buka i vibracija

of 148/148
- .. t l r l I l I I I PROF. DR DRAGAN CVETKOVIC ASS. MR MOMIR PRASCEVIC . ··-. - ··········· BUKA I VIBRACIJE I \ ZBIRKA ZADATAKA SA TEORl.JSKIM OSNOVAMA t:. ;.:; :1i> I $!li' ( IZDAVACKA JEDINICA UNIVERZITETA U NISU

Post on 12-Dec-2015

118 views

Category:

Documents

23 download

Embed Size (px)

DESCRIPTION

Buka i Vibracija

TRANSCRIPT

  • -..

    t l

    ~ r l I

    l I I

    I

    PROF. DR DRAGAN CVETKOVIC ASS. MR MOMIR PRASCEVIC

    . -. -

    BUKA I VIBRACIJE I \ ZBIRKA ZADATAKA SA TEORl.JSKIM OSNOVAMA

    ~ t:.

    ;.:;

    :1i>

    I $!li' (

    IZDAVACKA JEDINICA UNIVERZITETA U NISU

  • i I ..

    Prof. dr DRAGAN CVETKOVIC, dip/. i11g. Ass. mr MOMIR PRASCEVIC. dip/. ing.

    BUKA I VIB.RACIJE Zbirka zadataka sa teorijskim osnovama Prvo izda1ve. 1998. ~od.

    ; l

    . -. Na. osno_~l! p~luke Nastavno _naucnog veca Fakultet~ zastite na radu u Nisu, broj 03-. . 612/10 od "9. decembra 1998. godine rukopis je odobren ia stampu kao pomocni

    udzbenik. : ..

    h:daiac ..:

    Izdavacka jedinica Univerziteta u Ni5u Nis, Univerzitetski trg 2

    Za izdamca; ,

    Prof. dr BRANIMIR DORDEVIC, rektor Univerziteta u Ni5u

    Gfa1111i i odgo~omi urednik -Prof. dr VESELIN ILIC

    Rece11ze111i

    Prof. dr DRAGAN VELICKOVIC, redovni profesor Fakulteta zastite na radu u Ni5u Doc. cir SLA VKA MITIC, docent Fakulteta zastite na radu u Ni8u

    Te/111icki ured1iik Darko Mihajlov, dip!. ing. mas.

    Stampa .: 1

    DIGP "PROSVETA" NIS

    l "

    Tira~ 200 primeraka

    ISBN 86-7181-038-0

    1. KINEMA TIKA VIBRACIJA 1.1 Defi11icije 1.2 Vektorsko prikazivanje oscilacija 1.3 Slaganje sinhroni/1 kolinearnih oscilacija . IA Slaganje asinhronih:kolinearnih:osdlacija .. 1.5 Prikazivanje oscilacija kompleksnini brojem Zadaci

    Resenja zadataka

    2. DINAMIKA VIBRACIJA 2.1 Sistemi sajednim stepenom slobode kretanja 2.2 l'rincipi izolacije vibracija 2.3 Sistemi sa dva stepena slobode kretanja Zadaci

    Resenja z.adataka

    3. FIZICKA I FIZIOLOSKA AKUSTIKA 3.1 Os.no'!ni pojmovi o zvukll

    .....

    . .. ..

    3.2 AkustiCka talasna jednaCina - .: ..,. 3.3 Intenzitet zvllka i gustina akusticke energije

    . "IO,-. 3.4 Nivo zvllka .......... -' ..

    ~.: -- 3.5 Subjektivnajalina zvuka 3.6 Glasnost zvuka

    3.7 S11bjektivnajatina slolenog zvuka 3.8 Teiinske krive

    3.9 Ekvivalentni nivo

    --'::--.._

    7

    11

    12

    14 . _: 15

    16 19 25 .

    45

    49 55

    ' 57

    61 69

    89

    93 93

    100 101 103 104 104 105 107

  • 3.10 Frekvencfjrki spektar buke 3.11 Kriterfj11mi za procenu itetnog dejstva buke Zadaci

    Reienja zadataka

    , 4. KOMUNALNA BUKA '.

