backward facing shear layer

Upload: weiqing-liu

Post on 07-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 backward facing shear layer

    1/27

     

    NASA Technical Memorandum 102293

    ICOMP-89-

    18

    Calculation of Reattaching Shear Layers

    in Divergent Channel With a Multiple-

    Time-Scale Turbulence Model

    S.-W. Kim

    Institute for Computational Mechanics in Propulsion

    Lewis

    Research Center

    Cleveland Ohio

    August 1989

    ( N A S A - T M - 1 6 2 2 9 3 ) CALCULATIQN O F 6 A T T A C H I k G

    S H E A R

    L A Y E R S

    I N U I V € R G € r J T

    CHANIvEL k T 1 H A

    HULTIPLE-TIpk-SCALE

    T U H H U l t Y C E M 3 P E l ( N A S A ,

    L e w i s Research

    t e n t e r

    7 p

    c s c c

    200

    N93 2

    ICOMP

    CASE

    WfSTfRN

    REYRVf

    WNERSlTY

    18749

    U r l c l as

    0225964

    3 / 3 4

  • 8/18/2019 backward facing shear layer

    2/27

    CALCULATI ON OF REATTACHI NG SHEAR LAYERS I N DI VERGENT CHANNEL W TH

    A MULTI PLE- TI ME- SCALE TURBULENCE MODEL

    S.-W Ki m*

    I nst i t ut e f or Comput at i onal Mechani cs i n Pr opul si on

    Lewi s Research Cent er

    Cl evel and, Ohi o

    44 35

    SUMMARY

    Numer i cal cal cul at i ons of t ur bul ent r eat t achi ng shear l ayer s i n a

    di ver gent channel ar e pr esent ed. The t ur bul ence i s descr i bed by a

    mul t i pl e- t i me- scal e t ur bul ence model . The t ur bul ent f l ow equat i ons ar e sol ved

    by a cont r ol - vol ume based f i ni t e di f f er ence met hod. The comput at i onal r esul t s

    ar e compar ed wi t h t hose obt ai ned usi ng k-E cur bul ence model s and al gebrai c

    Reynol ds st r ess t ur bul ence model s. I t i s s own t hat t he mul t i pl e- t i me- scal e

    t ur bul ence model yi el ds si gni f i cant l y i mpr oved comput ati onal r esul t s t han the

    ot her t ur bul ence model s i n t he r egi on wher e t he t ur bul ence i s i n a st r ongl y

    i nequi l i br i ums tat e.

    *Work f unded under Space Act Agr eement C99066G.

  • 8/18/2019 backward facing shear layer

    3/27

    A,

    A,

    Cf

    cP

    CPf

    CPJ

    Ct R

    CPf

    f

    H

    k

    kP

    kt

    P

    Pr

    Rt

    u

    a

    NOMENCLATURE

    coef f i c i ent f or t angent i al vel oci t y cor r ect i on

    coef f i c i ent f or t ransverse vel oci t y cor r ect i on

    f r i ct i on coef f i ci ent ( - rw(0. 5pU,

    2

    ) )

    pr essur e coef f i ci ent (- p/ (0. 5pU, 2 ) )

    const ant coef f i ci ent f or eddy vi scosi t y equat i on ( - 0. 09)

    t ur bul ence model const ant s f or equat i on

    (R-1,3)

    t ur bul ence model const ant s f or Et equat i on

    (R-1,3)

    const ant coef f i ci ent -0 .09 )

    wal l dampi ng f unct i on f or eddy vi scosi t y equat i on

    wal l dampi ng f unct i on f or

    e w

    equat i on

    hei ght of backward- f aci ng s t e p

    t ur bul ent ki net i c ener gy (k-$

    +

    kt)

    P

    t ur bul ent ki net i c ener gy of eddi es i n pr oduct i on range

    t ur bul ent ki net i c ener gy of eddi es i n di ssi pat i on r ange

    pr es sur e

    pr oduct i on rate of t ur bul ent ki net i c ener gy

    t urbul ent Reynol ds number (-k2 ( v e l ) )

    i nl et f l ow vel oc i t y

    t i me aver aged vel oci t y ( ={u, v) )

    f r i c t i on vel oc i t y (==(rwp))

    Reynol ds st r ess ( i =l , 2, 3and j =l , 2, 3)

    vel oci t y vect or ( =( u, v) )

    spat i al coor di nat es ( =( x, y, z) )

    r eat t achment l ocat i on

    wal l coor di nat e (=u, y/ v)

    def l ect i on angl e of t he top wal l

    2

  • 8/18/2019 backward facing shear layer

    4/27

    ‘ P

    Et

    ‘ 1

    n

    ener gy t r ansf er r at e f r omproduct i on r ange to

    di ssi pat i on range

    di ssi pat i on r at e of t ur bul ent ki net i c ener gy

    di ss i pat i on rate i n near - Val 1 equi l i br i umr egi on

    von Kar man const ant ( - 0. 41)

    mol ecul ar vi scosi t y

    ef f ect i ve vi scosi t y ( =p+pt )

    t ur bul ent vi scosi t y

    ki nemat i c vi scos i t y of f l ui d

    t ur bul ent eddy vi scosi t y

    densi t y

    t ur bul ent Prandt l number f o r equat i on

    t ur bul ent Prandt l number f o r kt equat i ons

    t ur bul ent Prandt l number f or eP equat i on

    t ur bul ent Prandt l number f or e t equat i on

    wal l shear i ng st r ess

    3

  • 8/18/2019 backward facing shear layer

    5/27

    INTRODUCTION

    The exper i ment al st udy of a r eat t achi ng shear l ayer i n a di ver gent

    channel

    [ l ] was desi gned to t est t he pr edi ct i ve capabi l i t y of var i ous

    t ur bul ence model s, t o i dent i f y any def i ci ency i n t ur bul ence cl osur e model s,

    and thus t o i mpr ove pr edi ct i ve capabi l i t y of t ur bul ence model s.

    The f l ow

    geomet r y i s s hown i n Fi gur e 1.

