blast: a detector for internal target experiments

40
U. Kentucky, 31 March 200 5 BLAST: A Detector for Internal Target Experiments Introduction Overview and status of the Program Present Results Outlook John Calarco, UNH and UT U. Kentucky, 31 March 2005

Upload: page

Post on 06-Jan-2016

29 views

Category:

Documents


2 download

DESCRIPTION

BLAST: A Detector for Internal Target Experiments. Introduction Overview and status of the Program Present Results Outlook. John Calarco, UNH and UT U. Kentucky, 31 March 2005. BLAST COLLABORATION R. Alarcon, E. Geis , J. Prince, B. Tonguc, A. Young - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

BLAST: A Detector for Internal Target Experiments

Introduction

Overview and status of the Program

Present Results

Outlook

John Calarco, UNH and UT

U. Kentucky, 31 March 2005

Page 2: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

BLAST COLLABORATION 

R. Alarcon, E. Geis, J. Prince, B. Tonguc, A. YoungArizona State University, Tempe, AZ 85287

 J. Althouse, C. D’Andrea, A. Goodhue, J. Pavel, T. Smith,

Dartmouth College, Dartmouth, NH 

D. Dutta, H. Gao, W. XuDuke University Durham, NC 27708-0305

H. Arenhövel,Johannes Gutenberg-Universität, Mainz, Germany

 T. Akdogan, W. Bertozzi, T. Botto, M. Chtangeev, B. Clasie, C. Crawford,

A. Degrush, K. Dow, M. Farkhondeh, W. Franklin, S. Gilad, D. Hasell, E. Ilhoff, J. Kelsey, M. Kohl, H. Kolster, A. Maschinot, J. Matthews, N. Meitanis, R. Milner, R. Redwine,

J. Seely, S. Sobczynski, C. Tschalaer, E. Tsentalovich, W. Turchinetz, Y. Xiao, C. Zhang, V. Ziskin, T. ZwartMassachusetts Institute of Technology, Cambridge, MA 02139

andBates Linear Accelerator Center, Middleton, MA 01949

 J. Calarco, W. Hersman, M. Holtrop, O. Filoti, P. Karpius, A. Sindile, T. Lee

University of New Hampshire, Durham, NH 03824 

J. RapaportOhio University, Athens, OH 45701

 K. McIlhany, A. Mosser

United States Naval Academy, Annapolis, MD 21402 

J. F. J. van den Brand, H. J. Bulten, H. R. PoolmanVrije Universitaet and NIKHEF, Amsterdam, The Netherlands

 W. Haeberli, T. Wise

University of Wisconsin, Madison, WI 53706 

   

Page 3: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Approved BLAST Scientific Program

Form Factor Measurements: Q2 1.0 (GeV/c)2

Proton Charge and MagnetismElastic Scattering with Polarized Beam and H Target (01-01)

Neutron Charge and Magnetism and Deuteron Electromagnetic Structure

Quasi-elastic Scattering with Polarized Beam and D Target (89-12 and 91-09)

Elastic scattering off Tensor and Vector Polarized Deuterium (00-03

and 03-02)

Page 4: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

General Kinematics for Polarized e Scattering on a Polarized Target

Page 5: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Bates Linac

500MeV Linac recirculated to reach up to 1GeV Inject into South Hall Ring Polarization maintained by Siberian snakes Polarization monitored real time by Compton Polarimeter Internal Target located in the ring vacuum

Page 6: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

• Left-right symmetric detector– simultaneous parallel and

perpendicular asymmetry determination

• Large acceptance– covers 0.1GeV2 ≤ Q2 ≤ 1GeV2

– out-of-plane measurements

• DRIFT CHAMBERS– momentum determination,

particle identification• CERENKOV COUNTERS

– electron/pion discrimination• SCINTILLATORS

– TOF, particle identification• NEUTRON COUNTERS

– neutron determination• MAGNETIC COILS

– 3.8kG toroidal field

The BLAST Spectrometer

DRIFT CHAMBERS

CERENKOVCOUNTERS

SCINTILLATORSNEUTRON COUNTERS

TARGET

BEAM

BEAM

Page 7: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

BLAST: Present Configuration

Page 8: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Detector Performance• All detectors operating at or near designed level

– Drift chambers ~98% efficient per wire– TOF resolution of 300ps

• Clean event selection– Cerenkov counters 85% efficient in

electron/pion discrimination– Neutron counters 10% (25-30%) efficient in

left (right) sectors• To be improved further

• Reconstruction resolutions good but still being improved

current goal

p 3% 2%

0.5° 0.3°

0.5° 0.5º

z 1cm 1cm

Page 9: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Page 10: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

ep Elastic Kinematic Correlation

Page 11: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Asymmetries AL and AR

Page 12: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

GE/GM from ep Elastic

Page 13: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

GE/GM Comparison between BLAST and JLab

Page 14: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Inclusive H(e,e’) Cross Sections TL TT from MC

Page 15: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Inclusive H(e,e’) Cross Sections from Data

Page 16: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Motivation I: Why Deuteron• N-N Interaction• Deuteron as test-bed for N-N interaction models THE 2-nucleon bound state

