bhel supercritical

Upload: sam

Post on 05-Apr-2018

267 views

Category:

Documents


3 download

TRANSCRIPT

  • 7/31/2019 BHEL supercritical

    1/40

    May 24, 2012 1

    LAYOUT ARRANGEMENT OFSUPER CRITICAL BOILER

  • 7/31/2019 BHEL supercritical

    2/40

    May 24, 2012 2

    thermodynamic diagram forsupercritical plant

  • 7/31/2019 BHEL supercritical

    3/40

    May 24, 2012 3

    The Water and Steam FlowDiagram

  • 7/31/2019 BHEL supercritical

    4/40

    May 24, 2012 4

    Supercritical Boiler FlowChart

  • 7/31/2019 BHEL supercritical

    5/40

    May 24, 2012 5

    Cycle of Supercritical PowerPlant

  • 7/31/2019 BHEL supercritical

    6/40

    May 24, 2012 6

    ZR : Aux. Relief VV, WR : Water Relief VV

    LL : Level Control VV, UG : Recirculation VV

  • 7/31/2019 BHEL supercritical

    7/40

    May 24, 2012 7

  • 7/31/2019 BHEL supercritical

    8/40

    May 24, 2012 8

  • 7/31/2019 BHEL supercritical

    9/40

    May 24, 2012 9

  • 7/31/2019 BHEL supercritical

    10/40

    May 24, 2012 10

    General Arrangement of Boiler Component

  • 7/31/2019 BHEL supercritical

    11/40

    May 24, 2012 11

    Straight Tube Wall vs. Spiral Tube Wall

    Spiral Wall Furnace - Impact on Tube Numbers vs.

    Straight Wall

    Unit Size 500 MW, Conventional Vertical Furnace Wall

    Designs

    Unit Size 500 MW, Spiral-Wound Furnace may be

    Necessary(Fuel will be Final Determinant)

    Basic Principle of Spiral Wall

    furnace

    Sliding Pressure SupercriticalDesign

    Spiral Angle

    Spiral Angle

    Spiral Tube

    PitchSpiral Angle

    Vertical

    Tube

    Pitch

    Spiral Angle

    Spiral Tube

    Pitch

    Vertical

    Tube

    Pitch

  • 7/31/2019 BHEL supercritical

    12/40

    May 24, 2012 12

  • 7/31/2019 BHEL supercritical

    13/40

    May 24, 2012 13

    Design TypesDesign Types

    NATURALSTEAM DRUM

    FURNACE

    WALLS

    ECON.

    CONTROLLEDTO SUPERHEATER

    CIRC.PUMP

    SEPARATOR

    CIRC.

    PUMP

    ECON.

    DISTRIB.

    HEADER

    ONCE THROUGH

    Natural circulation - well suited for < 145 barcycles

    Controlled circulation - optimum solution forreliable high-pressure subcritical operation

    Once-through technology Suitable for sub and supercritical cycles Both spiral-wall and vertical-wall

    arrangements available depending uponcapacity and fuel

  • 7/31/2019 BHEL supercritical

    14/40

    May 24, 2012 14

    Advanced Sliding Pressure Supercritical Design

    WATERW

    ALLINLETPRESSURE

    BOILER LOAD, % MCR

    PRESSURE VS LOAD

    SubcriticalPressure Regime

    SupercriticalPressure Regime

    WaterwallPressure

    Turbine ThrottlePressure

    0 20 40 60 80 100

    Sliding Pressure Supercritical DesignSliding Pressure Supercritical Design

  • 7/31/2019 BHEL supercritical

    15/40

    May 24, 2012 15

    Sliding Pressure SupercriticalSliding Pressure SupercriticalDesignDesign

    Circulation and Start Up SystemsCirculation and Start Up Systems

    Spiral Wall Boiler Design

    Vertical Wall Boiler DesignDetails

    Design Principles

    Test Data

    Start up Systems

    Pumped and Drain Systems

    Components

    Performance and Advantages of Pumped Start upSystem

  • 7/31/2019 BHEL supercritical

    16/40

    May 24, 2012 16

    Evaluation of Heat

    Transfer at Tube

    Inside Wall is Key to

    Design of SPSC

    Boilers

    Evaluation of HeatTransfer at Tube

    Inside Wall is Key to

    Design of SPSC

    Boilers

    Factors Greatly

    Affecting Heat

    Transfer at Tube

    Inside Wall:

    Rifled Tubing

    Mass Velocity

    Factors GreatlyAffecting Heat

    Transfer at Tube

    Inside Wall:

