010

00

00

00

00

560

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

2000

1500

1500

1500

1500

1010

100

00

00

00

00

057

00

00

00

00

00

00

00

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0020

0015

0015

0015

0010

100

00

00

00

00

00

058

00

00

00

00

00

00

00

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0020

0020

0015

0010

1010

00

00

00

00

00

00

590

00

00

00

00

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

2000

1500

1500

1010

00

00

00

00

00

00

060

00

00

00

00

00

00

00

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0010

1010

1500

1500

1500

00

00

00

00

00

00

00

App

endi

x B

pag

e 11

Page 65: Attachment 3 to the

T4C

olum

n:T1

7.0

Tran

smis

sivi

ty L

ayer

4

ft2/d

ayR

ow:

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

491

00

00

00

00

00

00

00

00

00

022

129

332

436

140

144

147

851

053

856

030

233

536

533

735

538

940

040

040

00

00

00

00

00

00

20

00

00

00

00

00

00

00

00

023

225

528

431

935

940

244

548

451

754

456

730

533

836

833

735

538

640

040

040

045

045

045

00

00

00

00

03

00

00

00

00

00

00

00

00

00

216

237

269

309

354

403

453

495

530

558

580

313

346

374

340

356

450

450

450

450

450

450

450

500

00

00

00

04

00

00

00

00

00

00

00

00

00

181

206

244

293

344

400

469

515

551

579

597

326

410

434

395

411

450

450

450

450

450

450

500

500

00

00

00

05

00

00

00

00

00

00

00

00

00

113

154

197

267

327

375

446

495

535

570

711

397

433

446

399

417

450

450

450

450

450

500

500

500

00

00

00

06

00

00

00

00

00

00

00

00

00

8817

823

529

634

539

054

058

262

065

468

937

942

145

740

040

045

045

045

045

050

050

050

050

045

045

00

00

00

70

00

00

00

00

00

00

00

00

014

123

738

041

745

349

153

257

160

663

967

036

741

054

145

045

050

050

050

050

050

050

050

050

045

055

050

050

00

00

80

00

00

00

00

00

00

00

00

00

384

403

428

457

490

525

559

592

624

654

359

451

400

450

450

500

500

500

500

500

500

550

550

500

500

500

500

00

09

00

00

00

00

00

00

00

00

00

040

641

643

546

048

851

955

058

161

164

040

044

440

045

050

050

050

050

050

050

050

055

055

050

050

050

050

050

00

010

00

00

00

00

00

00

00

00

00

041

442

343

946

048

651

354

257

160

072

839

540

040

045

050

050

050

050

050

050

050

055

055

050

050

050

050

050

00

011

00

00

00

00

00

00

00

00

00

041

842

644

046

048

350

853

556

369

171

839

040

045

050

055

055

055

055

055

055

055

055

055

050

055

055

055

055

00

012

00

00

00

00

00

00

00

00

00

042

042

744

045

848

060

362

865

568

270

938

645

045

050

055

055

055

055

055

055

055

055

055

055

055

055

055

055

00

013

00

00

00

00

00

00

00

00

00

047

152

753

955

657

559

862

264

767

570

343

245

045

050

055

055

055

055

055

055

055

055

055

055

055

055

055

055

00

014

00

00

00

00

00

00

00

00

00

047

052

653

755

257

159

261

569

071

879

742

945

045

050

055

055

055

055

055

055

055

055

055

055

055

055

055

055

00

015

00

00

00

00

00

00

00

00

00

051

752

353

354

856

658

665

767

937

939

842

845

045

050

055

055

055

055

055

055

055

055

055

055

055

055

055

055

00

016

00

00

00

00

00

00

00

00

00

051

451

952

954

356

062

965

072

037

539

542

545

045

050

059

555

055

055

055

055

055

055

055

055

055

055

055

055

00

017

00

00

00

00

00

00

00

00

00

050

951

557

553

860

562

369

371

337

239

242

250

045

050

057

655

055

055

055

055

055

055

055

055

055

055

055

055

00

018

00

00

00

00

00

00

00

00

00

050

551

057

058

359

966

768

770

736

939

040

050

045

054

755

357

255

055

055

055

055

055

055

055

055

055

055

00

00

190

00

00

00

00

00

00

00

00

00

550

555

564

577

593

662

681

701

366

437

450

500

520

530

540

552

572

550

550

550

550

550

550

550

550

550

550

00

020

00

00

00

00

00

00

00

00

00

059

559

960

862

063

665

767

669

636

343

345

050

050

050

952

853

555

955

055

055

055

055

055

055

055

055

055

00

00

210

00

00

00

00

00

00

00

00

00

589

594

602

613

626

656

672

691

360

430

450

550

529

482

503

517

545

550

550

550

550

550

550

550

550

550

00

00

220

00

00

00

00

00

00

00

00

00

584

588

596

606

618

652

667

685

357

428

500

500

513

468

481

498

528

546

567

550

550

550

550

550

550

550

00

00

230

00

00

00

00

00

00

00

00

00

578

582

590

600

612

647

662

679

353

427

500

500

502

455

465

481

510

526

546

569

550

550

550

550

550

550

678

00

024

00

00

00

00

00

00

00

00

00

057

357

758

459

460

664

165

767

435

142

645

050

049

044

245

046

549

150

652

454

556

958

655

059

059

261

262

466

70

025

00

00

00

00

00

00

00

00

00

056

957

257

958

860

063

665

266

971

484

790

010

0047

642

843

544

947

048

449

951

853

955

856

555

954

856

858

162

70

026

00

00

00

00

00

00

00

00

00

056

656

757

358

359

563

064

766

471

284

390

010

1492

382

883

686

189

191

994

897

910

1810

5510

6710

4710

1452

454

159

10

027

00

00

00

00

00

00

00

00

00

011

356

256

757

758

962

364

166

070

883

680

087

979

280

480

683

085

187

489

892

596

199

610

0899

398

050

051

356

30

028

00

00

00

00

00

00

00

00

00

011

755

656

157

058

259

863

765

570

282

970

083

675

376

677

079

381

016

5917

0017

4618

0618

7118

9894

093

547

448

453

20

029

00

00

00

00

00

00

00

00

00

011

654

855

356

257

559

063

164

969

772

260

060

071

872

273

175

476

915

7216

0516

4016

9017

5017

7088

588

444

044

949

50

030

00

00

00

00

00

00

00

00

00

011

354

054

555

456

658

162

464

368

571

065

666

167

768

269

271

572

914

8815

1615

4415

8816

4316

6783

483

340

940

645

10

031

00

00

00

00

00

00

00

00

00

011

053

053

554

455

757

261

663

666

669

362

062

563

264

265

267

568

814

0514

3014

5414

9015

2215

3678

279

540

038

241

40

032

00

00

00

00

00

00

00

00

00

010

751

952

453

354

656

160

462

464

967

558

158

859

360

361

363

964

513

2313

4413

6413

8213

9414

3474

175

839

038

041

30

033

00

00

00

00

00

00

00

00

00

010

350

751

252

153

455

059

060

963

165

453

855

255

656

557

358

160

312

3712

5612

7413

0712

9713

5871

074

138

136

640

00

034

00

00

00

00

00

00

00

00

00

010

049

449

950

852

153

957

259

061

163

349

951

952

152

853

554

456

111

4711

5911

7411

8512

1112

4268

571

337

035

739

40

035

00

00

00

00

00

00

00

00

00

095

480

484

492

503

528

549

569

589

611

467

480

484

490

498

505

518

1054

1058

1071

1092

1178

1228

640

669

351

344

388

00

360

00

00

00

00

00

00

00

00

00

9146

446

947

748

751

252

954

756

640

443

043

744

545

346

046

647

497

798

310

0310

5611

0711

7962

264

633

432

637

10

037

00

00

00

00

00

00

00

00

00

086

448

453

460

472

489

506

524

543

377

393

400

407

415

421

426

428

884

930

973

1034

1080

1126

594

625

322

311

359

00

380

00

00

00

00

00

00

00

00

00

8243

243

654

445

446

848

349

832

234

535

336

136

937

738

438

739

882

688

294

810

1810

5910

8956

859

731

030

035

10

039

00

00

00

00

00

00

00

00

00

076

414

418

425

433

444

458

473

298

312

317

323

331

338

338

344

355

782

880

966

1009

1044

1070

552

578

301

291

342

00

400

00

00

00

00

00

00

00

00

00

6939

640

040

541

041

943

135

127

227

427

828

429

028

929

831

636

077

184

593

498

610

2410

5454

256

329

228

633

70

041

00

00

00

00

00

00

00

00

00

023

183

186

189

383

389

401

322

235

235

237

242

249

256

283

306

339

758

824

888

943

989

1024

1059

1095

282

287

00

042

00

00

00

00

00

00

00

00

00

020

163

167

172

352

352

370

286

191

192

188

199

215

230

257

295

317

732

782

838

902

956

996

1034

1068

277

284

00

043

00

00

00

00

00

00

00

00

00

012

414

014

815

632

533

334

424

815

215

215

517

019

522

424

927

930

272

276

781

187

092

897

410

1110

4028

60

00

044

00

00

00

00

00

00

00

00

00

011

212

012

913

829

631

032

121

211

712

312

416

519

522

124

427

331

873

777

682

487

290

895

399

910

3029

00

00

045

00

00

00

00

00

00

00

00

00

095

100

105

113

122

139

147

9246

5670

8597

111

251

280

324

740

777

821

868

905

927

1008

1074

302

00

00

460

00

00

00

00

00

00

00

00

064

7376

7179

4546

6476

4454

7489

103

117

261

288

327

739

773

814

854

895

925

1012

1138

00

00

047

00

00

00

00

00

00

00

00

00

5858

5666

7367

7281

8953

6984

9811

124

726

930

532

973

576

880

484

087

692

310

060

00

00

048

00

00

00

00

00

00

00

00

00

3643

8410

034

3640

4710

164

8094

106

118

258

278

310

331

704

767

795

826

858

906

1003

00

00

00

490

00

00

00

00

00

00

00

00

075

8610

440

4145

5058

113

7792

103

114

125

268

286

314

331

698

733

788

811

837

866

1061

1288

00

00

050

00

00

00

00

00

00

00

00

00

9032

2640

4551

5867

7787

100

111

121

524

557

606

636

664

692

720

746

768

788

804

1060

1230

00

00

051

00

00

00

00

00

00

00

00

5870

8935

3843

4956

6474

8598

110

119

128

553

581

622

644

666

688

709

729

748

764

777

786

00

00

00

520

00

00

00

00

00

00

00

048

6283

3740

4552

6069

7991

104

116

126

138

580

602

634

652

669

687

704

720

736

750

764

779

00

00

00

530

00

00

00

00

00

00

00

1336

5680

3842

4855

6373

8496

110

123

137

151

608

622

646

659

674

690

704

717

730

743

756

00

00

00

054

00

00

00

00

00

00

00

05

2851

7740

4349

5766

7688

101

115

130

145

156

632

644

658

670

681

695

707

718

730

740

752

00

00

00

055

00

00

00

00

00

00

00

00

2044

7240

4551

5968

7992

105

120

135

151

162

660

666

674

683

692

702

713

722

736

742

00

00

00

00

560

00

00

00

00

00

2634

4967

8711

113

716

514

214

615

216

117

018

219

520

922

424

025

626

810

9210

9210

9410

9911

0511

1411

2411

300

00

00

00

00

057

00

00

00

00

00

015

2742

6180

104

130

158

142

146

153

162

172

184

197

211

227

243

258

271

1115

1121

1118

1117

1120

1128

00

00

00

00

00

00

580

00

00

00

00

00

215

2850

7499

126

154

143

147

153

162

173

185

199

214

230

246

262

276

1140

1152

1148

1140

1136

1137

00

00

00

00

00

00

590

00

00

00

00

00

00

1944

6995

123

152

143

147

154

163

174

186

200

216

233

251

267

281

1156

1169

1177

1168

1156

00

00

00

00

00

00

060

00

00

00

00

00

00

015

4167

9412

115

114

314

715

416

317

418

620

121

723

625

827

528

811

7411

8711

9111

930

00

00

00

00

00

00

0

App

endi

x B

pag

e 12

Page 66: Attachment 3 to the

T5C

olum

n:T1

7.0

Tran

smis

sivi

ty L

ayer

5

ft2/d

ayR

ow:

