biomaterials lecture final.ppt [read-only]

89
Cardiovascular Biomaterials Karyn S. Kunzelman, Ph.D. Division of Cardiothoracic Surgery Department of Biomedical Engineering

Upload: others

Post on 12-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biomaterials lecture final.ppt [Read-Only]

Cardiovascular Biomaterials

Karyn S. Kunzelman, Ph.D.

Division of Cardiothoracic SurgeryDepartment of Biomedical Engineering

Page 2: Biomaterials lecture final.ppt [Read-Only]

Overview

History

Specific Applications

Future Directions

Blood Material Interactions

Page 3: Biomaterials lecture final.ppt [Read-Only]

History ofCardiovascular

Intervention

Page 4: Biomaterials lecture final.ppt [Read-Only]

Historical

1628 - William Harvey, English Physician, describes blood circulation.

Page 5: Biomaterials lecture final.ppt [Read-Only]

Historical

1706 - Raymond de Vieussens, French anatomy professor, firstdescribes the structure of the heart's chambers and vessels.

1733 - Stephen Hales, English clergyman and scientist, first measuresblood pressure.

1816 - Rene Laennec, French physician, invents the stethoscope.

1903 - Willem Einthoven, Dutch physiologist, develops theelectrocardiograph.

1912 - James Herrick, American physician, first describes heart diseaseresulting from hardening of the arteries.

Page 6: Biomaterials lecture final.ppt [Read-Only]

Historical

1948 - Dwight Harken, American surgeon, performs first closed mitralcommisurotomy.

Page 7: Biomaterials lecture final.ppt [Read-Only]

Historical

1951 - Charles Hufnagel,American surgeon, developsa plastic valve to repair anaortic valve.

1952 - F. John Lewis, W.Lillehei, American surgeons,perform first successful openheart surgery (VSD repair).

Page 8: Biomaterials lecture final.ppt [Read-Only]

Historical

1953 - John H. Gibbon, American surgeon, first uses a mechanicalheart and blood purifier.

1965 - Michael DeBakey and Adrian Kantrowitz, Americansurgeons, implant mechanical devices to help a diseased heart.

1967 - Christiaan Barnard, a South African surgeon, performs thefirst whole heart transplant from one person to another.

1982 - Willem DeVries, an American surgeon, implants apermanent artificial heart, designed by Robert Jarvik, anAmerican physician, into a patient.

Page 9: Biomaterials lecture final.ppt [Read-Only]

Cardiovascular System

Page 10: Biomaterials lecture final.ppt [Read-Only]

Devices

Heart Valves 52,000Mechanical (32,000)Bioprosthetic (20,000)

Pacemakers 144,000

Vascular grafts 160,000

Oxygenators (CPB) 260,000

Heart Assist 31,717

IABP (31,300)

VAD (400)

TAH (17)

Page 11: Biomaterials lecture final.ppt [Read-Only]

Blood Material Interactions

Detrimental effects on blood/tissue/organ

Detrimental effects on material/device

Page 12: Biomaterials lecture final.ppt [Read-Only]

Effect on Materials/Device

Adsorption of plasma proteins, lipids, calcium

Formation of pseudointima or capsule

Adhesion of platelets, leukocytes, erythrocytes

Alteration of mechanical properties

Page 13: Biomaterials lecture final.ppt [Read-Only]

Effect on Subject

Anemia, hemolysis, leukopenia,thrombocytopenia, altered RBC function

Formation of thrombi and/or embolization

Cell and/or tissue injury

Intimal hyperplasia, capsule affecting function

Activation of coagulation, fibrinolytic,or immunologic pathways

Page 14: Biomaterials lecture final.ppt [Read-Only]

Platelets / Thrombosis

Page 15: Biomaterials lecture final.ppt [Read-Only]

Platelets / Thrombosis

Page 16: Biomaterials lecture final.ppt [Read-Only]

Specific Applications

Heart surgery

Heart Assist

Other

Vascular surgery

Page 17: Biomaterials lecture final.ppt [Read-Only]

Heart Surgery

Heart valves

Cardiopulmonarybypass

Coronary arteryinterventions

Page 18: Biomaterials lecture final.ppt [Read-Only]

Cardiac anatomy / circulation

Page 19: Biomaterials lecture final.ppt [Read-Only]