    Rifled Tubing

    Mass Velocity

    Determination of Furnace Wall Tube Metal Temperature

    Vertical Wall SPSC BoilerVertical Wall SPSC Boiler

  • 7/31/2019 BHEL supercritical

    17/40

    May 24, 2012 17

    Q u a l i t y

    M i n i m u m S a f e t y M a r g i n

    ~ %1 1

    N o r m a l C o n d i t i o n s

    Elevation

    S m o o t h T u b i n g

    %1 1

    Gen

    era

    ted

    Qua

    lity

    Q u a l i t y

    M i n i m u m S a f e t y M a r g

    ~ %1 1

    Elevation

    R i f l e d T u b i n g

    %1 1

    Generated

    Quality

    AllowableQuality

    D N B

    R e g i o n

    Allow

    able

    Quality

    D N B

    R e g i o n

    Controlled Circulation BoilerControlled Circulation Boiler

  • 7/31/2019 BHEL supercritical

    18/40

    May 24, 2012 18

    Circulation and DNB AnalysisCirculation and DNB Analysis

    Normal Conditions in a Once Through Boiler

    100%SUPERHEAT

    FURNACE WALL OUTLET

    Normal Conditions in Subcritical Boiler

  • 7/31/2019 BHEL supercritical

    19/40

    May 24, 2012 19Q/A (Kw/m1)

    Critical Q/A (Kw/m1)

    Boiler Q/A (Kw/m1)

    X= .11

    X= .00

    X= .00

    X= .00

    Subcritical Boiler

    BoilerHeigh

    t

    . Margin111

    X= Steam Quality Fraction

    Top of Boiler

    Vertical Wall SPSC BoilerVertical Wall SPSC Boiler

    Safety Margin Of Subcritical Boiler

    Q/A Critical

    Q/A Boiler >1.25

  • 7/31/2019 BHEL supercritical

    20/40

    May 24, 2012 20

    Vertical Wall SPSC BoilerVertical Wall SPSC Boiler

    Conditions of Supercritical Once Through Boiler

    Q/A (Kw/m1)

    Critical Q/A (Kw/m1)

    Boiler Q/A (Kw/m1)

    X= .11

    X= .11

    X= .00

    X= .00

    X= .11

    X= .11

    X= .00

    Subcritical Boiler

    Once Through

    Boiler

    BoilerHeight

    Superheat

  • 7/31/2019 BHEL supercritical

    21/40

    May 24, 2012 21

    Midwall Temperature vs. Mass Velocity

    Smooth Tube

    Tfluid111oCP= . Mpa000

    11

    000

    000

    000000

    000000

    11000

    000

    111

    111

    111

    111

    111

    111

    111

    111

    111

    111

    1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

    Mass Velocity (Kg/m1-sec)

    Mid

    wallTemperature(oC

    )