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

491

00

00

00

00

00

930

1108

1245

1344

165

234

267

296

321

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

00

00

00

00

02

00

00

00

00

088

388

011

0612

5413

5619

123

527

029

940

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

00

00

00

00

03

00

00

00

00

085

684

111

2112

7616

2619

424

127

532

740

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

00

00

00

00

40

00

00

00

00

810

995

1182

1562

1656

199

248

307

333

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

00

00

05

00

00

00

00

078

110

7314

8816

0019

4323

228

331

734

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

00

00

00

00

60

00

00

00

074

098

216

6717

9118

8219

7524

730

133

435

340

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

050

050

00

00

00

70

00

00

00

055

299

116

6017

7918

9519

8323

328

431

734

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

050

040

045

045

00

00

80

00

00

00

660

661

980

1647

1756

1851

1930

224

273

356

380

399

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

450

450

450

450

00

09

00

00

00

062

079

910

0016

3817

3218

1518

8621

726

334

537

139

240

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

045

045

045

045

045

00

010

00

00

00

058

183

410

0716

2617

0917

8418

4821

230

333

436

138

440

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

045

045

045

045

045

00

011

00

00

00

540

696

868

1009

1611

1686

1754

1814

207

295

326

353

378

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

450

400

400

400

400

00

120

00

00

480

500

725

880

1001

1591

1661

1725

1782

251

288

320

347

373

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

130

00

00

450

595

753

886

1488

1565

1634

1697

2249

247

283

314

342

368

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

140

00

00

430

612

756

877

1469

1539

1606

1667

2217

243

279

310

338

364

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

150

00

00

400

606

747

858

1444

1511

1575

1633

2184

240

275

306

335

386

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

160

00

00

300

603

740

1337

1412

1480

1544

2099

2147

236

272

303

357

382

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

170

00

00

065

273

313

1413

8114

4715

1020

6521

1223

326

930

035

437

940

040

040

040

040

040

040

040

040

040

040

035

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

00

018

00

00

00

641

708

1284

1348

1415

1974

2027

2075

230

266

322

350

400

400

400

400

400

400

400

400

400

400

400

400

350

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

019

00

00

051

458

966

912

4613

1113

7819

3819

9020

3822

626

332

034

739

840

040

040

040

040

040

040

040

040

035

035

035

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

00

00

200

00

00

482

553

1131

1202

1270

1337

1898

1950

2000

223

285

317

370

395

400

400

400

400

400

400

400

400

400

350

350

350

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

021

00

00

336

418

508

1093

1160

1231

1795

1854

1910

1961

220

282

314

367

393

400

400

400

400

400

400

400

400

400

350

350

350

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

00

220

00

031

437

346

310

4911

1611

8717

5418

1118

6819

2324

127

831

136

541

540

040

040

040

040

040

040

040

040

035

035

035

040

040

040

040

040

040

040

040

040

040

040

040

040

040

00

00

023

00

00

034

041

410

0110

6911

3917

0817

6718

2618

8223

727

633

336

241

340

040

040

040

040

040

040

040

040

035

035

035

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

00

00

240

00

00

302

872

946

1022

1592

1657

1720

1783

1842

234

273

331

385

411

400

400

400

400

400

400

400

400

400

350

350

350

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

00

250

00

00

248

827

895

974

1546

1609

1674

1740

2056

231

296

329

383

409

400

400

400

400

400

400

400

400

400

350

350

350

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

400

00

260

00

00

712

770

842

923

1497

1560

1624

1693

2031

231

296

328

381

407

400

400

400

400

400

400

400

400

400

350

350

350

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

400

00

270

00

00

671

721

793

872

1448

1510

1571

1874

205

262

296

351

378

429

400

400

400

400

400

400

400

400

400

350

350

350

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

400

00

280

00

00

625

675

751

1329

1399

1465

1524

1827

203

263

295

349

400

423

400

400

400

400

400

400

400

400

400

350

350

350

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

290

00

00

581

632

710

1291

1361

1433

2491

1792

226

262

319

347

397

420

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

300

00

00

545

602

1179

1254

1330

1407

2472

1774

225

262

318

370

395

417

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

310

00

00

529

1087

1153

1230

1311

1640

1711

1776

228

288

318

369

393

415

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

320

00

00

020

710

911

712

716

217

421

323

829

134

336

839

141

440

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

033

00

00

00

099

108

146

161

202

220

267

292

342

367

390

412

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

340

00

00

00

9210

214

215

920

222

226

931

834

236

538

841

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

035

00

00

00

086

123

139

182

202

247

269

317

341

364

387

409

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

360

00

00

00

8211

913

618

120

124

729

331

633

936

238

540

740

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

037

00

00

00

010

511

715

917

922

424

529

231

433

836

138

340

540

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

038

00

00

00

010

311

515

817

722

326

929

031

233

635

938

140

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

039

00

00

00

010

213

915

620

122

126

728

831

133

535

838

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

040

00

00

00

010

113

815

520

024

526

628

731

033

435

737

940

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

041

00

00

00

012

713

818

019

924

426

528

630

933

335

637

840

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

00

420

00

00

00

127

138

180

224

244

265

286

309

333

356

378

399

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

043

00

00

00

015

216

318

022

424

426

528

731

033

335

637

839

940

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0016

0016

000

00

044

00

00

00

111

148

163

206

225

245

267

289

312

334

357

379

399

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

1600

400

1600

00

00

450

00

00

013

814

816

320

722

724

827

029

231

533

736

038

140

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

0040

040

00

00

046

00

00

00

139

149

191

209

230

252

275

297

320

342

364

385

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

400

00

00

047

00

00

00

140

151

193

213

235

258

281

304

327

349

371

392

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

00

00

00

480

00

00

014

017

819

621

824

126

528

931

333

735

938

140

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0040

016

000

00

00

049

00

00

012

613

918

120

122

424

927

429

932

434

837

139

440

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

040

016

0016

0016

0016

0016

0016

0016

000

00

00

500

00

00

127

167

185

206

231

258

285

312

338

363

384

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

400

1600

1600

00

00

051

00

00

00

176

191

213

240

269

298

326

355

383

397

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

1600

1600

1600

1600

1600

1600

400

00

00

00

520

00

00

018

019

522

024

928

131

334

137

215

3115

5816

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

00

00

053

00

00

00

180

199

226

259

294

332

355

370

1504

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

00

00

054

00

00

015

117

220

023

126

730

532

834

214

1814

6716

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

00

00

00

550

00

00

146

169

202

236

274

290

310

327

1376

1430

1555

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

00

00

00

560

00

00

135

162

211

238

255

278

400

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

00

00

00

00

570

00

00

111

140

188

221

346

369

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

00

00

00

00

00

580

00

063

119

102

174

311

336

359

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

1600

00

00

00

00

00

00

590

00

045

7112

727

530

533

013

9614

6815

8816

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

00

00

00

00

00

00

600

00

066

6523

827

130

413

0313

7214

4515

5916

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

0016

000

00

00

00

00

00

00

0

App

endi

x B

pag

e 13

Page 67: Attachment 3 to the

T6C

olum

n:T1

7.0

Tran

smis

sivi

ty L

ayer

6

ft2/d

ayR

ow:

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

491

00

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

500

00

00

00

00

00

20

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

00

00

00

00

30

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

500

00

00

00

40

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

500

00

00

00

50

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

500

00

00

00

60

00

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0050

5050

5050

5050

5050

5050

5050

00

00

07

00

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

5050

5050

500

00

80

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

5050

5050

500

00

90

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

5050

5050

5050

00

100

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

5050

5050

5050

5050

5050

5050

5050

5050

00

110

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0050

5050

5050

5050

5050

5050

5050

5050

500

012

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0050

5050

5050

5050

5050

5050

5050

5050

500

013

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0050

5050

5050

5050

5050

5050

5050

5050

500

014

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

050

5050

5050

5050

5050

5050

5050

5050

00

150

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

500

016

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

050

5050

5050

5050

5050

5050

5050

5050

00

170

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

500

018

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

00

019

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

00

020

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

050

5050

5050

5050

5050

5050

5050

500

00

210

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

5050

5050

5050

5050

5050

5050

500

00

022

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

050

5050

5050

5050

5050

5050

5050

00

00

230

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

00

024

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

500

025

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

00

260

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

5050

5050

5050

500

027

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

00

280

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

5050

5050

5050

500

029

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

00

300

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

5050

5050

5050

500

031

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

5050

5050

5050

5050

5050

5050

5050

00

320

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

5050

5050

5050

500

033

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

5050

5050

5050

00

340

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

5050

5050

500

035

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

5050

5050

5050

5050

5050

500

036

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

100

100

100

100

5050

5050

5050

5050

5050

00

370

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

010

010

010

010

010

050

5050

5050

5050

5050

00

380

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

010

010

010

010

010

010

050

5050

5050

5050

500

039

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

5050

5050

5050

5050

00

400

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

500

041

00

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

150

5050

5050

5050

500

00

420

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

050

5050

5050

5050

00

043

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

015

025

025

025

025

025

025

025

025

025

050

5050

5050

500

00

044

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

015

025

025

025

025

025

025

025

025

025

050

5050

5050

500

00

045

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

025

025

025

025

025

025

025

025

025

050

5050

5050

500

00

046

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

025

025

025

025

025

025

025

025

025

050

5050

5050

00

00

047

00

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

015

015

015

015

015

015

015

015

015

015

015

015

025

025

025

025

025

025

025

025

025

050

5050

500

00

00

048

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

150

150

150

150

150

150

150

150

150

150

150

150

150

250

250

250

250

250

250

250

250

250

5050

5050

00

00

00

490

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

050

5050

5050

00

00

050

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

5050

5050

500

00

00

510

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

5050

5050

00

00

00

520

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

5050

5050

00

00

00

530

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

050

5050

00

00

00

054

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

5050

500

00

00

00

550

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

050

500

00

00

00

056

00

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

00

00

00

00

00

570

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

00

00

00

00

00

00

580

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

00

00

00

00

00

00

590

00

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

250

00

00

00

00

00

00

060

00

015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0015

0025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

025

00

00

00

00

00

00

00

0

App

endi

x B

pag

e 14

Page 68: Attachment 3 to the

T7C

olum

n:T1

7.0

Tran

smis

sivi

ty L

ayer

7

ft2/d

ayR

ow:

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

491

00

00

00

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

170

00

00

00

00

00

02

00

00

00

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

017

017

017

017

017

00

00

00

00

03

00

00

00

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

017

017

017

017

017

017

00

00

00

00

40

00

00

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

170

170

170

170

170

00

00

00

05

00

00

00

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

017

017

017

017

017

017

00

00

00

00

60

00

00

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

017

017

017

017

017

017

017

017

00

00

00

70

00

00

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

017

017

017

017

017

017

017

017

017

017

00

00

80

00

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

09

00

00

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

017

017

017

017

017

017

017

017

017

017

017

00

010

00

00

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

017

017

017

017

017

017

017

017

017

017

017

00

011

00

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

120

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

130

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

140

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

150

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

160

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

170

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

180

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

00

00

190

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

00

00

200

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

021

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

00

00

022

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

00

00

023

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

00

00

240

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

017

00

025

00

00

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

260

00

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

00

027

00

00

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

280

00

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

00

029

00

00

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

300

00

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

00

031

00

00

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

170

170

00

320

00

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

017

00

033

00

00

085

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

017

017

017

017

017

017

00

034

00

00

00

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

170

170

170

170

170

170

170

170

170

170

170

170

00

350

00

00

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

017

017

017

017

00

036

00

00

00

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

340

340

340

340

170

170

170

170

170

170

170

170

170

170

00

370

00

00

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

534

034

034

034

034

017

017

017

017

017

017

017

017

017

00

038

00

00

00

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

340

340

340

340

340

340

170

170

170

170

170

170

170

170

00

390

00

00

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

017

00

040

00

00

00

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

170

170

170

170

170

170

170

170

00

410

00

00

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

00

00

420

00

00

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

525

517

017

017

017

017

017

017

00

00

430

00

00

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

255

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

00

00

440

00

00

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

255

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

00

00

450

00

00

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

850

850

850

850

850

850

850

850

850

170

170

170

170

170

170

00

00

460

00

00

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

850

850

850

850

850

850

850

850

850

170

170

170

170

170

00

00

047

00

00

085

085

085

085

085

085

085

085

085

085

085

085

025

525

525

525

525

525

525

525

525

525

525

525

525

585

085

085

085

085

085

085

085

085

017

017

017

017

00

00

00

048

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

255

255

255

255

255

255

255

255

255

255

255

255

255

850

850

850

850

850

850

850

850

850

170

170

170

170

00

00

00

490

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

00

00

00

500

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

017

017

00

00

00

510

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

00

00

00

520

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

170

170

170

170

00

00

00

530

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

00

00

00

00

540

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

017

00

00

00

00

550

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

017

017

00

00

00

00

056

00

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

00

00

00

00

00

570

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

00

00

00

00

00

00

580

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

00

00

00

00

00

00

590

00

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

850

00

00

00

00

00

00

060

00

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

085

00

00

00

00

00

00

00

0

App

endi

x B

pag

e 15

Page 69: Attachment 3 to the

Zones of Irrigation Return Flow ApplicationAveragcolrow 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

123 14 1 1 15 1 1 1 1 1 1 1 1 4 2 2 2 2 2 2 2 2 26 1 1 1 1 1 1 1 1 3 3 3 3 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 4 47 1 1 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 48 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 49 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 411 4 4 4 4 4 4 4 4 4 6 6 6 6 6 612 4 4 4 4 4 4 4 6 6 6 6 613 4 4 4 4 4 6 6 6 6 614 4 4 4 4 6 6 6 6 6 6 615 4 4 6 6 616 4 6 6 617 4 6181920212223 524 5 7