    The hei ght of t he backwar d- f aci ng st ep

    i s

    smal l er t han t he boundary l ayer t hi ckness of t he i ncom ng f l ow. Abr upt

    br eakdown of t he boundar y l ayer gener at ed a str ongl y i nequi l i br i um

    t ur bul ent f l ow. Fur t her mor e, a st r ong pr essur e gr adi ent was generat ed by

    var yi ng the di ver gence angl e of t he t op wal l t o st udy i t s ef f ect on t he

    devel opment of t he t ur bul ence f i el d, especi al l y t he Reynol ds st r ess, and

    t he r eat t achment process.

    A number of t ur bul ence model s , such as

    k- e

    t ur bul ence model s and al gebr ai c Reynol ds st r ess t ur bul ence model s

    ( ARSM) ,

    wer e shown to yi el d poor comput at i onal r esul t s f or t he f l ow [ 1, 2] . I t i s

    al so s hown i n Ref er ences 1 and 2 t hat a modi f i ed ARSM, wi t h modi f i cat i ons

    i n t he di ssi pat i on r at e equat i on, yi el ded comput at i onal r esul t s whi ch ar e

    i n good agreement wi t h measur ed dat a. However , gener al i t y of t he i mpr oved

    pr edi ct i ve capabi l i t y f or ot her compl ex t ur bul ent f l ows has not been shown

    yet .

    I t has been shown pr evi ousl y t hat t he hi gh Reynol ds number

    mul t i pl e- t i me- scal e t ur bul ence model yi el ds accur at e comput at i onal r esul t s

    f or a number of compl ex t ur bul ent f l ows such as a wal l j et f l ow, a

    wake- boundary l ayer i nt er act i on f l ow, a conf i ned coaxi al j et wi t hout swi r l

    and a conf i ned coaxi al swi r l i ng j et to name a f ew

    [ 3, 4] . I n t he

    si ngl e- t i me- scal e ur bul ence model s such as k-c t ur bul ence model s,

    al gebr ai c st r ess t ur bul ence model s, and Reynol ds s t r ess t ur bul ence model s,

    a si ngl e t i me scal e i s used t o expr ess bot h the t ur bul ent t r anspor t and the

    4

  • 8/18/2019 backward facing shear layer

    6/27

    di ssi pat i on of t he t ur bul ent ki net i c ener gy. However , t hi s pr act i ce i s

    i nconsi st ent wi t h physi cal l y obser ved t ur bul ence i n t he sense t hat t he

    t ur bul ent t r anspor t i s r el at ed t o the t i me scal e of ener gy cont ai ni ng l ar ge

    eddi es and t he di ssi pat i on of t ur bul ent ki net i c ener gy

    i s

    r el at ed t o the

    t i me scal e of f i ne scal e eddi es i n t he di ssi pat i on r ange. The

    s i ngl e- t i me- scal et ur bul ence model s yi el d r easonabl y accur at e comput at i onal

    r esul t s f or s i mpl e tur bul ent f l ows; however, t he pr edi ct i ve capabi l i t y

    degenerat es r api dl y as

    t ur bul ent f l ows t o be sol ved become more compl ex. I n

    t he mul t i pl e- t i me- scal e ur bul ence model s

    [3-71,

    he t ur bul ent t r anspor t of

    mass and moment um i s descr i bed usi ng t he t i me scal e of t he l arge eddi es and

    t he di ssi pat i on r at e i s descri bed usi ng the t i me sca le of t he f i ne- s cal e

    eddi es. The i mpr oved comput at i onal r esul t s obt ai ned usi ng t he

    mul t i pl e- t i me- scal e t ur bul ence model f or compl ex t ur bul ent f l ows can

    be

    att r i but ed t o t he physi cal l y consi st ent nat ur e of t he t ur bul ence model s

    di scussed above.

    I n numer i cal cal cul at i ons of t ur bul ent f l ows, wal l f unct i on met hods

    are most f r equent l y used t o model t he near - wal l r egi on. These met hods have

    been der i ved f r om t he l ogar i t hm c vel oci t y pr of i l e based on exper i ment al

    observat i ons t hat t he t ur bul ence i n t he near - wal l r egi on can be descr i bed

    i n t er ms of t he wal l shear i ng st r ess.

    Therefore, t hese met hods ar e not

    val i d i f t he l ogar i t hm c vel oc i t y prof i l e no l onger prevai l s i n t he

    near - wal l r egi on. For exampl e, t he l ogar i t hm c vel oci t y pr of i l e no l onger

    pr evai l s i n t he near - wal l or i n t he wake r egi ons

    of

    unst eady t ur bul ent

    f l ows [ 8 ] , t her ef or e wal l f unct i on met hods c an not be appl i ed.

    Many

    ot her

    cases f or whi ch t he wal l f unct i on methods ar e i nval i d can be f ound i n

    Ref er ences

    9

    and 10. Due to t hi s l i m t ed appl i cabi l i t y of t he wal l f unct i on

    met hods, numerous al t ernat i ve appr oaches have been pr oposed. I n t he

    5

  • 8/18/2019 backward facing shear layer

    7/27

    al t ernat i ve appr oaches, t he near - wal l l ow t ur bul ent Reynol ds number r egi on

    i s i ncl uded i nt o numer i cal anal yses t o overcome t he shor t com ngs of t he

    wal l f unct i ons methods. Vari ous t ur bul ence model s whi ch i ncl ude t he

    near - wal l l ow t ur bul ence r egi on can be cl assi f i ed as t wo- l ayer (or

    mul t i - l ayer) t ur bul ence model s [ l l ] and l ow Reynol ds number t urbul ence

    model s [lo] based on t he way t he near - wal l r egi on i s t r eat ed. Mor e det ai l ed

    di scussi on on t he advant ages and di sadvant ages of var i ous near - wal l

    t urbul ence model s can be f ound i n Ref erences 9 and 10.

    I n

    t he pr esent st udy, t he near - wal l t ur bul ence i s descr i bed by a

    par t i al l y l ow Reynol ds number appr oach. I n

    t he

    model

    [ 9 ]

    nl y t he

    t ur bul ent ki net i c ener gy equati ons ar e extended t o i ncl ude t he near - wal l

    l ow t ur bul ence r egi on and t he ener gy t r ansf er r at e and t he di ssi pat i on rat e

    i nsi de the near - wal l l ayer ar e obt ai ned f r om al gebr ai c equat i ons. The

    al gebr ai c equat i ons were obt ai ned f r om a k- equat i on t ur bul ence model

    [ 12] .