    111

    111

    111

    Q/A (Kw/m )1

    Spiral Boiler TechnologySpiral Boiler Technology

    Mass Velocity studyMass Velocity study

    41 mm O.D. x x 6.4 mwtSA 213 T22

  • 7/31/2019 BHEL supercritical

    22/40

    May 24, 2012 22

    Midwall Temperature vs. Mass Velocit

    Rifled Tube

    Tfluid

    C111

    P= . Mpa000

    11

    000

    000

    00011

    1111

    000

    11

    111

    000

    000

    000

    000

    111

    000

    000

    000

    111

    111

    1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

    Mass Velocity (kg/m -sec1

    M

    idwallTemperature

    111

    111

    111

    Q/A (kw/m 1

    Spiral Boiler TechnologySpiral Boiler Technology

    Mass Velocity studyMass Velocity study

    41 mm O.D. x x 6.4 mwtSA 213 T22

  • 7/31/2019 BHEL supercritical

    23/40

    May 24, 2012 23

    HearAbsorption

    in% 140

    120

    100

    80

    60

    Left Side WallRear WallRight Side WallFront Wall

    Left Side Wall

    RearWall

    Right Side Wall

    FrontWall

    100 % Load Spiral Waterwall

    Central Fireball

    Spiral Boiler TechnologySpiral Boiler Technology

    Number of Turns StudyNumber of Turns Study

  • 7/31/2019 BHEL supercritical

    24/40

    May 24, 2012 24

    100 % Load Spiral Waterwall

    Fireball Shift to Corner

    HearAbsorption

    in% 140

    120

    100

    80

    60FW RSW RW LSW

    Left Side WallRear WallRight Side WallFront Wall

    Left Side Wall

    RearWall

    Right Side Wall

    FrontWall

    Spiral Boiler TechnologySpiral Boiler Technology

    Number of Turns StudyNumber of Turns Study

  • 7/31/2019 BHEL supercritical

    25/40

    May 24, 2012 25

    Start-up System with RecirculationStart-up System with Recirculation

  • 7/31/2019 BHEL supercritical

    26/40

    May 24, 2012 26

    Start-up System with RecirculationStart-up System with Recirculation

  • 7/31/2019 BHEL supercritical

    27/40

    May 24, 2012 27

    Simplified Drain Discharge SystemSimplified Drain Discharge System

    SH

    WW

    ECO

    HPH

    HWL

    to condenser

    deaerator

    WLBFP

    flash

    tank

  • 7/31/2019 BHEL supercritical

    28/40

    May 24, 2012 28

    Supercritical Technology

    Better PlantEfficiencies

    Lower PlantOperating Costs

    Lower Emission

    Levels with LowerCoal Consumption

    Supercritical Cycle Advantages

    -10

    -9

    -8

    -7

    -6

    -5-4

    -3

    -2

    -1

    0

    1800 2400 3500 4500

    1000/1000F

    1000/1000/1000F

    1100/1100/1100F

    Double Reheat

    Double Reheat

    Single Reheat

    Throttle Steam Pressure, psig

    Effect of Steam Conditions on Heat Rate

    RelativeNet

    Heat

    Rate,

    %

    S iti l T h l

  • 7/31/2019 BHEL supercritical

    29/40

    May 24, 2012 29

    Supercritical TechnologyDesigns to meet every application

    Two-pass design

    Tower design

    World leader ~ 100 supercritical units

    Design options to meet fuel specificatioand customer preferences

    Design options to meet fuel specificatioand customer preferences

    Spiral

    woundStraight

    Wall

  • 7/31/2019 BHEL supercritical

    30/40

    May 24, 2012 30

    Steam Power Plant Technology Trends

    50s 60s 70s 80s 90s 00s 10s

    10

    8

    6

    4

    2

    0

    Heat Rate

    Heat Rate

    2400/1005/1005

    3500/1005/1050 (psi/F/F)

    3600/1050/1085

    4050/1075/1100

    4050/1100/1150

    4050/1160/1200

    5450/1290/1325/1325

    Technologymaturity

    .

    15

    [%]

    Advanced SteamConditions -higher

    Temperatures/Pressures

    Recent ContractsCO- 2004 China Waigaoqiao 2x900 MW, 4078/1006/1056CO- 2002 Germany Niederaussem 1000MW, 3976/1076/1112CO-2002 Korea Yunghung 2x800 MW,.3627/1056/1056CO-2001 Greece Florina 330 MW, 3572/1009/1008CO- 2000 Taiwan Mai Liao 2x600MW, 3844/1006/1056

    SubcriticalMature Technology

    SupercriticalMature Technology

    Advanced Sliding Pressure

  • 7/31/2019 BHEL supercritical

    31/40

    May 24, 2012 31

    Advanced Sliding PressureSupercritical Design

    WATERWALLINLETPRESSURE

    BOILER LOAD, % MCR

    PRESSURE VS LOAD

    SubcriticalPressure Regime

    SupercriticalPressure Regime

    WaterwallPressure

    Turbine ThrottlePressure

    0 20 40 60 80 100

  • 7/31/2019 BHEL supercritical

    32/40

    May 24, 2012 32

    Spiral Waterwall Tubing

    Lateral Heat Flux Profile

    S i l W ll Slidi P

  • 7/31/2019 BHEL supercritical

    33/40

    May 24, 2012 33

    Spiral Furnace

    Windbox Panel

    Spiral Wall Sliding PressureSupercritical Design

  • 7/31/2019 BHEL supercritical

    34/40

    May 24, 2012 34

  • 7/31/2019 BHEL supercritical

    35/40

    May 24, 2012 35

  • 7/31/2019 BHEL supercritical

    36/40

    May 24, 2012 36

  • 7/31/2019 BHEL supercritical

    37/40

    May 24, 2012 37

  • 7/31/2019 BHEL supercritical

    38/40

    May 24, 2012 38

  • 7/31/2019 BHEL supercritical

    39/40

    May 24, 2012 39

  • 7/31/2019 BHEL supercritical

    40/40

    May 24, 2012 40

    THANK YOU