25 5 6 6 7 7 826 5 5 6 6 7 7 7 7 8 827 5 6 6 7 7 7 7 8 8

28 5 5 5 6 6 7 7 7 7 7 8 829 5 6 6 7 7 7 7 7 8 830 6 7 7 7 7 7 8 8 831 6 6 7 7 7 7 7 8 8 8 8

32 5 6 7 7 7 7 7 7 8 8 8 8 8 8 8 833 5 5 7 7 7 7 7 7 8 8 8 8 9 9 9 934 6 7 7 7 7 7 7 8 8 8 9 9 9 9 9

35 5 7 7 7 7 7 8 8 8 9 9 9 9 936 5 7 7 7 7 8 8 8 9 9 9 937 5 7 7 7 7 8 8 8 9 9

38 5 7 7 7 7 7 9 9 9 9 939 5 7 7 7 7 7 7 9 9 9 9 940 7 7 7 7 7 9 9 9 9 9 941 5 7 7 7 7 7 9 9 9 9 9 9

42 7 7 7 7 7 9 9 9 9 9 943 7 7 7 7 9 9 9 9 9 9 9 9 9 944 7 7 7 10 10 10 10 10 9 9 9 9

45 10 10 10 10 10 10 10 10 10 10 10 10 9 9 946 12 12 12 12 11 11 11 10 10 10 10 10 10 10 9 9

47 12 12 12 12 12 11 11 11 11 11 11 11 10 10 10 10 10 10 1048 12 12 12 12 12 12 12 12 11 11 11 11 11 11 10 10 10 10 1049 12 12 12 12 12 11 11 11 11 11 11 10 10 10 10

50 12 12 11 11 11 1151 12 11 11 11 11 11 1152 12 12 11 11 11 11 11 1153 12 12 11 11 11 11 1154 12 12 12 12 11 11 11 11 11 11 1155 12 12 12 12 11 11 11 11 11 11 11 1156 12 12 12 12 11 11 11 11 11 11 1157 12 12 12 12 11 11 11 11 11 1158 12 12 12 11 11 11 11 1159 11 11 11 11 1160 12 11 11 11

A - NW of Rio HondoB - NE of Rio HondoC - SW of Rio Hondo

Location Description of Zone

Application of Irrigation Return Flows to Groundwater

13

338169334

1720319424

211514831516

6789

2345

101112

D - BTW RH & ASE - West Side of ASF - South Side of AS

G - Btw AS & RLH - Btw RL & RPdT

I - Btw RPdT & RFdTJ - South Side of RFdT

K - East Side of RGdR & RCL - West Side of RGdRM - North Side of RPdT

64716681159

14

Zonal Application Rate (AF/yr)

Zone Number

1

Appendix B page 16

Page 70: Attachment 3 to the

Diagram of Mountain Front Recharge Distribution T17.0Averaolumnrow 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

1 12 13 14 15 16 17 18 29 2

10 211 212 313 314 315 316 317 318 319 320 321 322 323 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 542 543 544 545 546 547 548 549 550 551 552 553 554 555 6 556 6 657 658 659 660 7 7 7 7 7 7 6

180450

Mountain Front Recharge Distribution

Zone Number

Zonal Recharge Rate (AF/yr)12601

234

7

56

270

63010801440

Appendix B page 17

Page 71: Attachment 3 to the

Stress Period:

Taos Pueblo*

Town of Taos El Prado

Other Mutual

Domestic Wells

Domestic Well*

Multiple Dwelling Domestic

Wells*Sanitary Wells* Total

1964-1973 100 510 0 137 563 299 189 1608

1974-1983 200 680 0 183 563 299 189 1924

1984-1993 200 837 37 370 563 299 189 2305

1994-2003 200 838 64 395 563 299 189 2358

Well Pumping Input into Calibration Run of T17.0 Model (AF/yr)

* Estimated Diversions

Appendix B page 18

Page 72: Attachment 3 to the

55

1010

1515

2020

3030

3535

4040

4545

5050

5555

6060

55 1010 1515 2020 2525 3030 3535 4040 4545 5050 5555 6060olumnsolumns

Row

sR

ows

11

Ranchos de Taos (2)Talpa (4)

2525

Canon (2)

Canon (1)

TalpaTalpa

Valdez

El Prado (3)

El Prado (2)

El Salto

Arroyo Seco

Llano Quemado (1)Llano Quemado (2)

Ranchos de Taos (1)

Upper Ranchitos

Upper Desmontes (1)Upper Desmontes (2)Lower DesmontesUpper Arroyo Hondo

Lower Arroyo Hondo

Rio Grande

Rio Hondo

Rio Fernando d

e Taos

Rio P

ueblo

deTaos

Arroyo

Alamo

LoboCreek

RioGrande del Rancho

Sou th Fork Rio Hondo

ArroyoHondo

Taos Mutual Domestic Wellsand El Prado WSD Wells

0 105Miles

Appendix B page 19

Page 73: Attachment 3 to the

Municipal and Other Non-Domestic Water Supply Wells Simulated in Taos Groundwater ModelAveColumnRow4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

12345 36 3 37 3 3 389

10 3 31112131415161718192021222324252627 4282930 431 132 133 134 1353637 23839 2 240 3 24142 243 24445 346 3474849505152535455 35657 3 358 359 3 360

Designation Wells

1 Taos Pueblo (estimated, generalized pumping location)2 Town of Taos3 El Prado Water & Sanitation District4 Mutual Domestic Associations

Appendix B page 20

Page 74: Attachment 3 to the

Distribution of Domestic Wells and Sanitary Type Wells Simulated in Taos Groundwater Model Includes wells listed in OSE files as Domestic, Multiple (Domestic well serving multiple dwelling) and Sanitary

Numbers shown represents the number of these types of wells that occur in the model cells

SumColumnRow 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

1 1 1 1 5 12 1 2 1 1 13 2 2 4 1 1 1 3 2 1 1 14 1 1 6 3 4 2 2 1 1 4 2 35 1 1 1 4 5 4 1 1 1 1 1 2 2 1 3 3 4 2 1 7 1 66 3 2 2 3 2 5 2 4 5 3 1 3 1 4 4 5 6 2 1 1 1 17 3 1 2 4 2 1 1 1 1 3 1 1 3 1 1 6 5 4 4 6 4 5 5 4 6 1 38 1 1 2 2 2 3 1 1 1 2 1 1 3 8 5 2 2 1 3 2 2 2 4 11 49 2 1 1 2 2 2 2 2 1 6 3 1 1 1 4 9 10 4 8 3 4 2 1 3 5 8 3 3 3

10 1 4 1 2 3 1 1 1 2 1 1 1 1 3 8 1 6 12 6 4 1 3 1 6 4 3 1 411 1 1 1 2 4 2 1 1 1 1 2 1 1 1 2 3 6 6 212 4 3 1 1 1 113 1 1 1 1 1 2 2 1 1 3 5 114 1 2 1 1 2 2 1 1 3 3 115 1 1 1 2 116 2 1 1 1 1 1 4 7 117 1 1 4 2 1 1 118 1 1 1 1 2 219 1 1 1 1 1 2 220 1 2 1 1 1 121 1 1 1 1 1 4 122 1 1 2 1 1 1 7 3 8 1 123 1 1 1 1 2 1 1 1 7 9 6 2 224 1 1 1 1 1 5 2 4 3 1 125 1 1 2 1 2 4 1 4 6 2 1 126 1 1 1 3 4 4 4 4 1 827 1 1 1 2 2 1 1 1 4 4 1 2 7 328 2 1 1 1 4 4 2 3 4 4 2 129 1 1 1 4 1 4 3 3 1 4 130 2 1 4 2 8 1 2 3 2 231 1 1 1 3 2 1 1 1 332 1 1 1 1 2 2 3 2 2 4 233 4 3 4 3 2 1 3 5 134 3 2 1 2 1 1 4 2 135 4 5 7 1 1 1 4 3 236 1 1 1 3 2 5 3 2 1 1 1 137 2 1 1 1 6 9 1 1 2 3 1 1 138 1 6 2 4 10 4 5 1 139 2 3 5 1 5 8 3 2 1 1 140 3 2 1 1 1 341 1 1 2 2 1 1 2 1 2 342 1 1 1 1 5 5 3 1 2 3 143 1 1 1 3 5 7 5 1 2 1 2 3 4 3 144 1 3 3 8 2 3 9 3 1 1 4 5 1 1 5 1 3 145 1 5 1 3 1 5 2 4 3 3 1 4 4 946 2 2 3 3 1 3 4 2 1 1 2 3 2 7 5 247 1 2 1 7 3 3 2 2 1 2 1 3 2 3 3 2 4 448 1 2 2 2 3 2 3 1 3 3 1 2 2 2 1 1 3 4 5 1 549 1 1 3 2 2 2 3 1 2 1 3 6 2 2 1 1 1 2 3 2 150 1 1 3 2 5 1 2 1 4 2 1 1 1 1 1 1 3 2 1 2 3 151 3 2 4 3 2 7 1 2 5 2 5 4 2 2 5 3 3 352 1 2 2 1 1 1 4 5 2 3 4 6 2 9 5 7 3 3 4 1 5 3 153 1 2 1 1 2 4 6 2 3 1 5 6 4 9 8 5 3 3 5 5 7 3 454 1 1 1 1 1 4 1 5 2 1 1 2 7 6 5 4 3 1 4 4 8 5 5 255 1 3 4 9 4 5 6 2 1 4 13 3 5 4 2 3 5 1 6 2 5 156 1 1 2 1 1 1 1 1 6 11 6 4 4 5 8 1 4 2 8 1 5 4 3 4 257 1 1 1 1 1 1 1 1 3 4 4 3 1 2 3 4 3 1 558 2 1 1 1 2 1 2 3 4 2 6 8 2 159 2 1 1 1 1 2 5 10 3 260 1 1 1 2 1 4 4 5

Appendix B page 21

Page 75: Attachment 3 to the

t17-

0-re

sids

.xls

1/4/

2006

12:4

3 P

M

T-17

Cal

ibra

tion

Res

ults

La

yers

1, 2

and

3

Res

idua

ls (O

bser

ved

- Mod

eled

Hea

ds) i

n fe

etS

um-1

29A

vera

ge-1

row

67

89

##

##

##

##

#19

2021

2223

2425

2627

2829

3031

3233

3435

3637

3839

4041

4243

4445

4647

4849

1 2 3 4 5 6 7 80.

429 10

3139

1132

2812

-10

32.6

6913

-56

3.7

14 1511

216 17

-22

1830

.177

.419

-14

206

21-2

692

2216

2820

237.

4-0

.229

2421

187.

325

-68

1615

2661

0.3

2722

9.5

3.6

-12.

9-6

828

-4.9

9.3

29-8

4-1

730

-31

14.2

-4.5

-16

31-2

519

-11

432

-28

-56.

212

334.

2-2

2-1

934

-7.2

-8.4

-21

356.

9-3

.84.

14.

12.

736

-8.1

0.2

-15

1537

-0-4

.538

-44

-11

-9.9

-10.

84.

93.

4-1

239

4.2

-15.

212

1112

3040

2.8

-23.

2-8

.016

41-2

041

2.6

-127

4225

-0.9

43-1

0-1

2-4

4.2

7.6

4433

-26.

622

1645

-28

-7.3

-60.

8-2

516

-9.9

5046

-36.

29.

37.

9-1

617

5347

-7.2

-5.8

-7.7

486.

1-2

.9-4

11.

27.

642

.1-5

.6-5

362

4927

5027

16-2

9-3

951

-25

505.

435

-40

-3.4

5212

-4.7

-11

3.9

117

530.

8-2

.7-2

3-2

554

79-2

5.3

17-7

955

-92

24-6

8.6

56-1

4332

1.1

1.9

5769

-22

2958

-24

-4.7

5944

-76

-28

60-3

3-1

6

App

endi

x B

pag

e 22

Page 76: Attachment 3 to the

t17-

0-re

sids

.xls

1/4/

2006

12:

44 P

M

T-17

Cal

ibra

tion

Res

ults

La

yer 4

Res

idua

ls (O

bser

ved

- Mod

eled

Hea

ds) i

n fe

etS

um29

5A

vera

ge10

row

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

511 2 3 4 5 6

-39

7-3

88

-37

9-3

615

710 11 12 13

-75

14 15 16 17 18 19 20 21 22 23 24 2542

26 27-6

565

2895

1429 30 31

4132 33 34 35 36

2837

-038

-739

-340 41 42 43

484.

344

-145

3946

4447

-20

48 49 5012

5179

52-1

661

53 54 55 56 57 58-1

2-8

059

-111

107

60

App

endi

x B

pag

e 23

Page 77: Attachment 3 to the

t17-

0-re

sids

.xls

1/4/

2006

T-17

Cal

ibra

tion

Res

ults

La

yer 5

Res

idua

ls (O

bser

ved

- Mod

eled

Hea

ds) i

n fe

etS

um61

Ave

rage

3A

veco

lro

w1

23

45

67

89

1011

1213

1415

1617

1819

2021

2223

2425

2627

2829

3031

3233

3435

3637

3839

4041

4243

4445

4647

481 2 3 4 5 6 7

-58 9

-18

-113

10 11-7

12 13 14-5

15-1

1016 17

9.5

-27.