    I t woul d be appr opr i ate to cl assi f y the met hod as a part i al l y l ow Reynol ds

    number approach to di st i ngui sh i t f r om ot her cl asses of met hods. Thi s

    appr oach was f i r st used i n Chen and Pat e1 t o sol ve t urbul ent f l ows over

    a i r f o i l s [ 1 3 ] . Advant ages of t he par t i al l y l ow Reynol ds number approach

    over t he other met hods can be summar i zed as f ol l ows. The t urbul ence l engt h

    scal e of t he ext er nal f l ows i s r el at ed to the f l ow f i el d char acter i st i cs

    [14]. n t he ot her hand, t he t ur bul ence l engt h scal e

    of

    boundar y l ayer

    f l ows i s st r ongl y r el at ed to t he nor mal di st ance f r om the wal l . Thi s

    charact er i st i c of t he wal l bounded t ur bul ent f l ows can be descr i bed qui t e

    natur al l y by t he pr esent cl ass of t ur bul ence model s. The l ow Reynol ds

    number t urbul ence model s can al so be used t o descr i be t he wal l bounded

    t urbul ent f l ows; however , mor e gr i d poi nt s have t o be used to r esol ve t he

    st eep di ssi pat i on r at e

    i n the near - wal l regi on. I t i s al so i nt erest i ng t o

    6

  • 8/18/2019 backward facing shear layer

    8/27

    not e t hat var i ous si m l ar k- equat i on t ur bul ence model s, whi ch f or m t he

    basi s of t he pr esent near - wal l t ur bul ence model , yi el d accur at e

    comput at i onal r esul t s f or a cl ass of si mpl e t ur bul ent boundar y l ayer f l ows

    [ 15] , t ur bul ent f l ows wi t h dr ag reduct i on

    [16]

    and

    f ul l y

    devel oped

    unst eady t ur bul ent pi pe f l ows

    [ 8 ] .

    However , t he k - equat i on t ur bul ence model

    i t sel f i s l ess usef ul f or separ at ed and/ or swi r l i ng t ur bul ent f l ows wi t h

    compl ex geomet r y due t o l ack of a syst emat i c met hod t o eval uat e t he

    t ur bul ence l engt h scal e. Devel opment

    of

    t he near - wal l t ur bul ence model and

    i t s appl i cat i on t o f ul l y devel oped t ur bul ent channel and pi pe f l ows can be

    f ound i n Ref erence

    9.

    I t has been shown i n t he r ef erence t hat t he pr esent

    near - wal l t ur bul ence model can r esol ve t he over - $hoot phenomena of t he

    t ur bul ent ki net i c ener gy and t he di ssi pat i on r at e i n t he r egi on ver y cl ose

    t o t he wal l and t hat si gni f i cant l y i mpr oved comput at i onal r esul t s f or t he

    t ur bul ence st r uct ur e i n t he near - wal l r egi on ar e obt ai ned. I ncor por at i on of

    t he same near - wal l t ur bul ence model i nt o a

    k- e

    t ur bul ence model and i t s

    appl i cat i on to compl ex turbul ent f l ows such as a super soni c t ur bul ent f l ow

    over a compressi on r amp and a t r ansoni c f l ow over an axi symmet r i c cur ved

    hi l l can be f ound i n Ref erences

    17

    and 18, r espect i vel y.

    The numer i cal method used her ei n i s based on t he pr essure

    cor r ect i on

    met hod [ 19] whi ch has been used most ext ensi vel y

    t o

    sol ve i ncompr essi bl e

    f l ows t he domai n of whi ch can be di scr et i zed

    by

    an or t hogonal mesh.

    However , t he pr esent numeri cal met hod i s appl i cabl e f or bot h i ncompr essi bl e

    and compr essi bl e f l ows wi t h ar bi t r ar y, compl ex geomet r i es. The capabi l i t y

    t o sol ve compr essi bl e f l ows i s achi eved by i ncl udi ng a convect i ve

    i ncr ement al pr essur e term i nt o t he pr essur e cor r ect i on equat i on [ 17, 18] .

    n

    t he met hod, t he vel oci t i es ar e l ocat ed at t he same gr i d poi nt s and t he

    pr essure i s l ocat ed at t he cent r oi d of t he cel l f or med by t he f our adj acent

    7

  • 8/18/2019 backward facing shear layer

    9/27

    vel oc i t y gr i d poi nt s .

    Thi s gr i d l ayout was f ound t o be qui t e sui t abl e t o

    sol ve f l ows wi t h compl ex geomet r i es

    [ 17] . The accur acy and t he conver gence

    nat ure of t he numer i cal met hod have been demonst r ated by sol vi ng

    a

    number

    of f l ow cases. The exampl e probl ems consi der ed i n Ref er ences 17 and

    18

    i ncl ude: a devel opi ng channel f l ow, a devel opi ng pi pe f l ow,

    a

    t wo- di mensi onal l am nar f l ow i n

    a 90

    degr ee bent channel , pol ar cavi t y

    f l ows, a t ur bul ent super soni c

    f l ow over

    a

    compressi on r amp, and a shock

    wave - t ur bul ent boundar y l ayer i nt er act i on

    in

    t r ansoni c f l ow over a cur ved

    hi l l .

    I t was f ound t hat t he numer i cal method used her ei n yi el ded accur ate

    comput at i onal r esul t s even when hi ghl y s kewed, unequal l y spaced, cur ved

    gr i ds were used.

    TURBULENT

    PLOW

    EQUATIONS

    The i ncompr essi bl e t ur bul ent f l ow equat i ons are gi ven as ;

    a a

    -((pu)

    +

    -((pv)

    =

    0.

    ax aY

    wher e eqs. ( 1- 3) f ol l ow f r om t he conser vat i on of mass, u- moment um and

    v- moment um r espect i vel y.

    I n

    numer i cal cal cul at i on, the conser vat i on of

    mass equat i on i s r epl aced by a pr essure cor r ect i on equat i on gi ven as:

    8

  • 8/18/2019 backward facing shear layer

    10/27

    wher e t he l ast t er m r epr esent s the mass i mbal ance,

    and

    t he f i r s t t wo

    convect i on t erms are unnecessar y f or i ncompr essi bl e f l ows. The pr essur e

    cor r ect i on equat i on can be der i ved f ol l owi ng the st andar d SI MPLE procedure

    [ 191. I n t he pr esent numer i cal met hod, al l f l ow var i abl es, except pr essur e,

    are l ocat ed at t he same gr i d poi nt s and t he pr eoour e node has been l ocat ed

    at t he cent r oi d of t he cel l .