    -: ....

    4.1 Prostiranje buke na olvor~n~n:a'.pr-ostoru 4.2 Slabijenje 11ivoa buke zbog efekta sredine 4.3 Sma11je11je niva bttke barijerama 4.4 Sma11je11je nivoa buke ze/eni/om 4.5 Proracm1 11ivoa gaobracajne buke Zadaci

    Reie11ja zadataka

    5: PROSTORNA AKUSTIKA 5.1 Sopstve11efrekvencije ogranicenog prostora

    l i, 5.2 Koejicijent apsorpcije 5.3 l'reme reverberacije 5.4 E11ergija zvuka 11 prostorijama velikog koejicijellta apsorpcije 5.5 Z v11c11a izolacija

    :.i 5.6 K/agifikacija pregrada po ko11strukciji ,_.. 5.7 Zvul11a izolacijajednostmki/1 pregrada '''J 5.8 Dvustrlike.pregrade 111 r 5.9 Deena ZVllCllB izolacije pregrade f.fl.I Zadnci

    ;.o I Re!e11ja zadataka 1-(iJ

    ;:..~.PRILOG ~ tl. LITERATURA

    109

    111

    117 127

    159 163 166 168 172

    173 179 185

    207

    211

    212 213

    215 217 219 220 223 225

    229 239

    279

    295

    Podmcje buke i vibracija je predmet obavezne nastave i istraiivanja u okviru raznih oblasti tehnickih, prirodnih i dru.Stvenih nauka, kako na visokoskolskim ustanovama, tako i na institutima sirom sveta. Danas je to samostalna naucna oblast koja je nastala iz spoja inicnjerskih disciplina, akustike i oscili:J.cija mehanickih sistema, pre svega iz potrebe stvaranja detaljne slike o fenomenima buke i vibracija, neizbeinim pratiocima i sastavnim cin iocima savremenog iivota. ' . Prirec!ena zbirka zadatakq- sadrzi_ "J-.ateriju koja se u olwiru predmeta. "Buka i vibracije" i "Buka u zivotnoj sredini" predaje studentima trece godine studija na Fakultetrt zaitite na radu Univerziteta u Nisu. Kroz pomenute predmete buka i vibracije se posmatraju sa inie11jerskog aspekta, sa ciljem matematickog utemeljenja, rttvrdivanja uzroka generisanja, i posledice koje se preslikavaju na. sredinu u kojoj covek iivi i radi, kao i njihovog prepoznavanja, merenja i saniranja. Sadriaj i obim zbirke koncipirani SU tako a:i. It vecem delu odgovaraju nastavnom planu i programu za ove predmete. Grupa zadataka iz svake oblasti propra.Cena je izvodima iz teorije sa brojnim tabelama i dijagramima, koji po svom sadriaju omogueavaju resavanje postavljenih problema bez kori~cen,ja dodatne iiterature. Zadaci Sil koncipirani na taj naein da korisnika zbirke postepeno llVOde u datu problematiku. Realno prisustvo fenomena buk.e i vibracija It industrijskom ambijentu i zivotnoj sredini opredelilo je autore da u zbirku uvri;te zadatke i proraeune koji se odnose na konkretne i pragmaticne probleme. Zbirkaje pre svega namenjena studentima Fakulteta.zastite na radu, ali se autori nadaju daje mogu koristiti i studenti drugih tehnickih fakulteta na kojima se kroz . odgovarajuce kurseve izucavaju bitka i vi.bracije, a takode i inienjeri razlicitih struka koji se u svojim istraiivanjima i praksi srecu sa problemima iz ote obl.-isti.

    Autori se srdacno zahvalju.ju recenzetim(L rf.oc. dr Slavki Mi#c i prof. dr Draganu Velickovi6U. na korisnim iugestijania i uloienom trudu oko recenzije ove zbirke. Sve eventualne sugestije i.primedbe od strane citalaca, koje bi doprinele pobolj8anju kvaliteta zbirke i ukazale na moguce propuste, bice rado prihvacene;

    .. .

    Nis, decembar 1998. godine Autori

  • I I

    . ..... ;.