918

229

19 20 211.

822

-78

2324

2416

925 26 27 28 29 30

9031 32 33 34

-11

35 36 37 384.

139 40 41 42 43 44 45 46 47

-72

48 49-1

550 51

-16

52 5317

54 5520

56-3

157 58

4.2

59 60

App

endi

x B

pag

e 24

Page 78: Attachment 3 to the

t17-

0-re

sids

.xls

1/4/

2006

T-17

Cal

ibra

tion

Res

ults

La

yer 6

Res

idua

ls (O

bser

ved

- Mod

eled

Hea

ds) i

n fe

etsu

m-1

2av

erag

e-1

row

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17-6

318 19 20 21 22 23 24 25

112

26 27 2862

29 30 31 32 33 34 35 36 37 38-1

4139 40 41 42 43

-44

44 45 46 47 488.

949

2250 51 52 53 54 55 56 57 58

3159 60

App

endi

x B

pag

e 25

Page 79: Attachment 3 to the

t17-

0-re

sids

.xls

1/4

/200

6 1

2:45

PM

T-17

Cal

ibra

tion

Res

ults

La

yer 7

Res

idua

ls (O

bser

ved

- Mod

eled

Hea

ds) i

n fe

etS

um-8

3A

vera

ge-1

4ro

w1

23

45

67

89

1011

1213

1415

1617

1819

2021

2223

2425

2627

2829

3031

3233

3435

3637

3839

4041

4243

4445

4647

4849

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17-4

.818 19 20 21 22 23 24

-36

25-4

226 27 28 29 30 31 32 33 34 35 36 37 38

5539 40 41 42 43 44 45 46 47 48

-45

49-9

.550 51 52 53 54 55 56 57 58 59 60

App

endi

x B

pag

e 26

Page 80: Attachment 3 to the

Appendix C Detailed hydrogeologic background report:

Hydrologic Characteristics of Basin-fill Aquifers in the Southern San Luis Basin, New Mexico By Paul Drakos, Jay Lazarus, Bill White, Chris Banet, Meghan Hodgins, Jim

Riesterer and John Sandoval.

New Mexico Geological Society Guidebook, 55th Field Conference, Geology of

the Taos Region, 2004, p. 391-404.

Appendix C page 1

Page 81: Attachment 3 to the

391New Mexico Geological Society Guidebook, 55th Field Conference, Geology of the Taos Region, 2004, p. 391-404.

INTRODUCTION

The Town of Taos, Taos Pueblo, and adjacent communities are situated primarily within the Rio Pueblo de Taos and Rio Hondo drainage basins. The Rio Pueblo de Taos basin includes the fol-lowing streams from north to south; Arroyo Seco, Rio Lucero, Rio Pueblo de Taos, Rio Fernando de Taos, and Rio Grande del Rancho (Figs. 1 and 3). Northern tributaries to Rio Pueblo de Taos drain Precambrian granite and gneiss, and Tertiary granite,

whereas southern tributaries drain Paleozoic sandstone, shale, and limestone (Kelson and Wells, 1989). The area of this study includes the region between the Sangre de Cristo mountain front on the east and the Rio Grande on the west, the Rio Hondo on the north and the Rio Grande-Rio Pueblo de Taos confluence on the south (Fig. 1).

The majority of the historic water supply for municipal, domes-tic, livestock, and sanitary purposes for the Town of Taos, Taos Pueblo, and adjacent communities has been derived from the

HYDROLOGIC CHARACTERISTICS OF BASIN-FILL AQUIFERS IN THE SOUTHERN SAN LUIS BASIN, NEW MEXICO

PAUL DRAKOS1, JAY LAZARUS1, BILL WHITE2, CHRIS BANET2, MEGHAN HODGINS1, JIM RIESTERER1, AND JOHN SANDOVAL2

1Glorieta Geoscience Inc. (GGI), PO Box 5727, Santa Fe, NM 875022US Bureau of Indian Affairs (BIA), Southwest Regional Office, 615 First St., Albuquerque, NM 87102

ABSTRACT.—The Town of Taos and Taos Pueblo conducted a joint deep drilling program to evaluate the productivity and water quality of the Tertiary basin-fill aquifer system underlying the Servilleta Formation. Testing results from a series of municipal, exploratory, subdivision, and domestic wells are also used to characterize hydrologic properties (T, K, K’, and S), and the effect of faults on groundwater flow in shallow and deep basin fill aquifers. The shallow unconfined to leaky-confined alluvial aquifer includes alluvial deposits and the underlying Servilleta Formation (Agua Azul aquifer facies). The deep leaky-confined to confined aquifer includes Tertiary age rift-fill sediments below the Servilleta Formation and is subdivided into the Chama-El Rito and Ojo Caliente aquifer facies. Although faults typically do not act as impermeable boundaries in the shallow alluvial aquifer and groundwater flow in the shallow aquifer is not significantly affected by faults, the Seco fault and several of the Los Cordovas faults act as impermeable boundaries in the deep basin fill aquifer. However, other Los Cordovas faults apparently do not affect groundwater flow in the deep aquifer, suggesting variable cementation along fault planes at depth. The Town Yard fault appears to be a zone of enhanced permeability in the shallow alluvial aquifer, and does not act as an impermeable boundary in the deep basin fill aquifer. Intrabasin faults such as the Seco fault that exhibit significant offset likely cause some compartmentalization of the deep aquifer system.

Colorado Plateau SL

E

A

S

P

M

Mogollon -Datil Volcanic

Field

Study AreaRio Hondo

RioPueblo de Taos

Rio

Gra

nde

State Rd. 68

State Rd. 68

US Hwy 64

Hwy. 150

US Hwy 64

Town of Taos

Sa

ng

re

de

C

ris

to

Mo

un

tain

sSymbol ExplanationMajor stream or river

1

1

0

0

1 Miles

1 Kilometers

Study Area Detail

G r e a t P l a i n s

Kilometers

Sout

hern

Roc

ky M

ount

ains

Jemez Lineament

Jemez Volcanic

Field

Rio

Gr a

nd

e

R

i ft

FIGURE 1. Location map – schematic map of New Mexico showing study area and the approximate limits of various physiographic provinces and geographic features. Major basins in the Rio Grande rift from north to south are: SL=San Luis, E = Española, A = Albuquerque, S = Socorro, P = Palo-mas, M = Mimbres. (state map modified from Sanford et al., 1995 and Keller and Cather, 1994).

Appendix C page 2

Page 82: Attachment 3 to the

392 DRAKOS ET AL.

shallow stream-connected alluvial aquifer system. In an effort to minimize stream depletion effects resulting from new groundwa-ter development, the Town of Taos and Taos Pueblo, with funding from the U.S. Bureau of Reclamation (BOR), conducted a deep drilling program to evaluate the productivity and water quality of the Tertiary basin-fill aquifer system underlying the Servilleta Formation. The results of this drilling program, in conjunction with data collected from shallow basin fill and alluvial wells and additional deep exploratory wells, allow for a preliminary evalua-tion of aquifer characteristics, vertical connectivity of the shallow and deep aquifer systems, and the effect of faults on groundwater flow in the basin-fill aquifer system.

METHODOLOGY

A series of exploratory wells were drilled and tested during the deep drilling program and previous investigations to character-ize the basin fill aquifer system. Data from 45 pumping tests are used to determine aquifer characteristics and boundary effects, in particular to determine the effect (if any) of faults on groundwater flow. Well nests and nested piezometers were installed in several locations and pumping tests were configured to: 1) measure trans-missivity (T) and storage coefficient (S); 2) evaluate downward or upward leakage between aquifers induced by pumping stresses, and; 3) where possible, to calculate vertical hydraulic conductiv-ity (K’). Water-level data collected from wells in the different aquifers using electronic sounders, steel tapes, and transducers are used to construct potentiometric surface maps of the aquifers and are used to determine upward or downward vertical gradients at point locations.

STRATIGRAPHIC UNITS

From oldest to youngest, the units underlying the basin dis-cussed in this study are: 1) Pennsylvanian Alamitos Formation, 2) Tertiary Picuris Formation, 3) Tertiary Santa Fe Group, 4) Ter-tiary Servilleta Formation, and 5) Quaternary Alluvium. Galusha and Blick (1971) subdivided the Santa Fe Group into the Tesuque Formation and the overlying Chamita Formation. The Tesuque Formation is further subdivided into the Chama-El Rito Member and the overlying Ojo Caliente Sandstone Member (Fig. 2; Galu-sha and Blick, 1971). Although extending this Santa Fe Group stratigraphic nomenclature into the southern San Luis Basin may be problematic, it is used as an initial framework for this inves-tigation.

DESCRIPTION OF THE SHALLOW AQUIFER SYSTEM

Two major aquifer systems are identified in the Taos area: 1) A shallow aquifer that includes the Servilleta Formation and overlying alluvial deposits and, 2) A deeper aquifer associated with Tertiary age rift-fill sediments (Fig. 2). The lower Servilleta basalt and underlying Chamita Formation may act as a transition zone and/or boundary between the shallow and deep aquifers, although there are not currently enough data points in this inter-val to definitively support or refute this hypothesis.

The shallow aquifer system generally includes unconsolidated alluvial fan and axial-fluvial deposits overlying and interbedded with the Servilleta basalt flows. The shallow aquifer is subdi-vided on the basis of lithology and pumping test analyses into: 1) unconfined alluvium; 2) leaky-confined alluvium, and; 3) the Servilleta Formation (Fig. 2). Several wells in the study area are completed into shallow aquifers in fractured Paleozoic sedimen-tary formations and fractured Precambrian crystalline rocks along the Sangre de Cristo mountain front. These aquifers discharge to alluvium and/or the Servilleta Formation and are therefore part of the shallow alluvial-aquifer flow system. The shallow alluvial aquifer has a maximum thickness of 1500 ft (457 m) or more in the graben formed by the down-to-the-west Town Yard fault and the down-to-the-east Seco fault (Drakos et al., this volume), and pinches out in the western part of the study area where the allu-vium is unsaturated at the Taos Airport domestic well (Fig. 4).

Hydrologic Characteristics of the Shallow Aquifer

Aquifer testing data are available for the shallow aquifer from 32 pumping tests at locations throughout the study area (Fig. 4; Table 1). Pumping tests were run for times ranging from 350 to 12,960 minutes (min) at discharge (Q) ranging from 18 to 440 gallons per minute (gpm) (Table 1).

Aquifer Stratigraphic Unit

UnconfinedQal

Leaky-confined Qal(Includes Lama Fm.)

transition

Dee

p Te

rtiar

y B

asin

Fill

(leak

y-co

nfin

ed &

con

fined

)

BasinMarginLower Serv. Basalt

Chamita Fm. (FracturedPaleozoic

sedimentary,metasedimentary,

andcrystalline

rocks)

Middle Serv. Basalt

Upper Serv. BasaltAgua Azul

Ojo Caliente Mbr.

Chama-ElRito Mbr.

Picuris Fm.

Tesu

que

Fm.

Shallow(unconfined-

leakyconfined)

Ser

ville

ta F

m.

W E

FIGURE 2. Taos Valley geohydrologic framework

Appendix C page 3

Page 83: Attachment 3 to the

393HYDROLOGIC CHARACTERISTICS OF BASIN-FILL AQUIFERS

68

150522

64

64

Map grid, NAD 1927, UTM Zone 13, meters

Rio Hondo

Rio

Luce

ro

RioPueblo de Taos

Rio Fernando de Taos

Rio

Grande

del Ranch o

RioPue

blo de Taos

Rio

Gra

nde

Arro

yoS

eco

Los Cordovas Fault Zone

?

?

?

?

?

?

?

??

?

?

?

Gorge ArchSeco

Fault Tow

nYa

rdFa

ult

Tow

nYa

rdFa

ult

Sang

rede

Cris

toFa

ult Z

one

?

Gorge

Fault

Leaky-confined Alluvial WellAgua Azul Well

Unconfined Alluvial WellSymbol Explanation

Fault, inferred from surfaceor drilling data, ball and baron downthrown sideAnticline

Syncline

Major stream or riverMajor road

Kilometers

Ojo Caliente + Chamita WellChama-El Rito Well

3 San

gre d

e Cristo

Mtn

s.