    The cont r ol vol ume f or

    the

    pr essur e cor r ect i on

    equati on i s def i ned as t he cel l encl osed by t he f our nei ghbori ng gr i d

    poi nt s. The vel oci t y- pr essur e decoupl i ng i s el i m nat ed by t r eat i ng the

    pr essur e corr ect i on equati on as a cont i nuous f o rmpar t i al di f f er ent i al

    equat i on r at her t han t r eat i ng

    i t

    as a const r ai nt condi t i on. I n t he f or mer

    case, t he di scret e pr essur e cor r ect i on obt ai ned f r om eq.

    4 )

    becomes a

    f i ve- di agonal syst em of equat i ons f or r ect angul ar gr i ds. On t he ot her hand,

    t he di scret e pr essur e cor r ect i on equat i on obt ai ned by di r ect l y subst i t ut i ng

    t he i ncr ement al pr essur e

    -

    i ncrement al vel oci t y rel at i ons i nt o t he

    conser vat i on of mass equat i on yi el ds a ni ne- di agonal system of equat i ons.

    The l at t er di scret e pr essur e cor r ect i on equat i on can yi el d a

    vel oci t y- pr essur e decoupl ed sol ut i on, wher eas t he former equat i on does

    no t

    [ 1 7 1 .

    I n cont r ol - vol ume based f i ni t e di f f er ence met hods, t he di scret e syst em

    of equat i ons i s der i ved by i nt egr at i ng t he gover ni ng di f f er ent i al equat i ons

    over t he cont r ol vol ume [19]. For cur vi l i near gr i ds, t he number of

    i nt er pol at i ons r equi r ed to obt ai n f l ow var i abl es at t he cel l boundar i es i s

    si gni f i cant l y r educed by usi ng the pr esent gr i d l ayout . Enhanced

    conver gence r ate i s par t l y at t r i but ed t o t he gr i d l ayout whi ch r equi r ed

    9

  • 8/18/2019 backward facing shear layer

    11/27

    f ewer i nt er pol at i ons [ 17]. I n sol vi ng the di screte syst em of equat i ons, t he

    of f - di agonal t erms ar e moved t o the l oad vect or t er m and t he r esul t i ng

    syst em of equat i ons can be sol ved usi ng a t r i - di agonal mat r i x al gor i t hm

    ( TDMA)

    .

    TURBULENCE EQUATIONS

    For cl ar i t y, t he mul t i pl e- t i me- scal e ur bul ence model suppl ement ed

    wi t h t he near - wal l t ur bul ence model i s summar i zed bel ow. The t ur bul ent

    ki net i c energy and t he ener gy t r ansf er r at e equati ons f or t he ener gy

    cont ai ni ng l ar ge eddi es are gi ven as;

    ut 8

    cP

    ( u + - )

    - Pr

    -

    akp axj

    j -

    - -

    axj

    axj

    (5)

    wher e t he pr oduct i on r ate i s gi ven as;

    The t ur bul ent ki net i c ener gy equat i on and the di ssi pati on r at e equat i ons

    f or t he f i ne scal e eddi es are gi ven as:

    akt

    a

    ut

    akt

    uj -

    - ( u

    + - )

    -

    €p - €t

    axj axj akt axj

    ( 7 )

    LO

  • 8/18/2019 backward facing shear layer

    12/27

    The t ur bul ent ki net i c ener gy equat i ons, eqs. (5) and ( 7 ) , ar e def i ned f or

    t he ent i r e f l ow domai n whi l e t he ener gy t r ansf er r ate and the di ssi pat i on

    r at e equat i ons are val i d f or t he f l ow domai n away f r om t he near - wal l

    r egi on. The t ur bul ence model const ant s are gi ven

    as;

    Ukp- o. 75, Ukt- 0. 75,

    ~, ~- 1 . 15 , Ct - 1. 15, cpl - 0. 21, cp2- 1. 24, cp3- 1. 84, ct l - 0. 29, ct2- 1. 28, and

    ct3- 1. 66.

    These t ur bul ence model const ant s appr oxi mat el y sat i sf y t he

    near - wal l equi l i br i um t urbul ence condi t i on,

    t he decay r at e of t he gr i d

    t ur bul ence

    [ 20] , and the t ur bul ence i nt ensi t y gr owt h r at e i n a const ant

    shear f l ow [ 21] . Fur t her di scussi on on t he est abl i shment of t hese

    t urbul ence model const ant s can be f ound i n Ref erences 3.

    The energy t r ansf er r ate and t he di ss i pat i on rate i ns i de the near - wal l

    l ayer ar e gi ven as;

    wher e

    f -

    1- exp( - A, Rt )

    k2

    Rt I

    V e1

    Not e t hat

    €1

    i n eq. (l O) r epr esent s t he st andar d di ssi pat i on r at e f or

    near - wal l t ur bul ent f l ows i n equi l i br i um state. The di ss i pat i on rat e gi ven

    11

  • 8/18/2019 backward facing shear layer

    13/27

    as eq.

    (9)

    i s f ormal l y i dent i cal t o t he one pr oposed by Wol f sht ei n [ 12] .

    For y=O, eq.

    (9)

    t akes t he l i m t val ue gi ven as 2uk/ y2, whi ch i s

    an

    anal yt i cal sol ut i on of t he t urbul ent ki net i c ener gy equat i on f or a l i m t i ng

    case as

    y

    appr oaches the wal l . Sl i ght l y away f r om t he wal l where t he

    t ur bul ence i s i n the equi l i br i um s t at e, f, becomes uni t y. For near - wal l

    equi l i br i um t ur bul ent f l ows, t he pr oducti on r at e (P) i s appr oxi matel y

    equal

    to

    di ss i pat i on r at e et ) and hence t he energy t r ansf er r at e

    ( E

    ) f r om

    t he l ow wave number product i on range t o t he hi gh wave number di ssi pat i on

    r ange has t o be approxi mat el y equal to t he pr oduct i on and di ssi pat i on

    P

    r ates. Recal l t hat t he pr oduct i on rat e vani shes on t he wal l and gr ows

    to

    a

    peak val ue at y+=15. Hence eq.