    . '. ;

    .;

    KINEMATIKA ..... >='.;:._; ..:...

    VIBRACIJA

  • . I Kinematika vibracija '\

    ., . ..,

    ~ ~ ....

    Sadnaj

    1.1 Definicije 11 1.2 Vektorsko prikazivanje oscilacija 12

    lJ S/aga11je sinhronill kolineamih oscilacija 14 lASlaganje asinhronih kolineamih oscilacija 15

    1.5 Prikaziva11je oscilacija kompleksnim brojem 16

    Zadaci 19

    25 =

    Ree11ja zadataka

    "

    Spisak korisienih oznaka

    Simbol [iedinica 1

    ~.. . ., .

    a [mis"} -A. [mls2] -Av [mls2] -

    A, [m] -f[Hz]-

    L. [dB] -L. [dB] -

    /l -r [m]-

    t [s] -T[s] -

    v [mis] -x [m]-

    .i: [mis] -.'i [m/s2] -

    y [ml-

    y [mis} -); [mls2] -

    VeliCina

    Ubrzanje Amplituda ubrzanja Amplituda brzine Amplituda pomeraja u z-pravcu Frekvencija Nivo ubrzanja Nivo brzine Prirodan iii ceo broj Vektor polofaja Vreme Perioda Brtina Pravougla koordinata, Pomeraj u x-pravcu Brzina u x-pravcu Ubrzanje u x-pravcu Pravougla koordinata, Pomeraj u y-pravcu

    .z [ml-

    Brtina u y-pravcu Ubrtanje u y-pravcu Pravougla koordinata, Pomeraj u z-pravcu

    z [mis] - Brzina u z-pravcu z [mls2] - Ubrzanje u z-pravcu

    f. [m] - Kompleksna vrednost pomeraja a,1(1,8 [ 0 ] - Fazni ugao

    ro [!Is] - Krufoa ucestanost, Ugaona brzina

    Teorijske osnove I ~,:

    ' ..

    I,:

    I

    '

    \

  • a I Kinematika uibracija

    ..

    :. '

    Konstante

    Oznaka Vred11ost Velicina

    ,,

    .Ki LAz, !=Osrp1 koeficijent i=I n

    K2 LA- sinrp. / I koeficijent /=I

    10-{j m/s 2 ' referentna vrednost za ubrzanje ao Vo 10-9 m/s referentna vrednost za brzinu

    A

    s .

    l

    Teorijske osnoue , ..

    1.1 Definicije Vibracija u opstem smislu predstavlja oscilatomo kretanje mehanickog sistema pri cemu su pomeranja taeaka sistema mala u poredenju sa dimenzijama samog sistema. Interval ponavljanja naziva se period vibracije T [s], a njegova reciprocna vrednost frekwmcija /[Hz]. U okviru materije koja je izlo:ZCna u ovom kursu, pod pojmom vibracija podrazumevaju se ne'.Zeljene oscilacije mehanickog sistema, odnosno sisttma materijalnih tacaka, koje u realnim uslovima za posledicu. imaju. negativ.rie. aku.sticke efekte,. zamor materijala

    : odgovomih delova sistema, kao i havarije celokunih sistema i postrojenja. -Za neko telo kaze se da vibrira ukoliko oko svog ravnotefoog polofaja izvodi oscilatomo kretanjc. Inzenjerska praksa uglavnom poznaje visekomponentne vibracije razliCite po frekvenciji, fazi i amplitudi. Nosilac informacije o vibraciji kao dinamickom procesu je signal predstavljen u obliku vremenske funkcije - tafasni oblik vibracije. Klasifikacija signala prema karakteru oscilovanja moze se izraziti po vise osnova. Jedan od kriterijttma je podela na: Periodicne signale, kod kojih se posmatrana velicina ponavlja u jednakim

    vremenskim intervalima. Najjednostavniji oblik periodicnih signala su hannonijski signali (slika 1.1) ciji se talasni oblik matematicki moze predstaviti kao:

    z(t> = A: cos (at 'P ), i(t) = -roA= sin (at tp) =-A. sin (at rp 1 (1. l)