Mariposa Ranch

Cielo Azul Deep

Bear Stew

BIA 17BIA 24

McCarthyBIA 9

BOR 5

BIA 20Quail Ridge

BIA 2

BIA 14

BIA 1

Howell

TOT#3

Kit Carson

TOT#5

BOR2A

TOT #26.9

La Percha

Cooper

Arroyo Park 18.8

BIA 15

BIA 11

Colonias Point

Taos SJC

Ranchos Elem. School

Ruckendorfer

BJV#1

Riverbend

Arroyos del Norte

Cameron

BIA 7

BOR 7

TOT Airport

BOR 6

K3

Town YardBOR 2B BOR 3

RP2500

BOR1 UNM/Taos

National Guard

FIGURE 3. Map of study area with pumping test well locations

Appendix C page 4

Page 84: Attachment 3 to the

394 DRAKOS ET AL.

Confined QalLow K zone

Confined QalHigh K Zone

Rio Hondo

Rio

Luce

ro

RioPueblo de Taos

Rio Fernando de Taos

Rio

Grande

del Ranch o

RioPue

blo de Taos

Rio

Gra

nde

Arro

yoS

eco

ueblo d

uebbloo d

Unsa

tura

ted

Allu

vium

Los Cordovas Fault Zone

?

?

?

?

?

?

?

??

?

?

?

Gorge ArchSeco

Fault Tow

nYa

rdFa

ult

Tow

nYa

rdFa

ult

Sang

rede

Cris

toFa

ult Z

one

?

Gorge

Fault

Leaky-confined Alluvial WellAgua Azul Well

Unconfined Alluvial Well

BIA 91.9

- Well name - Hydraulic Conductivity (ft/day)

Symbol Explanation

Fault, inferred from surfaceor drilling data, ball and baron downthrown sideAnticline

Syncline

Major stream or river4040000 Map grid, NAD 1927, UTM Zone 13,

meters

Kilometers

TOT Airport Dom.Qal Dry

Mariposa Ranch2.9 Cielo Azul Deep

0.4

Bear Stew3.3

BIA 170.6

BIA 240.1

McCarthy3.6

BIA 91.9

BOR 50.3

BIA 200.2

Quail Ridge4.0

BIA 217.4

BIA 143.7

BIA 14.3

Howell12.5

TOT#36.4

Kit Carson7.0

TOT#516.0

BOR2A29

TOT #26.9

La Percha3.0

Cooper4.7

Arroyo Park 18.8

BIA 151.6

BIA 110.9

Colonias Point17.1

Taos SJC8.6

Ruckendorfer0.1BJV#1

22.0

Riverbend26.7

Arroyos del Norte11.0

Cameron2.1

FIGURE 4. Map of shallow aquifer wells with K values from pumping tests

Appendix C page 5

Page 85: Attachment 3 to the

395HYDROLOGIC CHARACTERISTICS OF BASIN-FILL AQUIFERS

Unconfined alluvium

Pumping tests on 18 unconfined alluvial wells exhibit hydrau-lic conductivity (K) values ranging from 1.8 to 22 ft/day (mean = 6.8 ft/day, ± (1σ) 5.9 ft/day). No clear pattern is observed in geographic distribution of K in the unconfined alluvial aquifer (Fig. 4). The K value calculated at a given location is likely con-trolled by local facies changes (e.g. better sorted axial fluvial deposits yield higher K values than less well sorted overbank or fan deposits) and well design (e.g. whether the well was drilled and screened to sufficient depth to encounter a productive zone). Pumping tests were not run long enough to observe delayed yield and allow for a calculation of specific yield (Sy), but storativity (S) ranged from 10-4 to 10-2. Possible recharge boundaries were observed in the TOT#3 and TOT#1 tests, and, although data are somewhat ambiguous, an impermeable boundary may be indi-cated in the BJV#1 test (Table 1). The possible recharge bound-ary observed in the TOT#3 and TOT#1 tests is likely a result of leakage into the shallow aquifer from the nearby Rio Pueblo de Taos and Rio Lucero.

Leaky-confined alluvium

Pumping tests on nine leaky-confined alluvial wells exhibit K values ranging from 0.1 to 17.4 ft/day, and fall into two distinct populations and geographic groupings. Low-K (mean K = 0.4 ft/day) northern wells correspond to older Blueberry Hill mudflow or weathered fan deposits underlying the large Rio Hondo allu-

vial fan at the northern portion of the study area. High-K (mean K = 11.4 ft/day) values observed in southern wells correspond to young (?), less-weathered deposits underlying the small Rio Pueblo de Taos fan (Fig. 4). The Howell well and BIA 2 (Buf-falo Pasture) wells, which both exhibit high K values of 12 to 17 ft/day, lie along the northern trace (approximately located) of the Town Yard fault (Fig. 4). This segment of the fault may be a high-permeability zone or may be coincident with high-perme-ability Rio Lucero and/or ancestral Rio Hondo or Rio Pueblo de Taos channel fill deposits. The Town Yard fault may have been a control on stream channel location during aggradation of paleo-Rio Pueblo de Taos or paleo-Rio Hondo deposits. The Town Yard fault projects into the present day Rio Lucero drainage, and the “Seco fault” projects into the Arroyo Seco drainage (Fig. 4).

Servilleta Formation (Agua Azul aquifer)

Aquifer testing data are available for the Servilleta Forma-tion from five pumping tests (Fig. 4, Table 2). All wells tested are completed into the “Agua Azul” aquifer between the upper and middle basalt flow members and are located along the Rio Pueblo de Taos and Arroyo Seco drainages (Fig. 4). Pumping test duration ranged from 2,880 to 5,760 min at Q ranging from 8 to 120 gpm (Table 2). Agua Azul wells exhibit K ranging from 4.7 to 26.7 ft/day (mean K = 12.0 ± 8.6 ft/day). Because the five wells tested in the “Agua Azul” aquifer are relatively close to one another (Fig. 4), determining the geographic distribution of K is not possible. Storativity values range around 10-4.

Well NameTD(ft)

StaticDTW (ft)

Testlength(min) Q (gpm) T (ft2/day) b (ft) K (ft/day)

Storagecoefficient

Boundariesobserved Source Comments

Unconfined alluviumColonias Point 127 55 2880 36 1,200 70 17.1 n.a. none GGI well pumped at maximum Q of existing pumpQuail Ridge 150 45 2880 22 400 100 4.0 1.2 x 10-2 none GGI calculations from obs. well data, r = 35 ftTOT #1 182 43 400 125 830 140 5.9 5.2 x 10-4 none/ GGI calculations from obs. well data, r = 50 ftMcCarthy 193 84 2880 18 400 110 3.6 n.a. none GGITOT #2 204 42 355 205 760 110 6.9 8.6 x 10-4 none GGI calculations from obs. well data, r = 50 ftBIA 15 225 116 1600 41 150 95 1.6 2.5 x 10-2 none BIA observation well data, r = 21 ftBJV#1 240 158 5760 68 1,980 90 22.0 1.0 x 10-3 none/ imperm? GGI Theis curve is very poor fit; obs well data suggest impermeable

boundaryKit Carson 270 64 480 100 1,400 200 7.0 n.a. none GGIBOR 2A 291 61 250 45 230 80 2.9 n.a. none GGITOT #3 312 60 350 180 960 150 6.4 n.a. none/ GGI T calculated from obs. well data, r = 18 ftTOT#5 330 14 1720 370 3,700 230 16.1 n.a. none GGIBear Stew 339 46 1300 33 968 290 3.3 n.a. recharge? BIACameron 350 107 2880 50 500 240 2.1 n.a. none GGILa Percha 360 105 2880 69 700 235 3.0 n.a. none GGIBIA 1 400 92 1440 180 825 190 4.3 n.a. none BIA T = avg of Pump & Rec semilog plotsBIA 9 575 470 1400 18.5 230 120 1.9 3.0 x 10-4 none BIA T calculated from obs. well data, r = 23.1 ftMariposa Ranch 781 585 2880 31-49 580 200 2.9 n.a. none GGI well dev. during pumping; T from rec dataArroyos del Norte 800 659 2880 55 1,100 100 11.0 n.a. none GGI

Confined or leaky-confined alluviumSouthern wellsHowell 500 13 12960 440 5,000 400 12.5 6.3 x 10-3 leaky/recharge GGI T and S calculated from obs. well data, r = 485 ft; k' = 0.2 ft/dayBIA 14 613 -1 2800 70 810 220 3.7 n.a. none BIABIA 2 700 18 1440 300 5,700 440 17.4 6 x 10-3 leaky/recharge BIA S calculated from obs. well data, r = 47 ft

Northern wellsBIA 17 470 86 1440 19 230 385 0.6 n.a. leaky/recharge BIABIA 11 760 100 2800 70 310 330 0.9 1 x 10-3 none BIA S calculated from obs. well data (30'screen), r = 147 ft;Cielo Azul deep 850 339 2880 20 40 100 0.4 n.a. none BIA no drawdown observed in adjacent shallow well during testBIA 24/ Grumpy 1000 177 944 25 32 400 0.1 n.a. none BIA Blueberry Hill Fm?BIA 20/ West 1018 111 1120 50 120 600 0.2 n.a. none BIA Blueberry Hill Fm?BOR 5 1763 265 5760 40 110 400 0.3 n.a. none BIA Blueberry Hill Fm?

TABLE 1. Aquifer testing data from unconfined and confined/leaky confined alluvial wells, southern San Luis basin. DTW = depth to water; Q = discharge; T = transmissivity; b = aquifer thickness; K = hydraulic conductivity. Well locations included in Appendix A.

Appendix C page 6

Page 86: Attachment 3 to the

396 DRAKOS ET AL.

Groundwater Flow Direction in the Shallow Aquifer System

A composite alluvial and Agua Azul (Servilleta) potentiomet-ric surface map representing the shallow alluvial aquifer was con-structed from water levels measured to the nearest 0.01 ft from wells that could be assigned to a specific aquifer. In the northeast part of the study area, a downward vertical gradient was observed in the alluvial aquifer, with up to 200+ ft (60+ m) head differ-ence in adjacent wells (e.g. well nests Cielo Azul shallow and deep, BIA20/BOR5, Mariposa shallow/deep; Fig. 5). Where strong downward vertical gradients are observed, the shallower water level was used for construction of the potentiometric sur-face map. Water levels from Agua Azul wells were included with the alluvial well data, because the Agua Azul aquifer interfingers with the alluvium near the mountain front and in the southern part of the study area, and water levels in the Agua Azul are similar to those measured in the unconfined alluvium.

In addition to groundwater elevations measured in wells throughout the study area, streambed elevation data are incor-porated into the construction of the potentiometric surface map. Streambed elevations were determined from USGS 7.5’ quad-rangles and added as elevation control points to the base map. Equipotential lines are contoured so that groundwater elevation is less than or approximately equal to streambed elevation. Equipo-tential lines lie consistently lower than streambed elevation along the lower Rio Pueblo de Taos and the Arroyo Seco, indicating a disconnection between surface water and groundwater in those areas.

Groundwater flow direction in the composite Alluvial plus Aqua Azul (Servilleta) aquifer system is from northeast to south-west and east to west (Fig. 5). A broad groundwater trough is observed north of Rio Pueblo de Taos and west of Rio Lucero (Fig. 5). At its northern end the trough axis projects into the Rio Hondo drainage (Fig. 5), and the trough lies along the eastern side of the large Rio Hondo fan north of Rio Pueblo de Taos. This trough may correspond to an area of high-permeability fluvial deposits associated with the ancestral Rio Hondo, and is coinci-dent with a structural low (Lipman, 1978, p. 42) or Rio Pueblo de Taos syncline of Machette and Personius (1984) and Dungan et al. (1984), suggesting a structural control on the location of the ancestral Rio Hondo drainage. However, the location of the river has been restricted to near its present course since stream incision occurred in response to rapid cutting of the Rio Grande gorge ca. 0.6 to 0.3 Ma ago (Wells et al.,1987; Kelson and Wells, 1987). Since that time, the Rio Hondo has been an entrenched

stream flowing very close to its present location (Kelson and Wells, 1987, Kelson and Wells, 1989). Other high transmissivity zones associated with axial stream deposits have been identified along the Rio Grande del Rancho (within the Miranda graben) and along the Rio Fernando (Spiegel and Couse, 1969; Bauer et al., 1999). A groundwater high is observed in the vicinity of the lower Arroyo Seco drainage on the west side of the Town of Taos, corresponding to the area between the Gorge arch and the Rio Pueblo de Taos syncline (Fig. 5). The composite Alluvial plus Servilleta aquifer system becomes unsaturated in the western part of the study area, indicating this upper aquifer is discharging to surface water where it is stream connected and/or leaking into the deeper basin-fill aquifer. The steepening gradient in the vicinity of the Los Cordovas faults suggests that the faults are an area of downward leakage through which the shallow aquifer may be recharging the deep aquifer system.

Equipotential lines are deflected downstream along most of the Arroyo Seco and the upper Rio Lucero, indicating that these are losing streams west of the mountain front (Fig. 5). Based on equipotential lines, the upper Rio Hondo is a gaining reach, whereas the lower Rio Hondo is a losing reach. Equipotential lines are generally deflected upstream along the Rio Pueblo de Taos, lower Rio Lucero, and Rio Fernando de Taos, indicating that these streams are gaining reaches (Fig. 5).