    (9)

    may not be a good approxi mat i on f or

    O

  • 8/18/2019 backward facing shear layer

    14/27

    t he cubi c power of t he di st ance f r om t he wal l . I t can be f ound i n Ref erence

    10 t hat t he near - wal l anal ysi s yi el ds t he same gr owt h rat e of t he eddy

    vi scosi t y i n t he r egi on ver y cl ose to the wal l . However , t her e al so exi st a

    f ew l ow Reynol ds number t ur bul ence model s i n whi ch t he eddy vi scosi t y

    var i es i n pr opor t i on to t he f our t h power of t he di st ance f r om t he wal l , see

    Ref erences 9 and 10 f or mor e di scussi on.

    COMPUTATIONAL RESULTS

    The exper i ment al data f or t he r eatt achi ng shear l ayer c an be f ound i n

    Ref er ence

    1.

    The i nl et f r ee st r eamvel oci t y was

    40

    m sec, t he boundary

    l ayer t hi ckness was 0.019 met er s, and the hei ght of t he backwar d- f aci ng

    st ep was

    0. 0127

    met ers . The top wal l was def l ect ed f r om - 2 degrees t o 10

    degr ees t o generat e a st r ong adver se pr essure gradi ent .

    I n numer i cal cal cul at i ons, the i nl et boundar y was l ocat ed at f our

    st ep- hei ght s upst r eam of t he expansi on cor ner and t he exi t boundar y was

    l ocat ed at appr oxi mat el y

    35

    st ep- hei ght s downst r eam of t he expansi on

    corner . The f l ow domai n was di scr et i zed by

    a

    105 by 85 mesh wi t h

    concent r at i on of gr i d poi nt s near t he expansi on corner and i n t he bott om

    wal l r egi on, see Fi gur e 2-(a).

    The gr i d i n t he vi ci ni t y of t he expansi on

    corner i s f i ne enough t o r esol ve det ai l s of t he l ar ge eddi es s ubj ect ed to

    st r ong shear and sudden expansi on, see Fi gur e 2- (b). The i nl et boundary

    condi t i ons f or t he tangent i al vel oci t y, t he turbul ent ki net i c ener gi es, and

    the di ss i pat i on r at es

    ep

    and

    e t )

    wer e obt ai ned f r om experi ment al dat a f or

    a f ul l y devel oped boundar y l ayer f l ow over a f l at pl at e [ 3, 22] . The

    non- di mensi onal vel oci t y and t he t ur bul ent ki net i c ener gy pr of i l es wer e

    scal ed to

    boundar y.

    yi el d a boundar y l ayer t hi ckness of

    0. 019

    met er s at t he i nl et

    The no- sl i p boundar y condi t i on f or vel oci t i es and vani shi ng

    13

  • 8/18/2019 backward facing shear layer

    15/27

    t ur bul ent ki net i c ener gi es wer e pr escri bed at t he sol i d wal l boundar y. At

    t he exi t boundar y, a vani shi ng gr adi ent boundar y condi t i on was used f or al l

    f l ow var i abl es except t he pr essur e. A uni f or m pr essur e was pr escr i bed at

    t he exi t boundar y. The part i t i on bet ween t he near - wal l

    l ayer and t he

    ext er nal r egi on was l ocat ed at appr oxi matel y y+- l OO, 12 gr i d poi nt s were

    al l ocat ed i nsi de t he near- wal l l ayer . The mesh si ze of t he f i r st gr i d poi nt

    on t he bot t om wal l was Ay+- 2 and t he gr i d si ze i n t he normal t o t he wal l

    di r ect i on was

    i ncr eased by a f act or of appr oxi mat el y 1. 15. Fur t her det ai l s

    on t he comput at i onal pr ocedur e can be f ound i n Ref erence 17.

    The cal cul at ed st r eam i ne cont our s ar e shown i n Fi gur e 3 . The f l ow

    f i el d consi st ed of t wo r eci r cul at i on zones. The pr i mar y r eci r cul at i on zone

    ext ended f r om t he separat i on corner t owar d the downst r eam di r ect i on; and

    t he secondary reci r cul at i on zone was ver y smal l and conf i ned i n t he cor ner

    r egi on. The r eatt achment l ocati on ver sus t he top wal l def l ect i on angl e i s

    shown i n Fi gur e 4. I t can be seen i n t he f i gur e t hat t he k- c and

    ARSM

    t ur bul ence model s l argel y under - pr edi ct t he r eat t achment l ocati on. The

    modi f i ed

    ARSM

    yi el ded a si gni f i cant l y i mpr oved comput at i onal r esul t ,

    however , t he pr esent computat i onal r esul t compar ed more f avorabl y wi t h t he

    measur ed dat a t han di d t he modi f i ed ARSM.

    The st at i c pr essur e cont our l i nes are shown i n Fi gur e 5, wher e t he

    pr essur e has been normal i zed by t he i nl et t otal pr essur e and t he

    i ncr ement al pr essure between the cont our l i nes i s

    0. 005.

    I t can be s een i n

    t he f i gur e t hat a f ew cont our l i nes pass t hr ough the expansi on cor ner , and

    t hus

    t her e exi st s a m l d base pr essur e i n t he backward- f aci ng st ep r egi on.

    The cal cul at ed st at i c pr essur e on t he wal l i s compared wi t h exper i ment al

    dat a as wel l as t he numer i cal r esul t s of Ref erence

    1

    i n Fi gur e

    6 .

    The m l d

    pr essure dr op at x/ H- 0 r epr esent t he base pr essur e. For a=Oo t he pr esent

    14

  • 8/18/2019 backward facing shear layer

    16/27

    comput at i onal r esul t compared sl i ght l y more f avorabl y wi t h t he measured

    wal l pr essur e t han t he ot her comput at i onal r esul t s. For a-6 , al l the

    comput at i onal r esul t s compared decent l y wi t h t he measured dat a; however ,

    t he sl ope of t he wal l pr essur e i n t he cont i nuousl y di ver gi ng downst r eam

    r egi on obt ai ned i n t he pr esent st udy compar ed more f avor abl y wi t h t he

    measur ed dat a than t he ot her r esul t s. Thi s di f f erence may due to the

    di f f erent numer i cal met hods used.