    z(t) = -ro2 A: cos (at

  • ~jf I Kinematika uibracija Signali vibracija uglavnom su slucajnog karakten:i, sa vise razlicitih frekvencija zastupljenih u procesu oscilovanja koje se ne mogu identifikovati u talasnom obliku. Kvantifikacija pojedinih vrednosti vibracionih signala, zna"llajnih za analizu dinamickog procesa, zahteva frekvencijsku analizu. Amp/ituda vibracije, kao jedan od parametara kojim se ocenjuje vibracioni proces, maze bi ti kvantifikovana na vise nacina _u _zavisnosti od funkcije cilja sprovedene analize: Vred11ost od ,;rha do vrha (peak, tg peak) je znacajan parametar kod analize

    pomeranja pri vibracijama u smisiu razmatranja maksimalnog naprezanja iii zamora materijala u mehanickom sklopu; Vr!11a vrednost (peak 1alue), A,; je parametar posebno koristan za izrafavanje nivoa kratkotrajnih vibracija bez obzira sto vremenska istorija. signala n!je detaljno . analizirana; Sred11ja l'rednost (avemge value), A,,, je parametar koji ukljucuje vremensku istoriju signala, ali bez izrafone prakticne vrednosti.

    7'

    A_., = ~ f lz(t~dt. 0

    Efektiv11a vrednost (root mean square value - RMS), A,1 , jc najpogodnija mera amplitude imajuCi u vidu vremensku istoriju signala i neposrednu povezanost

    velicine amplitude oscilovanja sa energctskim sadrfajem dinamickog vibracionog procesa.

    T

    A - _Tl J,,2 (t)dt . f - -

    0

    Za harmonijski periodieni signa: vafo sledece relacije: A. 1C A~r = ii = 2.fi. A_,, .

    1.2. Vektqrsko prikazivanje oscilacija Ako se tacka N(z,y) krece po krugu poluprcenika ON=A,, ugaonom brzinom w , tada se projekcija N' krece po horizo-ntalnoj osi izmedu tacaka N0 i N0 Polo:Zaj tacke N na krugu odreden je vektorom polofaja r, stalnog modula Ir!= A,, koji sa +Oz osom gradi ugao q> = (J)( ; polofaj tacke N' koordinatom z(I) =ON' - elonga-cijom kao funkcijom vremena (slika 1.2).

    1.Z Pravolinijsko harmonijsko

    osci/ova11je .A.y

    No ---~ z

    Kretanje tacke N' je pravolinijsko hannonijsko oscilovanje oko centra ~scilo~a~i~ 0 . ... Prethodno razmatranje, u smislu odrediv~~j~ p~loZa.ja: brzin~ i ubrzan1a osc1lu1uce tacke N', maze se analiticki predstaviti kinematick1m 1ednacmama.

    Pomeraj: . (1.2). z(I) =A= cos (llY- 'l'o ). ,.

    Maze se prikazati horizontalnom projekcijom vektora poloZa.ja, intenziteta A,' koji. rotira ugaonom brzinom co

    Brzina: . z(i) = v(t) = -{ll.4= sfo (ca -:- % ) = - A~ sin. (CIX - 'l'o). . (1.3 !. Mofo se prikazati horizontalnom projekcijom vektora brzine, inten.ziteta ~:' ko11

    . m b,...,.inom co kao i vektor pomeraja, ali za ugao 1C/2 ispred n1ega. rotira ugaono ~ . .

    u brza11je: r. . ) (1.4) z(t) = a(t) = -(!)2 A= cos (ca - 'Po)= -Aa cos (at - 'l'o . . . 2

    Mofo se prikazati horizontalnom projekcijom vektora ubrtanja, mten7:1tetad w_ A~' .. . b . om w kao i vektor pomeraja, ali za ugao .1' ispn: n1ega.

    kOJI ronra ugaonom rzm . . ) odnosno za ugao n/2 ispred vektora brzme (shka 1.3 .