Cardiopulmonary Bypass

Allows open heartsurgery, ECMO, ARDStreatment

Pumps unoxygenatedvenous blood throughoxygenator, and back toarterial system

Page 20: Biomaterials lecture final.ppt [Read-Only]

CPB components (1)

Blood pumps (roller head, vortex)

Oxygenators (membrane, bubbler)

Tubing, connectors

Suction

Page 21: Biomaterials lecture final.ppt [Read-Only]

CPB components (2)

Arterial filter Bubble trap

Cardioplegia

Heat exchanger

Resevoirs (hard shell, membrane)

Page 22: Biomaterials lecture final.ppt [Read-Only]

CPB

Materials used:Silicone elastomersMicroporous polypropylenePolyester (mesh in filter)Acrylonite-styrene polymersPolyurethanePolycarbonateStainless steel

Page 23: Biomaterials lecture final.ppt [Read-Only]

CPB

Clinical benefits:Allows open heart surgery, complex repairsAllows recovery from RDS, trauma

Problems to overcome: Major activation of coagulation and complement

Requires systemic anticoagulation

Page 24: Biomaterials lecture final.ppt [Read-Only]

Oxygenators

-Complement activation (contact, coagulation,fibrinolytic pathways activated)

-Platelet function abnormalities, bleeding, transfusions

-Post perfusion lung syndrome, neuropsychcomplications (due to platelet or leukocyte aggregates,or microbubbles)

Page 25: Biomaterials lecture final.ppt [Read-Only]

Oxygenator comparisonBubble oxygenators

Respiratory gas in contact with bloodRequires defoamer + bubble trap

Increased blood trauma

Membrane oxygenatorsBlood and gas separatedhollow fiber (polypropylene, polyurethane epoxy)Coated aluminum tubes (heat exchangers)Less hemolysis, less protein denaturationBetter preservation of platelet count and function

-

Page 26: Biomaterials lecture final.ppt [Read-Only]

Coronary Artery Intervention

Catheters/Cannula

CABG (coronary artery bypass graft)

PTCA (percutaneous transluminalcoronary angioplasty)

Page 27: Biomaterials lecture final.ppt [Read-Only]

Coronary anatomy

Page 28: Biomaterials lecture final.ppt [Read-Only]

CABG

Page 29: Biomaterials lecture final.ppt [Read-Only]

Catheters, Cannulas

Placed in virtuallyevery portion ofarterial+venouscirculation

Administering fluids,withdrawing bloodspecimens, pressuremonitoring, otherdata monitoring

Page 30: Biomaterials lecture final.ppt [Read-Only]

Catheters, cannulas

Page 31: Biomaterials lecture final.ppt [Read-Only]

Catheters/CannulasMaterials used:

Polyurethane, etc.Silicone elastomers

Problems to overcome (few):Vascular endothelium injury Thromboembolism

Clinical benefits:Widespread appliacations for administeringfluids, monitoring patient conditions

Page 32: Biomaterials lecture final.ppt [Read-Only]

PTCA / DCA

Directcoronaryatherectomy

Rotoblader

Percutaneoustransluminal

coronary angioplasty

Page 33: Biomaterials lecture final.ppt [Read-Only]

PTCA

Page 34: Biomaterials lecture final.ppt [Read-Only]

PTCA / DCA

Materials used:PolyurethaneSilicone elastomersStainless steel

Problems to overcomeVascular endothelium injuryRestenosis rate

Clinical benefits:Allows correction of stenosis without surgery

Page 35: Biomaterials lecture final.ppt [Read-Only]

Heart Valves

Mechanical Valves

Valve repair

Bioprosthetic Valves

Homografts

Page 36: Biomaterials lecture final.ppt [Read-Only]

Valve Replacement Procedures

Page 37: Biomaterials lecture final.ppt [Read-Only]

Valve Replacement Procedure

Page 38: Biomaterials lecture final.ppt [Read-Only]

Mechanical Valves

Tilting disk Bileaflet valveBall and cage

Page 39: Biomaterials lecture final.ppt [Read-Only]

Mechanical valves

Materials:Silicone elastomerCobalt-chrome alloysPyrolytic carbon TitaniumDacron

Page 40: Biomaterials lecture final.ppt [Read-Only]