    The cal cul at ed wal l shear i ng st r esses ar e shown i n Fi gur e 7. I t can be

    seen i n t he

    f i gur e t hat t he l ocat i on of t he peak wal l shear i ng st r ess

    obt ai ned usi ng t he

    k- e

    t ur bul ence model i s grossl y i n er r or . I t i s

    i nt er est i ng t o note t hat t he modi f i ed ARSH under - pr edi ct s t he peak val ue

    and t he pr esent t ur bul ence model over - pr edi ct s t he peak val ue even t hough

    t he rel at i ve di f f er ences ar e al most t he same f or bot h def l ect i on angl es.

    The mean vel oci t y, t he t ur bul ent ki net i c ener gy, and t he Reynol ds

    st r ess pr of i l es at f our downst r eam l ocat i ons are compar ed wi t h experi ment al

    dat a and wi t h t he cal cul at ed r esul t s usi ng t he modi f i ed ARSM

    [ 1, 2] i n

    Fi gur es

    8- 10,

    espect i vel y. The experi ment al t ur bul ent ki net i c ener gy shown

    i n Fi gure

    9

    was est i mat ed usi ng t he measured val ue of uf 2+v f 2 nd an

    assumpt i on t hat w 2=(u82+v' 2) / 2. A s shown i n Fi gur es

    8- 10,

    bot h

    comput at i onal r esul t s exhi bi t f ai r compari son wi t h t he exper i ment al dat a.

    I t can be s een i n Fi gur e 9 t hat t he peak val ue of t he t ur bul ent ki net i c

    ener gy and t he shape of t he t ur bul ent ki net i c energy pr of i l e obt ai ned usi ng

    t he mul t i pl e- t i me- scal e ur bul ence model compar e sl i ght l y bet t er wi t h t he

    measured dat a t han t hose obt ai ned usi ng t he modi f i ed ARSM at x/H-1.0 wher e

    t he t ur bul ence i s i n a st r ongl y i nequi l i br i um st at e. I t has been shown

    pr evi ousl y t hat t he i mpr oved comput at i onal r esul t s f or compl ex t ur bul ent

    f l ows ar e at t r i but ed to t he capabi l i t y of t he mul t i pl e- t i me- scal e

    15

  • 8/18/2019 backward facing shear layer

    17/27

    t ur bul ence model t o r esol ve t he i nequi l i br i um t ur bul ence

    [ 3 ] .

    The s ame

    argument can be appl i ed f or t he pr esent f l ow case. At f ur t her downst r eam

    l oc at i ons ,

    t he pr esent comput at i onal r esul t s compar ed sl i ght l y l ess

    f avor abl y wi t h t he exper i ment al dat a, a r esul t per haps due

    t o t he near - wal l

    t ur bul ence model whi ch can not t ake i nt o account of t he i nequi l i br i um

    t ur bul ence.

    The r at i o of t ur bul ent vi scosi t y t o mol ecul ar vi scosi t y at t hr ee

    downst r eam l ocat i ons ar e shown i n Fi gur e 11.

    I t

    can be seen

    i n

    t he f i gur e

    t hat t he J ones- Launder k-6 t ur bul ence model over - est i mat es t he r at i o so

    t hat t he r eat t achment l ocat i on i s l ar gel y under - pr edi ct ed. On the ot her

    hand, t he pr esent comput at i onal r esul t s compar e qui t e f avorabl y wi t h t he

    measur ed dat a

    so

    t hat t he r eat t achment l ocat i on i s cor r ect l y pr edi ct ed. The

    cal cul at ed pr oduct i on and di ssi pat i on r at es of t he t ur bul ent ki net i c ener gy

    at t he same downst r eam l ocat i ons wer e qual i t at i vel y and quant i t at i vel y

    al most t he same as t hose of r ef erence

    1.

    CONCLUSI ONS

    Numer i cal cal cul at i ons

    of

    r eat t achi ng shear l ayer s i n a di ver gi ng

    channel usi ng a mul t i pl e- t i me- sc al e ur bul ence model suppl ement ed wi t h a

    near - wal l t ur bul ence model have been pr esent ed. The cal cul ated reat t achment

    l ocat i on ver sus t he top wal l def l ect i on angl e obt ai ned usi ng t he pr esent

    t urbul ence model was i n excel l ent agr eement wi t h measured dat a. The

    cal cul at ed wal l pr essure and t he wal l shear i ng st r ess wer e al so

    i n good

    agr eement wi t h t he exper i ment al dat a. The r est of t he pr esent comput at i onal

    r esul t s such as t he nor mal i zed vel oci t y pr of i l es and the Reynol ds s t r ess

    pr of i l es compared f avorabl y wi t h exper i ment al data.

    The comput at i onal

    r esul t s obt ai ned usi ng t he mul t i pl e- t i me- scal e ur bul ence model compar ed

    16

  • 8/18/2019 backward facing shear layer

    18/27

    sl i ght l y more f avorabl y wi t h t he experi ment al dat a t han t hose obt ai ned

    usi ng t he modi f i ed al gebr ai c Reynol ds st r ess t ur bul ence model . I t has been

    shown t hat pr edi ct i on of t he cor r ect r eat t achment l ocat i on depends on t he

    pr edi ct i on of t he cor r ect l evel of t he t ur bul ent vi scosi t y, whi ch depends,

    i n t ur n, on t he capabi l i t y of a t ur bul ence model t o resol ve t he ent i r e

    t ur bul ence st r uct ur e of t he f l ow f i el d cor r ect l y. Thus t he i mpr oved

    comput at i onal r esul t s ar e at t r i but ed t o the capabi l i t y of t he

    mul t i pl e- t i me- scal et ur bul ence model t o r esol ve t he st r ong i nequi l i br i um

    t ur bul ence i n t he vi ci ni t y of t he expansi on cor ner and i n t he f ol l owi ng

    shear - l ayer r egi on.

    17

  • 8/18/2019 backward facing shear layer

    19/27

    REFERENCES

    1.

    D. M. Dr i ver and H. L. Seegm l l er , Feat ur es of a Reat t achi ng Tur bul ent

    Shear Layer i n Di ver gent Channel Fl ow,

    J .

    AI AA, vol . 2 3 , pp. 163- 171,

    1985.