In January and June 2000, personnel from the BIA, GGI, and the BOR measured flows in Taos valley rivers (Rio Hondo, Arroyo Seco, Rio Lucero, Rio Fernando de Taos, Rio Pueblo de Taos, Rio Grande del Rancho). Flows were measured in January and June to determine seasonal variations in stream loss or gain. Acequia diversions from and return flows to each river were also measured and accounted for in the flow data to allow for a determination of gaining or losing reaches (see Smith, 2001 and 2002, unpubl. BOR reports, for results of this study). Figure 5 summarizes the results of the January, 2001 stream gaging, showing losing, gain-ing, and no net change reaches of the major stream systems. In general, results of stream gaging correlate well with gaining and losing reaches derived from construction of the potentiometric surface map described above. However, two significant differ-ences are observed between the gaging data and the potentiomet-ric surface map: 1) gaging data show the upper reaches of the Rio Hondo as losing reaches, while the equipotential lines suggest it is a gaining reach, and 2) gaging data indicate the upper reach of the Rio Lucero is gaining, while the potentiometric surface map suggests it is a losing reach (Fig. 5). These differences may be a result of the groundwater elevation representing long-term

Well Name TD (ft) StaticDTW (ft)

Testlength(min)

Q (gpm) T (ft2/day) b (ft) K (ft/day) Storagecoefficient

Boundariesobserved Source Comments

Cooper 180 96 2880 31 280 60 4.7 n.a. none GGIArroyo Park 262 105 2880 48 530 60 8.8 5.3 x 10-4 none GGI S calc from obs well, r = 2000 ftTaos SJC 180 29 5760 120 430 50 8.6 2.5 x 10-4 none GGI calculations from observatin well data,

r = 25 ft;k' = 0.02 ft/dayBarranca del Pueblo 233 2880 7.5-12 670 60 11.2 n.a. none RE/SPEC b is unknown; 60 ft used as default aquifer

thicknessRiverbend 215 121 2880 54 1,600 60 26.7 8.5 x 10-5 none GGI

TABLE 2. Aquifer testing data from Servilleta Formation sediments and fractured basalt (Agua Azul) wells, southern San Luis Basin. Well locations included in Appendix A.

Appendix C page 7

Page 87: Attachment 3 to the

397HYDROLOGIC CHARACTERISTICS OF BASIN-FILL AQUIFERS

FIGURE 5. Shallow aquifer potentiometric surface map, gaining and losing stream reaches

Map grid, NAD 1927, UTM Zone 13, meters

Rio Hondo

Rio Lucero

RioPueblo de Taos

Rio Fernando de Taos

Rio

Grande

del Ranch o

RioPue

blo de Taos

Rio

Gra

nde

Arroyo Seco

ueblo d

uebbloo d

DownwardVertical Gradient

Unsa

tura

ted

Allu

vium

Los Cordovas Fault Zone

?

?

?

?

?

?

?

??

?

?

?

Gorge Arch

SecoFault Tow

nYa

rdFa

ult

Tow

nYa

rdFa

ult

Sang

rede

Cris

toFa

ult Z

one

?

Gor

geFa

ult

Explanation

Fault, inferred from surface or drilling data, ball and bar on downthrown side

Anticline Syncline

6600 Groundwater elevation contour, contourn interval = 100 ft

Kilometers

Stream Gaging StationGaining Reach*Losing Reach*No net gain or loss*

No gage data*Net gain or loss determined from stream gaging conducted by GGI, BOR, & BIA in January, 2000.

Dry reach

Leaky-confined Alluvial WellAgua Azul Well

Unconfined Alluvial Well

BIA 2700

7074

- Well name - Total depth (ft)- GW Elevation (ft)

Basin Margin Well

7400

73007200

7100

7000

69006800

7100

7200

7300

7400

7000

69006800

670066

00

6500

6700

6600

6500

7500

7500

7600

7600

7700

?

?

??

TOT Airport Dom.Qal Dry

Dickerson425

7014Mariposa Ranch

295/8007148/6826

Adelman290

7351

Porter220

7420

Yaravitz400

7746

Cielo Azul Shallow3537305

Cielo Azul Deep8507103

Bear Stew339

7474

BIA 17470

7423

BIA 2410007226

McCarthy193

7286

BIA 95756847

BOR 517636983

BIA 2010187137

Quail Ridge1507170

Cameron350

7051

BIA 2700

7074

BIA 14613

7004

BIA 1400

6971

Howell500

6948TOT#3

3126930

Kit Carson270

6926TOT#5

3306939

BOR2A291

6813

TOT 1&2182/204

6926/6937

Fred Baca Park75

6869

La Percha360

6862

Amos' Well122

6687

Cooper1806793

Arroyo Park 1262

6804

BIA 15225

6650

Landfill MW12947069

BIA 117607100

Colonias Point1277100

Taos SJC180

6630Gardiner

1356789

Ranchos Elem. School140?6919

Ruckendorfer6006899

BJV#12406733

Riverbend2156611

Baranca del Pueblo3206454

Arroyo Seco Plaza740

7560

K2 Screen 7

2066905

Arroyos del Norte800

6828

Old Ranch?

7115

Hail Ck.25/180

6959/6945

Appendix C page 8

Page 88: Attachment 3 to the

398 DRAKOS ET AL.

conditions, while the gaging data are a snapshot of conditions at a particular time. It is also possible that some surface diversions from, or additions to, the rivers may not have been accounted for or may have been variable during the gaging study.

Effect of Faults on the Shallow Aquifer

Unconfined and leaky-confined alluvium

Twenty-seven pumping tests have been conducted on alluvial wells, nine of which were conducted on wells completed into the leaky-confined alluvial aquifer facies, and five of which were additional tests conducted on Agua Azul (Servilleta) wells. Of these tests, data from only one well near the southern portion of the study area (BJV#1) suggest impermeable boundary effects (Table 1). Pumping test data from numerous other wells located in close proximity (< approximately 0.5 mi or 0.8 km) to faults do not show impermeable boundary effects (Fig. 4; Table 1). As examples, the Howell, BIA2, and possibly Bear Stew wells are located along the Town Yard Fault; Quail Ridge, Cameron, and TOT#5 are located along the Seco fault; and BIA 15 is located near one of the Los Cordovas faults. Data from the BJV#1 test is suggestive of an impermeable boundary, which may correspond to a southern extension of the western Los Cordovas fault (Fig. 3). The down-to-the-west Los Cordovas fault would likely juxta-pose a thick clay against the underlying relatively thin water-pro-ducing sandy gravel described in the BJV#1 well log (Lazarus, unpubl. GGI report for BJV properties, 1989). In contrast, data from three wells located along the northern segment of the Town Yard fault (Howell, BIA 2, and Bear Stew wells) indicate leak-age or recharge boundaries, suggesting that the northern segment of the Town Yard fault may be a zone of enhanced permeability. Alternatively, as discussed above, the northern Town Yard fault may be coincident with an area of deposition of high-permeabil-ity axial channel deposits.

Based on the well density used to construct the potentiometric surface map and the 100-ft contour interval utilized, equipotential lines in the unconfined and leaky-confined alluvial aquifers are not strongly affected by the major faults in the basin (Fig. 5). This is consistent with the aquifer testing data, which indicate that, except in rare cases, intrabasin faults do not act as barri-ers to groundwater flow in the shallow alluvial aquifer. In some cases, such as the northern segment of the Town Yard fault, intra-basin faults may act as zones of enhanced permeability in the alluvium.

Servilleta Formation (Agua Azul aquifer facies)

Neither recharge nor impermeable boundaries were observed in any of the five tests for which data are available (Table 2). This is an unexpected result, given the relatively thin producing inter-val (50-60 ft thick [15-20 m]) aquifer and the proximity of Agua Azul wells to several of the Los Cordovas faults, in particular the proximity of the Taos SJC well to the western Los Cordovas fault strand (Fig. 4).

Aquifer Anisotropy/Vertical Hydraulic Conductivity

Alluvium

Data on vertical hydraulic conductivity (K’) and aquifer anisotropy are available from one location in the shallow aqui-fer system. The Howell well pumping test configuration included observation wells completed in both the deep leaky-confined and shallow stream-connected unconfined alluvial aquifers (Hail Creek shallow/deep; Fig. 5). Based on the Hantush-Jacob (1955) leaky-confined aquifer solution, a K’ of 0.2 ft/day was calculated. Based on the Howell well pumping test, horizontal K is approxi-mately 60 times vertical K.

Servilleta Formation (Agua Azul)

Data on K’ and aquifer anisotropy are available from one loca-tion in the Servilleta Formation. The Taos SJC well pumping test configuration included observation wells completed in both the Agua Azul and the overlying shallow stream-connected uncon-fined alluvial aquifer (GGI, unpubl. consulting report to the Town of Taos, 1997). Based on the Hantush-Jacob (1955) leaky-con-fined aquifer solution, a K’ of 0.02 ft/day through the USB was calculated. Horizontal K is approximately 430 times vertical K at that location.

DEEP TERTIARY BASIN FILL AQUIFER

The deep Tertiary basin fill aquifer includes generally weakly to moderately cemented eolian, alluvial fan, fluvial, and volcani-clastic deposits that underlie the Servilleta Formation. The deep Tertiary basin fill aquifer includes the Chamita Formation, the Ojo Caliente Sandstone Member of Tesuque Formation, the Chama-El Rito Member of Tesuque Formation, and the Lower Picuris Formation (Fig. 2). Pumping test data are available for the Ojo Caliente Sandstone Member of Tesuque Formation, the Chama-El Rito Member of Tesuque Formation, but are not available from wells completed solely in the Chamita or Picuris Formation.

The Tertiary basin fill aquifer exhibits confined or leaky-con-fined characteristics in the central and eastern part of the study area, but is likely unconfined in the western part of the study area along the Rio Grande. A deep fractured crystalline rock aquifer at or near the Sangre de Cristo mountain front may discharge to the deep basin fill aquifer system, but no wells are known to be completed into this zone. The Chamita Formation and the over-lying Servilleta Formation, while not extensively studied, may represent a transition zone between the shallow and deep aqui-fer systems (Fig. 2). The deep aquifer is, where investigated thus far, greater than 2000 ft thick. However, the Taos graben, within which the study area lies, has a depth of approximately 5 km (16,000 ft) (Cordell, 1978; Bauer and Kelson, this volume), so further investigations may show the deep aquifer to be signifi-cantly thicker than is presently known.

Appendix C page 9

Page 89: Attachment 3 to the

399HYDROLOGIC CHARACTERISTICS OF BASIN-FILL AQUIFERS

Hydrologic Characteristics of the Deep Aquifer

Ojo Caliente Sandstone Member of Tesuque Formation

Aquifer testing data are available from five wells completed entirely or predominantly in the Ojo Caliente Sandstone Member of the Tesuque Formation (Fig. 6). Three of the tests were mul-tiple-well pumping tests (Table 3). Wells completed into the Ojo Caliente range in depth from 1720 to 2991 ft (524 to 912 m; Table 3), and exhibit pressure head (height of water column above the screened interval in a well) ranging from 500 ft (150 m) in the Airport well to greater than 1700 ft (500 m) in BOR7. Pumping test durations ranged from 1,361 to 11,965 min at Q ranging from 57 to 400 gpm (Table 3). Ojo Caliente wells exhibit K ranging from 0.2 to 0.8 ft/day (mean K = 0.4 ± 0.25 ft/day). Hydraulic conductivity in the Ojo Caliente is relatively consistent through-out the area and does not show variability relative to geographic location (Fig. 6). S values range from 1 x 10-3 to 2 x 10-2 (Table 3).

Chama-El Rito Member of Tesuque Formation

Aquifer testing data are available from five wells completed entirely or predominantly into the Chama-El Rito Member of the Tesuque Formation, three of which are multiple-well tests (Fig. 6; Table 4). Wells completed into the Chama-El Rito Member range from 1200 ft (365 m) to 2109 ft (643 m) in depth (Table 4), and exhibit pressure head ranging from 590 ft (180 m) at UNM/Taos to greater than 1300 ft (400 m) (BOR3). Pumping tests were run for times ranging from 2,737 to 15,840 min at Q ranging from 60 to 500 gpm (Table 4). Chama-El Rito wells exhibit K ranging from 0.6 to 3.4 ft/day (mean K = 1.8 ± 1.0 ft/day). Aquifer testing data for the Chama-El Rito Member are only available for the southern part of the study area so the geographic distribution of K throughout the basin is unknown. An S of 5 x 10-4 was calculated from the BOR3/BOR2 pumping test. All Chama-El Rito wells exhibited a confined or leaky-confined response during pump-ing tests. These data, in conjunction with the large pressure head observed in Chama-El Rito wells, indicates that the portion of the Chama-El Rito Member investigated thus far is a confined or leaky-confined aquifer.