Mechanical valves

Clinical benefits:Correct significant symptoms

Problems to overcome:ThromboembolismBleedingStructural failureEndocarditis

Page 41: Biomaterials lecture final.ppt [Read-Only]

Mechanical valves

Page 42: Biomaterials lecture final.ppt [Read-Only]

Bioprosthetic Valves

Stented Porcine Stentless Porcine Stented Pericardial

Page 43: Biomaterials lecture final.ppt [Read-Only]

Bioprosthetic valves

Materials:Porcine cross-linked valve tissuePericardial cross-linked tissueTitanium strutsDacron covering

Page 44: Biomaterials lecture final.ppt [Read-Only]

Bioprosthetic valves

Problems to overcome:CalcificationStructural deteriorationAntigenic reactionsEndocarditis

Clinical benefits:Correct significant symptoms

Page 45: Biomaterials lecture final.ppt [Read-Only]

Valve repair

Page 46: Biomaterials lecture final.ppt [Read-Only]

Homografts

Aortic MitralPulmonary

Page 47: Biomaterials lecture final.ppt [Read-Only]

Vascular Surgery

Stents

Grafts

Vascular access

Page 48: Biomaterials lecture final.ppt [Read-Only]

Biologic Grafts

IMA Femoral veinSaphenous vein

Page 49: Biomaterials lecture final.ppt [Read-Only]

Biologic grafts

Materials used:Arterial conduitsSaphenous vein

Clinical benefits:Replace blocked arteries, no anti-coagulation

Problems to overcome:Availability, quality, spasmThrombosis, neointimal hyperplasia

Page 50: Biomaterials lecture final.ppt [Read-Only]

Synthetic Grafts

Large diameter

Small diameter

Page 51: Biomaterials lecture final.ppt [Read-Only]

Sythethtic grafts

Materials used:DacronePTFE

Clinical Benefits:Replace blocked arteries, readily available

Problems to overcome:Thrombosis, neointimal hyperplasia

Page 52: Biomaterials lecture final.ppt [Read-Only]

Material treatment

Treatment methodsHeparin (-coagulation)Prostacylcin, or dipyriadomole (-platelets)Urokinase (+fibrinolysis)Heparin fraction (-intimal hyperplasia)Seeding / sodding endothelial cellsCompliance matching

Page 53: Biomaterials lecture final.ppt [Read-Only]

EC adherence

Page 54: Biomaterials lecture final.ppt [Read-Only]

EC adherence

Page 55: Biomaterials lecture final.ppt [Read-Only]

EC adherence

Page 56: Biomaterials lecture final.ppt [Read-Only]

Vascular access

Page 57: Biomaterials lecture final.ppt [Read-Only]

Vascular access

Materials used:Polyurethane

Clinical benefits:Access for chronic IV therapy, dialysis

Problems to overcome:Epithelial downgrowth, expulsion

Page 58: Biomaterials lecture final.ppt [Read-Only]

Stents

Page 59: Biomaterials lecture final.ppt [Read-Only]

Stents

Materials used:Nitinol (memory metal)Biodegradable polymers

Clinical benefits:Open blocked arteries

Problems to overcome:EC injury due to insertionThrombus, intimal hyperplasia, restenosis

Page 60: Biomaterials lecture final.ppt [Read-Only]

Heart Assist

Pacemakers

Ventricular assist devices

Artificial hearts

Intra-aortic balloon pump

Page 61: Biomaterials lecture final.ppt [Read-Only]

Pacemakers

Page 62: Biomaterials lecture final.ppt [Read-Only]

Pacemaker

Page 63: Biomaterials lecture final.ppt [Read-Only]

Materials used:Leads: platinum, silver, titanium, steel, cobaltLead sheaths: silicone rubber, polyurethaneLead connector: polyether urethaneCasing: titanium

Clinical benefits:Overcome abnormalities in heart rhythm

Problems to overcome:Rare complications, (localized inury)

Pacemaker

Page 64: Biomaterials lecture final.ppt [Read-Only]

IABP

Increase coronary arteryperfusion

Reduce workload

Principle ofcounterpulsation

Page 65: Biomaterials lecture final.ppt [Read-Only]