    2 . M

    Si ndi r , Numer i cal St udy

    of

    Separat i ng and Reat t achi ng Fl ows i n a

    Backward- Faci ng St ep Geometr y, Ph. D. Thesi s, Uni ver si t y of Cal i f or ni a

    at Davi s, CA, 1982.

    3.

    S.-W.

    Ki m and C. - P. Chen, A Mul t i pl e- Ti me- Scal eTurbul ence model

    Based on Vari abl e

    Par t i t i oni ng of t he Tur bul ent Ki net i c Ener gy

    Spect r um , To appear i n the Numer i cal Heat Tr ansf er , 1989, Al so

    avai l abl e as NASA CR- 179222, 1987 and AI AA Paper 88- 0221, 1988.

    4. S.-W. Ki m and C.-P. Chen, A Revi ew on Var i ous Fl ow- Sol i d

    I nt eract i on Anal ysi s Methods wi t h Emphasi s on Recent Advances i n

    Tur bul ence Model s and Fl ow Anal ysi s Met hods, AI AA Paper 88- 3685, 1988.

    5 . K.

    Hanj el i c, B. E. Launder , and

    R.

    Schi est el , Mul t i pl e- Ti me- Scal e

    Concept s i n Tur bul ent Shear Fl ows i n

    L.

    J . S . Br adbur y, F . Dur st ,

    B. E. Launder , F .

    W

    Schm dt , and

    J . H.

    Whi t el aw, ( eds. ) , Tur bul ent

    Shear F l ows, vol . 2 , pp. 36- 49, Spr i nger - Ver l ag, New Yor k, 1980.

    6. R.

    Schi est el , Mul t i pl e- Ti me- Scal eModel i ng of Tur bul ent Fl ows i n One

    poi nt Cl osure , Phvsi cs

    of

    Fl ui ds , vol .

    30,

    pp. 722- 731, 1987.

    7.

    R.

    Schi est el , Mul t i pl e- Scal e Concept i n Tur bul ence Model l i ng,

    11. Reynol ds St r esses and Tur bul ent Fl uxes of a Passi ve Scal ar ,

    Al gebr ai c Model l i ng and Si mpl i f i ed Model usi ng Boussi nesq Hypot hesi s ,

    J our nal de Mechani aue t heor i aue et appl i auee, vol . 2, pp. 601- 628,

    1983.

    8. S . W

    Tu and B. R. Ramapr i an, Ful l y Devel oped Per i odi c Tur bul ent Pi pe

    Fl ow, Par t

    I .

    Mai n Exper i ment al Resul t s and Compar i son wi t h

    18

  • 8/18/2019 backward facing shear layer

    20/27

    Predi c t i ons ,

    J.

    F1ui d Mech,

    , V O~.

    37, pp. 31- 58, 1983.

    9 . S. - W Ki m A Near - Wal l Tur bul ence Model and I t s Appl i cat i on to Ful

    Devel oped Tur bul ent Channel and Pi pe Fl ows, To appear i n Numer i cal

    Beat

    Transf er ,

    1989. Al so avai l abl e

    as

    NASA TM- 101399, 1988.

    10.

    V.

    C. Pat el , W Rodi and G. Scheuarer , Tur bul ence Model s f or Near

    Wal l and Low Reynol ds Number Fl ows: A Revi ew , J. A I M, 23,

    pp. 1308- 1319 (1985) .

    11.

    R.

    S . Amano, Devel opment of

    a

    Tur bul ent Near - Wal l Model and I t s

    Appl i cat i on t o Separated and Reat t ached

    Fl ows,

    Pumer i cal

    He

    at

    Tr ansf er , vol . 7 , pp. 59- 75, 1984.

    12.

    M

    Wol f sht ei n, T h e Vel oci t y and Temper at ur e Di st r i but i on i n

    One- Di mensi onal Fl ow wi t h Tur bul ence Augment at i on and Pr essure

    Y

    Gr adi ent , I J nt .

    J .

    Heat and Mass Tr ansf er , vol . 12, pp. 301- 318, 1969.

    13. H. C. Chen and V. C. Pat el , Pr act i cal Near - Wal l Tur bul ence Model s f or

    Compl ex Fl ows I ncl udi ng Separ at i on, AI M- 87- 1300, 1987.

    14.

    A . Roshko, St r uct ure of Tur bul ent Shear Fl ows: A New Look,

    J .

    AI AA,

    V O~.

    4,

    NO. 10, pp. 1349- 1357, 1976.

    15.

    Gi bson, M M. , Spal di ng, D.

    B. ,

    and Zi nser , W , Boundary Layer

    Cal cul at i ons usi ng t he Hassi d- Por eh One- Equat i on Ener gy Model ,

    Let t ers i n Heat and

    Mass

    Tr ansf er

    ,

    V O~. , pp. 73- 80, 1978.

    16.

    Hassi d, S . , and Por eh, M. , A Tur bul ent Ener gy Model f or Fl ows wi t h

    Dr ag Reduct i on,

    J .

    Fl ui d Enei

    neer ng

    ,

    Transact i ons of ASME,

    pp. 234- 241, 1975.

    17.

    S. - W

    Ki m A Cont r ol - Vol ume Based Reynol ds Aver aged Navi er - St okes

    Equat i on Sol ver Val i d at Al l Fl ow Vel oci t i es, NASA TM- 101488, 1989.

    18. S. - W Ki m Numer i cal Comput at i on of Shock Wave - Tur bul ent Boundary

    Layer I nt eract i on i n Tr ansoni c Fl ow over an Axi symmet r i c Cur ved Hi l l ,

    19

  • 8/18/2019 backward facing shear layer

    21/27

    NASA TM- 101473, 1989.

    19.

    S . V.

    Pat ankar , Numer i cal Heat Tr ansf er and Fl ui d F l ow, McGr aw- Hi l l ,

    New Yor k, 1980.

    20.

    F.

    H. Har l ow and

    P.

    I .

    Nakayama, Tr anspor t of Turbul ence Ener gy Decay

    Rat e, os Al amos Sci . Lab. , LA- 3854, 1968.

    21.

    V.

    G . Har r i s ,

    J . A .

    H. Gr aham and

    S .

    Cor r s i n, Fur t her

    Exper i ment s i n Near l y Homogeneous Tur bul ent Shear Fl ow, J . Fl ui d

    Nec h. , vol .