Groundwater Flow Direction in the Deep Tertiary Aquifer System

Water level data from deep wells in the basin were used to construct a preliminary potentiometric surface map of the deep basin fill aquifer. These limited data suggest that groundwater flow direction in the deep aquifer is generally from east to west, at a relatively shallow gradient of approximately 0.004 ft/ft (Fig. 6). The shallow alluvial aquifer system has a much steeper gradi-ent (measured north of and parallel to the Rio Pueblo de Taos) of approximately 0.02 ft/ft. Although the head in the shallow aquifer system is much higher in the eastern part of the study area along the Sangre de Cristo mountain front, the potentiometric surfaces in the shallow and deep aquifers project toward one another in the western part of the study area. Head in the shallow alluvial aquifer is approximately from 100 to 200 ft higher than the head in the deep aquifer just east of where the shallow aquifer becomes unsaturated, suggesting the shallow aquifer discharges to the deep aquifer system in this general area.

Vertical gradients in the deep aquifer are observed at several well nests in the study area. Downward gradients are observed in the deep basin fill aquifer at well nests BOR4/BOR6, BOR7/BIA9, BOR1/NGDOM, and BOR2/BOR3, whereas upward gra-dients are observed at RP2500/RP2000 and K2/K3. Both well nests with upward gradients (BOR2/BOR3 and K2/K3) are located along the approximate trace of the Rio Pueblo de Taos syncline (Fig. 6; Lipman, 1978). These data suggest recharge to the deep aquifer at or near the basin margin migrates downdip within the syncline resulting in an upward pressure head along the fold axis.

Effect of Faults on Groundwater Flow

Ojo Caliente Sandstone Member of Tesuque Formation

Impermeable boundary effects were observed in K2/K3, RP 2500/RP2000, and BOR6/BOR4 pumping tests (Table 3). K3/K2 and BOR6/BOR4 are located within approximately 0.5 mi (0.8 km) of the Seco Fault (Fig. 6). The Servilleta Formation is offset approximately 950 ft across the down-to-the-east Seco fault (Drakos et al, 2001). The Seco fault is interpreted as the

Well Name TD (ft) StaticDTW (ft)

Testlength(min)

Q (gpm) T (ft2/day) b (ft) K (ft/day) Storagecoefficient

Boundariesobserved Source Comments

K3 - K2 1796 271 10,000 400 200 (early) 90 (late)

960 0.2 1 x 10-3 to2 x 10-2

impermeable BIA calculations from obs well, r = 65 ft; no drawdown observed in overlying aquifer

RP2500/RP2000

2500 152 11,965 400 250 (early) 60 (late)

1,200 0.2 1.4 x 10-3 impermeable GGI calculations from obs well, r = 95 ft; no drawdown observed in overlying aquifer

Airport 1720 500 2,760 57 250 685 0.4 n.a. none GGI well developed during test; T is suspectBOR6/BOR4

2020 610 10,059 365 640 810 0.8 7 x 10-3 impermeable BIA T and S calc from BOR4 late obs well late time data; r = 103 ft

BOR7 2991 732 1,361 70 110 480 0.2 n.a. none BIA

TABLE 3. Aquifer testing data from wells completed in Ojo Caliente Sandstone Member of Tesuque Formation, southern San Luis Basin. Well locations included in Appendix A.

Appendix C page 10

Page 90: Attachment 3 to the

400 DRAKOS ET AL.

Los Cordovas Fault Zone

?

?

?

?

?

?

?

?

??

?

?

?

Gorge ArchSeco

Fault

Tow

nYa

rdFa

ult

Tow

nYa

rdFa

ult

Sang

rede

Cris

toFa

ult Z

one

?

Gorge

Fault

Rio Hondo

Arroyo Seco

Rio

Luce

ro

RioPue

blode Taos

Rio Fernando de Taos

Rio

Grande

del Ran cho

RioPue

blo de Taos

Rio

Gra

nde

Chama-El Rito WellOjo Caliente + Chamita Well

Basin Margin Well

BOR 6 (0.8)20206592

Impermeable

- Well name (k, ft/day)- Total depth (ft)- GW Elevation (ft)- Boundary type (if any)

Symbol Explanation

Fault, inferred from surfaceor drilling data, ball and baron downthrown sideAnticlineSynclineMajor stream or river

Kilometers

Map grid, NAD 1927, UTM Zone 13, meters

Groundwater elevationcontour, interval = 100 ft

6600

6600

??

??

?

?

6700

6700

6600

6500

?

?

??

?

?

?

?

?

?

BIA 7 (ND)10206597

BOR 7 (0.2)29916585

TOT Airport (0.4)17206564

BOR 6 (0.8)20206592

Impermeable

K3 (0.1-0.2)17966669

Impermeable

Town Yard (1.3)10206809

BOR 2B (0.6)14806788

BOR 3 (0.9-1.3)21096601

RP2500 (0.05-0.2)25006500

Impermeable

BOR1 (1.0-2.8)20036651

Impermeable

UNM/Taos (3.4)12006674

National Guard (3.4)14006663

Impermeable

FIGURE 6. Potentiometric surface map and K values for deep basin-fill aquifer

Appendix C page 11

Page 91: Attachment 3 to the

401

impermeable boundary observed in the K3 and BOR6 pumping tests. RP2500 is located between two of the Los Cordovas faults; one or both of which likely act as impermeable boundaries. As discussed above, similar impermeable boundary effects were not observed in the 180-ft deep Taos SJC well, located adjacent to RP2500. These data suggest that either 1) the Los Cordovas fault(s) near RP2500 exhibit much greater offset with depth, or 2) that impermeable boundary effects are offset by leakage into the shallow aquifer, but are not offset by leakage at depth. The Ojo Caliente has an apparent thickness of > 1200 ft (370 m) at RP2500 (Drakos and Hodgins, unpubl. GGI report for the Town of Taos, 2001), so either the fault plane is a very low-permeability zone, or offset at depth is significant.

Impermeable boundary effects were not observed in the Air-port well and BOR7 pumping tests. Both tests were run for much shorter duration (less than 3000 min) at lower discharge than were the three Ojo Caliente tests discussed above (10,000 min or more; Table 3). The BOR7 test was likely not run long enough to observe the Seco fault as a possible boundary; however, from the very close proximity of the Airport well to the western Los Cor-dovas fault (Fig. 6) it is likely that the cone of depression would have intersected the fault plane during the pumping test. One pos-sible explanation for the absence of an impermeable boundary is that offset on the western Los Cordovas fault is dying out to the north, and Ojo Caliente sediments are juxtaposed against one another across the fault.

Chama-El Rito Member of Tesuque Formation

Impermeable boundary effects were observed in one pump-ing test conducted in the Chama-El Rito Member of the Tesuque Formation (BOR1/NGDOM pumping tests; Table 4). The imper-meable boundary observed in the BOR1/NGDOM pumping tests is likely the southern extension of one of the Los Cordovas faults. The possibility that the Los Cordovas faults extend south of the Rio Pueblo de Taos is suggested by Bauer and Kelson (this volume). Impermeable boundary effects are not observed in the UNM/Taos pumping test, suggesting that the imperme-able boundary observed in the BOR1/NGDOM pumping tests are related to faults in the eastern rather than the western portion of the Los Cordovas fault zone (Fig. 6). The southern extension of

the trace of the eastern Los Cordovas fault shown in Figures 4-6 is coincident with a fault interpreted from geophysical data from Reynolds (unpubl. consulting report to BIA, 1989).

A series of pumping tests were conducted on the BOR2/BOR3 well nest, located in relatively close proximity to the Town Yard fault (Fig. 6). Test data from BOR2B and BOR2C indicate that the Town Yard fault does not act as an impermeable boundary at this location. Test data from BOR3 were indicative of a weak nega-tive boundary, suggesting a facies change from coarser-grained to finer-grained deposits at some distance from the well (Drakos, Hodgins, Lazarus, and Riesterer, unpubl. GGI report for the Town of Taos, 2002). The Town Yard fault may act as a recharge zone, where the buried Paleozoic sedimentary rock aquifer is in hydro-logic communication with rift-filling sediments.

Aquifer Compartmentalization

Several of the intrabasin faults act as hydrologic boundaries, and result in some compartmentalization of the deep basin-fill aquifer. The Seco fault acts as an impermeable boundary, and may act to separate a northeast deeper aquifer system that has been recharged by modern to Holocene precipitation separated from a southwest deep aquifer system that has been recharged by older, possibly Pleistocene precipitation (Drakos et al., this volume). Data from high-precision temperature logs also indi-cates compartmentalization of the deep basin fill aquifer (Reiter and Sandoval, this volume). Some Los Cordovas fault splays act as impermeable boundaries (e.g. the eastern Los Cordovas fault near BOR1 and one or both of Los Cordovas faults near RP2500), whereas other faults do not appear to affect groundwater flow in the deep aquifer (e.g. the western Los Cordovas fault near the Airport well and near UNM/Taos). This may indicate variable cementation along the fault plane and/or variable offset along Los Cordovas fault strands.

Aquifer Anisotropy/Vertical Hydraulic Conductivity

Ojo Caliente Sandstone Member of Tesuque Formation

The RP2500/RP2000 and K3/K2 pumping test configurations included observation wells completed in both the Ojo Caliente

Well Name TD (ft) StaticDTW (ft)

Testlength(min)

Q (gpm) T (ft2/day) b (ft) K (ft/day) Storagecoefficient

Boundariesobserved Source Comments

UNM/Taos 1200 310 2737 60 670 200 3.4 GGI possibly Chamita Fm?

NGDOM 1400 266 5,760 140 760 400 1.9 n.a. impermeable GGI ddn observed in adjacent deep well (BOR1); no ddn in shallow completion

BOR1 2003 281 5,760 240 1400 (early) 520 (late)

510 1.9 n.a. impermeable GGI early-time k = 2.8 ft/day; late time k = 1.0 ft/day; drawdown observed in adjacent shallow well (NGDOM)

BOR2B 1480 83 2,880 67 280 480 0.6 n.a. none GGI no ddn in overlying or underlying aquifersBOR3 2109 274 15,840 500 710 (early)

450 (late)530 1.1 5 x 10-4 none/possible

facies changeGGI early-time k = 1.3 ft/day; late time k = 0.9

ft/day; no drawdown observed in overlying aquifers

TABLE 4. Aquifer testing data from wells completed in Chama-El Rito Member of Tesuque Formation, southern San Luis Basin. Well locations included in Appendix A.

HYDROLOGIC CHARACTERISTICS OF BASIN-FILL AQUIFERS

Appendix C page 12

Page 92: Attachment 3 to the

402

and the overlying Agua Azul (Servilleta) aquifers. Drawdown was not observed in the overlying Agua Azul aquifer during 400 gpm, 10,000 to 12,000 min pumping tests. Without additional piezometers in the Chamita Formation sediments that overlie the Ojo Caliente, and with the presence of strong negative boundary effects observed in the pumping test data, K’ in the Ojo Caliente-Chamita Formation aquifer system cannot be evaluated. During the time frame of the pumping tests, no connection was observed between the shallow (Agua Azul) and deep (Ojo Caliente) aqui-fers.

Chama-El Rito Member of Tesuque Formation

The BOR1/NGDOM and BOR2/BOR3 pumping test con-figurations included observation wells completed in both the producing interval and water-bearing zones in the overlying Ter-tiary deposits and shallow alluvial aquifers. Drawdown was not observed in the overlying shallow alluvium during any of the five tests conducted on BOR1, NGDOM, BOR2B, BOR2C, or BOR3 (Table 4). Hydrologic communication was observed between BOR1 and NGDOM during pumping tests on each well, indi-cating leakage between different producing intervals within the Chama-El Rito aquifer at that location. However, it is notable that no drawdown was observed in BOR2B (bottom of screened inter-val = 1480 ft) during the 15,840 min (11 day), 500 gpm pumping test on BOR3 (top of screened interval = 1604 ft). BOR3/BOR2 test data indicate that clay beds with very low K’ are present within the Chama-El Rito Member at some locations. These pre-liminary data do not allow for a direct calculation of K’ but show that K’ likely varies significantly throughout the Chama-El Rito aquifer system. During the time frame of the pumping tests, no connection was observed between the Agua Azul or shallow allu-vial aquifers and the Chama-El Rito aquifer.

BASIN MARGIN AQUIFER

Hydrologic Characteristics of the Basin Margin Aquifer

Wells completed into fractured sedimentary and crystalline rock aquifers, while not utilized extensively for municipal use, are utilized for individual domestic and small community water systems. Where fractured, these aquifers are productive but likely are limited in areal extent and are subject to dewatering of the fracture system. In the southern part of the study area, the basin margin aquifer has a moderate to high gradient of 0.1 to 0.7 ft/ft to the northwest (Bauer et al., 1999). Water table elevation contours from Bauer et al. (1999, Plate 1) indicate that the basin margin aquifer discharges to the shallow basin fill aquifer.