• D-wave admixture … Tensor force Model predictions vary from 4% to 7%

• Deuteron as neutron target understand Deuteron structure

Page 17: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

• Loosely-bound deuterium readily breaks up

electromagnetically into two nucleons

– e + d e’ + p + n

• Most generally, the cross section

can be written as

:

• In the Born approximation,

• vanishes in the L = 0 model for the deuteron (i.e. no L = 2 admixture)

– Measure of L = 2 contribution and thus tensor NN component

– Reaction mechanism effects (MEC, IC, RC) convoluted with tensor contribution

• “There is no direct measure of the tensor component.” -- somebody• provides a measure of reaction mechanisms

• Useful for extraction of Gne

• Beam-vector dilution (h•Pz) gotten from analysis

Deuteron Electrodisintegration

S h,Pz ,Pzz S0 1PzAdV PzzAd

T h Ae PzAedV PzzAed

T

Ae AdV Aed

T 0TdA

AedV

N)Ne',e(d

Page 18: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Beam and Target Performance• Beam fills to 175mA with 25min lifetime, average polarization = 65% ± 4%• Deuterium polarization in tri-state mode

– (Vector, Tensor) :

(-Pz, +Pzz) ( +Pz, +Pzz)

(0, -2Pzz)• Flow = 2.2 1016 atoms/s, Density = 6.0 1013 atoms/cm2

• Luminosity = 4.0 1031 /cm2/s @ 140mA• Target polarizations from data analysis: Pz = 88% ± 4%, Pzz = 65% ± 2%

Page 19: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Motivation II: Why T20

• e-d elastic scattering: GC GM GQ

GQ > D-state > Tensor Force• Rosenbluth Separation

• 3rd Measurement to separate 3 form factors

• Tensor Asymmetry in e-d elastic scattering

Page 20: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

e-d Elastic Event Selection

Timing Cuts Coplanarity: =1o

• Need clean e-d elastic sample• e-d Elastic rate ~ 3% of coincident rate by one positive and

one negative charge scattered into either sector.

EverythingColpanarityKinematics

Full cuts

Page 21: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Kinematics:pe

=24MeV d=1o

… …

Mass: timing & trackingBlue: everythingRed: after coplanary cut

Deuterons

Protons

+ ?

e-d Elastic Event Selection

e- left, d+ right

e- right, d+ left

Page 22: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Preliminary T20 Result

Page 23: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

From Measurements of the Elastic Vector Asymmetry AV

ed

Page 24: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Deuterium Wave Functions• The NN interaction conserves only total

angular momentum• Spin-1 nucleus lies in an L = 0, 2

admixture ground state:

• A tensor component must be present to allow L = 2

• Fourier transform into momentum space:

• L = 2 component becomes dominant at pM ~ 0.3GeV

(Bonn Potential)

(Bonn Potential)

R0(r) , R2(r)

˜ R 0(p) , ˜ R 2(p)

mdr R0 r Y110

md r R2 r Y112md r

Mnpnp ppp2

1prrr

R0 r ˜ R 0 p , R2 r ˜ R 2 p

Page 25: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Deuteron Density Functions• Calculate the density functions:

• One-to-one correspondence between md and the (PZ,PZZ) polarization states:

• In the absence of a tensor NN component, these plots are spherical and identical• Famous “donut” and “dumbbell” shapes

mdr ' md

r md

r

md 1 1 1 PZ ,PZZ 1,+1 md 0 0 1 PZ ,PZZ 0,- 2

0 r '

'1 r

PZZ

PZ

(-1,+1) (+1,+1)

(0,-2)

Page 26: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Missing Mass• Only the e- and p+ are measured

– actually measure d(e,e’p)X and thus need cuts to ensure that X = n

• Define “missing” energy, momentum, and mass:

• Demanding that mM = mn helps ensure that X = n

• Momentum magnitude corrections greatly improve mM spectra

EM md Ep ,p M

q

p p , mM EM

2 pM2

Page 27: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Missing Momentum

• Good MC agreement up to pM = 0.5GeV/c

Left Sector Electron Right Sector Electron

Page 28: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Beam-Vector Asymmetry

Page 29: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Beam-Vector Asymmetry (cont.)

Page 30: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Tensor Asymmetry Results

Page 31: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Tensor Asymmetry (cont.)

Page 32: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Potential Dependence

• Monte Carlo for Bonn, Paris, and V18 potentials compared to BLAST data

• Potential dependence small compared to MEC and IC contributions

Page 33: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Determination of hPz

Page 34: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

D(e,e’n) Kinematic Distribution

Page 35: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Missing Mass from D(e,e’n) QES

Page 36: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

GE/GM for the Neutron from D(e,e’n) QES

Page 37: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

GnM

Page 38: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

GnE from D(e,e’n)

Page 39: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

Conclusions and Outlook

• World-class data for GpE/Gp

M , GnE/Gn

M , D(e,e’) elastic T20 , D(e,e’p) QES AV

ed and ATd,, Inclusive H(e,e’)X and

D(e,e’)X

• Analysis still in progress

• Many other channels to be analyzed: H(e,e’p)H(e,e’n) , H(,n) , D(,pn) , … etc.

• Continuing to take data on D until June (?); expect to at least double data set (or more!)

• Shut down and decommission; relocate detectors and remap BLAST field

Page 40: BLAST: A Detector for Internal Target Experiments

U. Kentucky, 31 March 2005

The BLASTers