IABP

Materials used:Polyurethane balloon

Clinical benefit:Reduces workload on heartIncreases coronary and systemic flow

Problems to overcome:Surgical complications, gas leak

Page 66: Biomaterials lecture final.ppt [Read-Only]

Ventricular Assist Devices (VADs)

Pneumatic

AbiomedRotary

Page 67: Biomaterials lecture final.ppt [Read-Only]

Pneumatic

Page 68: Biomaterials lecture final.ppt [Read-Only]

Rotary

Page 69: Biomaterials lecture final.ppt [Read-Only]

Abiomed

Page 70: Biomaterials lecture final.ppt [Read-Only]

Total Artificial Heart (TAH)

Page 71: Biomaterials lecture final.ppt [Read-Only]

VADs / TAHMaterials used:

Blood pump sac Segmented polyether/polyurethaneValves Mechanical, bioprostheticCasing Titanium + siliconeConduits Dacron vascular graftsPower unit TitaniumBelt transformer Silicone covering, silver contactsConnecting leads SiliconePump drive unit Titanium, copper coilsVolume compensator Structural compositeEnergy control unit Ni-Cad2nd skin transformer Silver, copper

Page 72: Biomaterials lecture final.ppt [Read-Only]

VADs / TAH

Clinical benefit:Can function as heart

Problems to overcome:ThrombosisMechanical failureLimited battery life / power issuesInfectionComplications can be fatal

Page 73: Biomaterials lecture final.ppt [Read-Only]

Other

Drug Delivery

Blood Substitutes

Hemostatic agents

Tissue Engineering

Hybrid organs

Page 74: Biomaterials lecture final.ppt [Read-Only]

Drug delivery

Page 75: Biomaterials lecture final.ppt [Read-Only]

Drug delivery

Materials used:Titanium caseSilicone elastomer delivery catheter

Clinical benefit:Programmed, responsive drug delivery

Problems to overcome:Thrombosis, encapsulation

Page 76: Biomaterials lecture final.ppt [Read-Only]

Blood substitutes / oxygen carriers

Page 77: Biomaterials lecture final.ppt [Read-Only]

Blood substitutes / O2 carriers

Materials used:PerfluorocarbonsEncapsulated hemoglobin

Clinical benefit:Increase oxygen delivery

Problems to overcome:Safety, efficacy not determined

Page 78: Biomaterials lecture final.ppt [Read-Only]

Tissue Engineering

Application of engineering principles to createdevices for the study, restoration, modification,and assembly of functional tissues from native orsynthetic sources.

Page 79: Biomaterials lecture final.ppt [Read-Only]

Ischemia / Angiogenesis

Page 80: Biomaterials lecture final.ppt [Read-Only]

Ischemia / Angiogenesis

Page 81: Biomaterials lecture final.ppt [Read-Only]
Page 82: Biomaterials lecture final.ppt [Read-Only]

Hybrid organs

Page 83: Biomaterials lecture final.ppt [Read-Only]

Tissue engineering / hybridsMaterials used:

Polystyrenes, PMMA, PDMSCollagen matrices

Clinical benefits:Possibly better incorporation?Increased longevity?

Problems to overcome:Large scale productionAntigenicity issues

Page 84: Biomaterials lecture final.ppt [Read-Only]

Hemostatic agents

Page 85: Biomaterials lecture final.ppt [Read-Only]

Hemostatic agents

Materials used:Collagen, gelatinOxidized regenerated cellulose

Clinical benefits:Control bleeding, reoperationsAneurysms, dissections

Problems to overcome:Antigenicity issuesProof of benefit

Page 86: Biomaterials lecture final.ppt [Read-Only]

Peptide binding, stimulate EC adherence

Genetic engineering, tPA activity

Seeding with EC, fibroblasts

Binding, controlled release of heparin

Resorbable materials

Better hemodynamic design

Approaches to overcomethrombosis, hyperplasia

Page 87: Biomaterials lecture final.ppt [Read-Only]

Seeding with ECs

Genetic engineering, antimicrobial activity

Modify receptors on surface

Binding, controlled release of antibacterials

Approaches to overcomeinfection

Page 88: Biomaterials lecture final.ppt [Read-Only]

Tissue engineering

Target integration with environment

More emphasis on long term interfacial events

Future directions

Page 89: Biomaterials lecture final.ppt [Read-Only]

Thanks for yourattention!