    81,

    pp. 657- 687, 1977.

    22.

    P. S .

    Kl ebanof f , Char act er i st i cs of Tur bul ence i n a Boundar y Layer

    wi t h Zer o Pr essur e Gr adi ent , NACA Report 1247, 1955.

    20

  • 8/18/2019 backward facing shear layer

    22/27

    FIGURE

    1.

    - NWNCLATURE OF THE REATTACHING SHE R LAYER,

    H: HEIGHT OF THE BACKWARD-FACING STEP. a: TOP WALL DEFLEC-

    TION ANGLE.

    FIGURE

    3.

    -

    S T R W C I E

    ColllouR.

    12

    10

    8

    x

    6

    4

    b )

    VICINITY

    OF

    EXPANSION CORNER.

    FIGURE 2. - DISCRETIZATIM OF FLCU WMIH.

    0

    XPER PTNTAL DATA 1

    PRESENT COMPUTATIONAL RESULT

    MODIFIED ARSN

    0

    TANDARD k -E AND

    RSN

    -

    I

    I

    I

    I I

    1 J

    a

    FIGURE 4 . - REATTACHKNT LOCATION VERSUS DEFLECTION

    ANGLE.

    21

  • 8/18/2019 backward facing shear layer

    23/27

    FIGURE

    5. -

    PRESSURE CONTOUR.

    -.15

    0

    EXPERIMENTAL DATA [ 1

    I

    RESENT COMPUTATIONAL

    % ---- STANDARD

    k-E

    AND ARSM

    RESULT

    MODIFIED ARSM

    0 -

    \

    a

    I

    I I

    V

    I

    I I

    5 10 15 20 25

    30

    X/H

    b)

    a

    =

    6 .

    FIGURE 6 .

    -

    PRESSURE ON BOTTOM WALL.

    22

  • 8/18/2019 backward facing shear layer

    24/27

    2 -

    0 EXPERIENTAL DATA 111

    RODIFIED AR M

    STANDARD k -E AND A R M

    RESENT CWUTATIONAL RESULT

    Do

    0

    0 EXPERIENTAL DATA 111

    RODIFIED AR M

    -1

    RESENT CWUTATIONAL RESULT

    STANDARD k -E AND A R M

    o

    -2

    a )

    a =

    o0

    'r

    -2

    0 5 10 15 20 25 30

    X/H

    b )

    a = 6 .

    FIGURE

    7. -

    SHEAR STRESS ON Bolloll UALL.

    4

    0 EXPERIEIITAL DATA

    RESENT CWUTATIONAL RESULT

    -

    -

    -

    RODIFIED ARM

    WH =

    1.0

    4.0 7.0

    12.0

    a ) a = oo

    WH = 1.0

    4.0

    7.1 12.0

    u/u

    00

    b )

    a

    = 6 .

    FIGURE 8. - VELOCITY PROFILES.

    23

  • 8/18/2019 backward facing shear layer

    25/27

    0

    EXPERIENTM DATA

    RESENT CWUTATIONAL RESULT

    --- NODIFIED A R M

    a )

    a

    = 0

    k/Um2

    (b)

    a

    =

    6 .

    FIGURE 9. - TURBMNT KlWETlC ElERGY

    PROFILES.

    0

    EXPERIENTAL DATA

    RESENT COMPUTATIONAL RESULT

    ODIFIED

    A R M

    '

    c

    WH =

    1 . 0

    4.0 7.0

    1 2 . 0

    a )

    a

    = 0

    e

    r

    9 X/H = 1.0 4.0 7 .1 12 .0

    i T / U m 2

    b ) a =

    6

    F W 10. - REYNOLDS STRESS PRQILES.

    24

  • 8/18/2019 backward facing shear layer

    26/27

    .

    1

    0

    e

    0 EXPERIENTAL DATA

    RESENT CWUTATIONAL RESULT

    ----

    CEBECI ALGEBRAIC W E L

    [ 1 I

    JONES AND LAUNDER

    k-E

    IK)DEL [ I

    a ) a =

    oo

    0 0 0 lo

    2000

    b )

    a

    =

    6 .

    C I t 4

    FIGURE

    11.

    - RATIOS OF TURBULENT VISCOSITY OVER MOLECULAR

    VISCOSITY

    25

  • 8/18/2019 backward facing shear layer

    27/27

    Natlonal Aeronautics and

    Space

    Administration

    Report Documentation Page

    2. Government Accession No.

    NASA TM-102293

    ICOMP-89- 18

    1. Report No.

    4.

    Title and Subtitle

    Calculation of Reattaching Shear Layers in Divergent Channel

    With a Multiple-Time-Scale Turbulence Model

    7. Author(s)

    S.-W. Kim

    9. Performing Organization Name and Address

    National Aeronautics and Space Administration

    Lewis Research Center

    Cleveland, Ohio 44135-3191

    2. Sponsoring Agency Name and Address

    National Aeronautics and Space Administration

    Washington, D.C . 20546-0001

    3. Recipient s Catalog No.

    5. Report Date .

    August 1989

    6. Performing Organization Code

    8.

    Performing Organization Report No.

    E-4965

    10. Work Unit No.

    505-62-2 1

    11. Contract or Grant No.

    13. Type of Report and Period Covered

    Technical Memorandum

    14. Sponsoring Agency Code

    5.

    Supplementary Notes

    S. W. Kim, Institute for Computational Mechanics in Propulsion, Lewis Research Center, Cleveland, Ohio 44135

    work funded by Space Act Agreement C99066G). Space Act Monitor: Louis A. Povinelli

    6. Abstract

    Numerical calculations of turbulent reattaching shear layers in a divergent channel are presented. The turbulence is

    described by a multiple-time-scale turbulence model. The turbulent flow equations are solved by a control-volume

    based finite difference method. The computational results are compared with those obtained using k-c turbulence

    models and algebraic Reynolds stress turbulence models. It is shown that the multiple-time-scale turbulence model

    yields significantly improved computational results than the other turbulence models in the region where the

    turbulence is in a strongly inequilibrium state.

    7. Key Words (Suggested by Author@))

    Multiple-time-scale turbulence model

    Algebraic Reynolds stress model

    Shear layer

    Diverging channel flow

    18. Distribution Statement

    Unclassified Unlimited

    Subject Category 34