Limited aquifer testing data are available from three wells completed into fractured Paleozoic sedimentary rocks or frac-tured crystalline rocks, two of which are located in basin margin settings (Figure 5; Table 5). Well depths range from 400 to 1200 ft (120 to 365 m) in depth, and include the Town Yard well, drilled into the Paleozoic Alamitos Formation underlying the Tertiary sediments in the southeast part of the study area (Fig. 4, Table 5). Pumping tests were run for times ranging from 435 to 2880 min at Q ranging from 8 to 48 gpm (Table 5). Based on these limited test results, the fractured sedimentary rock and crystalline rock aquifers exhibit hydraulic conductivity (K) ranging from 0.1 to 2.8 ft/day. Data on S are not available. Head in the Ruckendorfer and Yaravitz wells is at a similar elevation to the head in the shal-low alluvial aquifer (Fig. 5), indicating that these basin margin wells are discharging to the shallow alluvial aquifer

CONCLUSIONS

Two major aquifer systems are present in the Taos area. The shallow aquifer includes the Servilleta Formation and overlying alluvial deposits. The deeper aquifer includes Tertiary age rift-fill sediments below the Servilleta Formation. The shallow aqui-fer system includes unconsolidated alluvial fan and axial fluvial deposits overlying and interbedded with and including the Servil-leta basalts and is subdivided into: 1) unconfined alluvium; 2) leaky-confined alluvium, and; 3) the Servilleta Formation. The deep Tertiary basin-fill aquifer includes the Chamita Formation, the Ojo Caliente Sandstone Member of the Tesuque Formation, the Chama-El Rito Member of the Tesuque Formation, and the Picuris Formation.

Hydraulic conductivity in the shallow unconfined alluvial aquifer ranges from 6.8 ± 5.9 ft/day for the unconfined alluvial facies to 12.0 ± 8.6 ft/day for the Agua Azul aquifer facies. The deep leaky-confined alluvial wells exhibit K values ranging from 0.1 to 17.4 ft/day, and fall into two distinct populations and geo-graphic groupings. The low-K (mean K = 0.4 ft/day) deep aquifer facies corresponds to older Blueberry Hill mudflows or weath-ered fan deposits underlying the large Rio Hondo alluvial fan in the northern portion of the study area. The high-K (mean K = 11.4 ft/day) deep alluvial aquifer facies corresponds to young (?), less-weathered deposits underlying the small Rio Pueblo de Taos fan. A K’ of 0.2 ft/day was calculated from a single test in the alluvial aquifer, and a K’ of 0.02 ft/day through the USB was calculated from a single Agua Azul test. Storativity of the alluvial aquifer ranges from 10-4 to 10-2.

The deep basin-fill aquifer system is subdivided into the Chama-El Rito and Ojo Caliente facies. Ojo Caliente wells exhibit K of 0.4 ± 0.25 ft/day. S values for Ojo Caliente wells

Well Name TD (ft) StaticDTW (ft)

Testlength(min)

Q (gpm)ft2/day

b (ft) T (ft2/day) Storagecoefficient

Boundariesobserved Source Comments

Yaravitz 400 93 2880 31 310 110 2.8 n.a. none GGI fractured amphibolite/granite along faultTown Yard 1020 115 435 48 400 300 1.3 n.a. none GGI open hole test; preliminary data for Pz Ruckendorfer 600 391 2880 8 20 170 0.1 n.a. impermeable? GGI poor curve match; Pz sandstone aquifer

TABLE 5. Aquifer testing data from basin margin wells, southern San Luis Basin. Well locations included in Appendix A.

DRAKOS ET AL.

Appendix C page 13

Page 93: Attachment 3 to the

403

Bauer, P.W., and Kelson, K., 2004, Cenozoic structural development of the Taos area, New Mexico, in New Mexico Geological Society, 55th Field Confer-ence Guidebook, p. 129-146.

Cordell, L., 1978, Regional geophysical setting of the Rio Grande rift: Geological Society of America Bulletin 89, p. 1073-1090.

Drakos, P., Hodgins, M., Lazarus, J., and Riesterer, J., 2001, Subsurface stratigra-phy and Stratigraphic correlations from Taos deep drilling and groundwater exploration program (abs): New Mexico Geological Society Proceedings Volume, 2001 Annual Spring Meeting, p. 40.

Drakos, P., Lazarus, J., Riesterer, J., White, B., Banet C., Hodgins, M., and San-doval, J., 2004, Subsurface stratigraphy in the southern San Luis Basin, New Mexico in New Mexico Geological Society, 55th Field Conference Guide-book, p. 374-382.

Dungan, M.A., Muehlberger, W.R., Leininger, L., Peterson, C., McMillan, N.J., Gunn, G., Lindstrom, M., and Haskin, L., 1984, Volcanic and sedimentary stratigraphy of the Rio Grande gorge and the late Cenozoic geologic evolu-tion of the southern San Luis Valley, in New Mexico Geological Society Guidebook 35th Field Conference, Rio Grande Rift: Northern New Mexico, p. 157-170.

Galusha, T., and Blick, J., 1971, Stratigraphy of the Santa Fe Group, New Mexico: Bulletin of the American Museum of Natural History, v. 144, Article 1.

Hantush, M.S., and Jacob, C.E., 1955, Non-steady radial flow in an infinite leaky aquifer, Am.Geophys. Union Trans., vol., 36, p. 95-100.

Keller, G.R., and Cather, S.M., 1994, Introduction, in Keller, G.R., and Cather, S.M., eds., Basins of the Rio Grande Rift: Structure, Stratigraphy, and Tec-tonic Setting, Geological Society of America Special Paper 291, 1994, p. 1-3.

Kelson, K.I., and S.G. Wells, 1987, Present-day fluvial hydrology and long-term tributary adjustmens, northern New Mexico, in Menges, C., ed, Quaternary Tectonics, Landform Evolution, Soil Chronologies and Glacial Deposits – Northern Rio Grande Rift of New Mexico: Friends of the Pleistocene – Rocky Mountain Cell fieldtrip guidebook p. 95-109.

Kelson, K.I., and S.G. Wells, 1989, Geologic Influences on Fluvial Hydrology and Bedload Transport in Small Mountainous Watersheds, Northern New Mexico, USA; Earth Surface Processes and Landforms, vol. 14, p. 671-690.

Lipman, P.W., 1978, Antonito, Colorado, to Rio Grande gorge, New Mexico, in Hawley, J.W., Guidebook to Rio Grande rift in New Mexico and Colorado: New Mexico Bureau of Mines and Mineral Resources Circular 163, p. 36-42.

Machette, M., and Personius, S., 1984, Map of Quaternary and Pliocene faults in the eastern part of the Aztec 1° by 2° Quadrangle and the western part of the Raton 1° by 2° Quadrangle, northern New Mexico, USGS Miscellaneous Field Studies Map MF-1465-B, scale 1:250,000.

Reiter, M., and Sandoval, J., 2004, Subsurface temperature logs in the vicinity of Taos, New Mexico, in New Mexico Geological Society, 55th Field Confer-ence, p. 415-419.

Sanford, A.R., Balch, R.S., and Lin, K.W., 1995, A Seismic Anomaly in the Rio Grande Rift Near Socorro, New Mexico, New Mexico Institute of Mining and Technology Geophysics Open File Report 78, 18 p.

Spiegel, Z., and Couse, J.W., 1969, Availability of ground water for supplemental irrigation and municipal-industrial uses in the Taos Unit of the U.S. Bureau of Reclamation San Juan-Chama Project, Taos County, New Mexico: New Mexico State Engineer, Open-File Report, 22 p.

Wells, S.G., Kelson, K.I., and Menges, C.M., 1987, Quaternary evolution of fluvial systems in the northern Rio Grande Rift New Mexico and Colorado: Impli-cations for entrenchment and integration of drainage systems, in Menges, C., ed, Quaternary Tectonics, Landform Evolution, Soil Chronologies and Glacial Deposits – Northern Rio Grande Rift of New Mexico: Friends of the Pleistocene – Rocky Mountain Cell fieldtrip guidebook p. 55-69.

range from 10-3 to 10-2. Chama-El Rito wells exhibit a K of 1.8 ± 1.0 ft/day. An S of 5 x 10-4 was calculated from the BOR3/BOR2 pumping test.

Faults typically do not act as impermeable boundaries in the shallow alluvial aquifer. However, the Seco fault and several of the Los Cordovas faults act as impermeable boundaries in deep basin-fill aquifer. The Town Yard fault is a zone of enhanced permeability or is coincident with a high-permeability zone in the shallow alluvial aquifer, and does not act as an impermeable boundary in the deep basin fill aquifer. Intrabasin faults with sig-nificant offset, such as the Seco fault, result in compartmentaliza-tion of the aquifer.

Groundwater flow direction in the composite Alluvial plus Servilleta aquifer system is from northeast to southwest and from east to west at 0.02 ft/ft. A broad groundwater trough is observed whose axis is north of Rio Pueblo de Taos and west of Rio Lucero This trough may correspond to an area of high-permeability flu-vial deposits associated with the ancestral Rio Hondo, whose course was controlled by the Rio Pueblo de Taos syncline. An area exhibiting a downward vertical gradient in the shallow aqui-fer is observed between the Rio Hondo and Rio Lucero in the northern part of the study area. The limited available data suggest that groundwater flow direction in the deep aquifer is generally from east to west, at a relatively shallow gradient of approxi-mately 0.004 ft/ft. Downward gradients are observed in the deep basin-fill aquifer except at the Rio Pueblo de Taos syncline, where upward gradients are observed at RP2500/RP2000 and K2/K3.

ACKNOWLEDGMENTS

The authors would like to acknowledge contributions to this effort by the following individuals or agencies. Gustavo Cordova and Tomás Benavidez from the Town of Taos and Nelson Cor-dova and Gil Suazo of Taos Pueblo provided impetus and support for the design and implementation of the deep drilling program and promoted an open exchange of technical data. The US Bureau of Reclamation provided funding under the direction of John Peterson for the deep drilling and testing program. Mark Lesh of Glorieta Geoscience, Inc. produced the figures, and Mustafa Chudnoff provided helpful review comments. Dr. Paul Bauer and Keith Kelson provided helpful discussions on the aquifer ana-logs. Dr. John Shomaker, Dr. John Hawley, and Dr. Brian Brister provided critical reviews of the manuscript.

REFERENCES

Bauer, P., Johnson, P. and Kelson, K., 1999, Geology and hydrogeology of the southern Taos Valley, Taos County, New Mexico: Final Technical Report, New Mexico Bureau of Mines and Mineral Resources, 56 p. plus plates.

HYDROLOGIC CHARACTERISTICS OF BASIN-FILL AQUIFERS

Appendix C page 14

Page 94: Attachment 3 to the

404

APPENDIX A

WELL LOCATIONS FOR TAOS AREA WELLS CITED IN THIS STUDY

UTM NAD 27, zone 13, m. UTM NAD 27, zone 13, m.WELL NAME Easting Northing WELL NAME Easting NorthingAbeyta Well 448752 4024118 Howell 448470 4030712

Arroyo Hondo 452696 4046154 K2 - K3 446688 4030429Arroyo Park 443740 4028440 Kit Carson 448900 4029260Arroyo Seco 448745 4041260 La Percha 445760 4030300

Arroyos del Norte 446162 4042084 Landfill MW1 442758 4034011Baranca del Pueblo 437160 4023520 Lerman 441824 4032655

Bear Stew 450352 4037199 Mariposa Ranch 445180 4040820BIA 11 444775 4035824 McCarthy 446307 4038831BIA 13 448320 4034830 Mesa Encantada 442346 4024531BIA 13 449820 4029780 NGDOM 442290 4022740BIA 14 449470 4030990 OW-6 449590 4033200BIA 15 442470 4028200 Pettit Well 447925 4023423BIA 17 448890 4038130 Porter 447769 4041305BIA 2 449600 4033180 Quail Ridge 446472 4035777

BIA 20 447335 4035901 Ranchos Elem. Sch 446316 4023297BIA 24 447500 4038340 R. Fernando de Taos 450851 4025541BIA 9 444280 4038930 R.G. del Rancho 447172 4020228

BJV #1 441230 4023480 Rio Lucero 448028 4030617BOR 1 442124 4022604 R. Pueblo de Taos 448731 4030516

BOR 4 Deep 444766 4035805 Riverbend 439120 4024530BOR 6 #1 444797 4035805 Rose Gardiner 443027 4024817BOR 6 #2 444797 4035805 RP 2000 Deep 440380 4026000BOR2A 446247 4026541 RP 2500 440462 4026069

BOR2B/2C 446240 4026553 Ruckendorfer 449460 4023920BOR3 446247 4026541 Taos SJC 440340 4026080BOR5 447345 4035906 TOT #1 448626 4029394BOR7 444280 4038930 TOT #2 448648 4029400

Cameron 446529 4034294 TOT #3 448941 4029690Cielo Azul 446420 4040260 TOT #5 448631 4028835

Cielo Azul Deep 446400 4040250 Town Taos Airport 439480 4034760Colonias Point 444910 4034920 Town Yard 447060 4026680

Cooper 443860 4029120 UNM/Taos 441310 4022260Fred Baca Park 447225 4028617 Vista del Valle 443681 4023916

Hank Saxe 440507 4020477 Yaravitz 449826 4042805

DRAKOS ET AL.

Appendix C page 15