    Vektorsko prikazivanje osc!l~cija ~ ~d posebnog je znacaja za slucaJ sloz7_mh harmonijskih oscilacija istih frekvenc11a. -

    1 kada 1e sinhronih ko/meanuh osct actja, . potrebno odrediti rezultujuc~ k_~eta_nJ~ Dve sinhrone kolinearne os~JlactJ': 1st1h frekvencija, a razlicitih ampbtud~ 1 faza, mogu se predstaviti sledeCim izraz1ma:

    z,(t)=A=, cos(ll1+

  • I Kinematika uibracija ._,: "-------'--..:..Lo-___________ _

    1.3 Slaganje sinhronih kolinearnih oscilacija

    Dve sinhrone kolineame osc.ilacije, razlicitih amplituda i pomeranja faza z1 (t) =A,, cos(ox+rp1 ),

    . '.1

    mogu se sloziti u jednu kolineamu oscilaciju . :: z(t) = Z1 (I)+ Zi(t) =_A:, cos( ox+ 'P1) +A:, cos( ax+ 'Pi), : z(t) =A:, (cos ax cos 'P1 -sin ox sin

  • ~~J I Kinematika vibraci'Ja ...... :.&1...,,.'.Z ._ _________ ,,. __________________ ...__ ___ _ Ukoliko su krufue frekvencije samerljive: t1 = pt, ~2 =qt , rezultujuce kretanje ima period oscilovanja: -.

    .'\ 2H T=-= p1j =qT2, ro . (1.15) gde su:

    P i q - celi uzajamno_prosti brojevi, T1 i T2 - periodi komponentnih vibracija,

    OJ - najveci zajednicki s~dflalac frekvencija OJi i a>z.

    1.5 Prikazivanje oscilacija komplek_snim brojem Praktieni za~tevi odbacili su vektorsku metodu kao nepogodnu za razmatranje slozenih modela. Koriscenjem pogodnosti koje za ovakve probleme pmfa kompleksni racun, razvijen je metod prikazivanja slofonih oscilacija pomocu kompleksnih brojeva. Sllslinsko objafojenje postupka moze se predstaviti na modelu slaganja ortogonalnih oscilacija (slika 1.4). Kinematicke jednacine tacke N', koja se

    kn~ce po horizontalnoj x-osi, date Sil Vektori ta/asanja u kompleksnoj

    x(t) = A cos ax, . x(t) =-OJA sin (J){'

    x(t) =-OJ 2 A cos ax. (1.16)

    Kinematicke jednacine tacke N", koja se krece po vertikalnoj y-osi, date Sil izrazima:

    y(t} = A sin ax, y(t) =OJA cos c,

    ji(t} = -ru2 A sin c. {l.17)

    1.4

    J..iy '

    ravni

    ..... ,...

    x

    Rec je o dvema ortogonalnim oscilacijama sa razlikom faznih uglova t:.); i=.J::l =eitr/2 =cos%+isin%, ! ,; Ae1" = Af(tp}; 'P = c,

    (1.18)

    I mod1=W=Jx2+y2; arg=tp,

    .(

  • -~ J . . l

    I . l

    . . ... > ..

    \

    : / ~~:..

    ~ _. .

    :.... - .

    --- - ... - - ...

    ..

    KINEMATIKA-.YIBRACIJA ~: ...:.. .

    - zadaci -'.

  • '\

    ~

    "'.-

    i l

    I ~

    I t.mr-.-Zadaci or.t-it F!Wi1f1ljl Odrediti efektivne vrednosti brzine i ubrzanja komponentnih oscilacija

    1.1. kolineame asinhrone oscilacilacije, cija se vrednost pomeraja menja po zakonu:

    z(t) = 20sin 80/ +I Osin 20/ + 15sin 201 [mm].

    UW!illl Materijalna tacka izvodi harmonijske oscilacije krufoe frekvencije 4s" 1 . 1.2. Napisati jednacinu oscilovanja ako u pocetnom trenutku pomeraj ima

    vrednost 25mm, a brzina oscilovanja 0.1 mis .

    p:~wq-,;JJI Materijalna tacka M istovremeno vrsi_ dva uzajamno nonnalna oscilovanja, 1.3. predstavljena jednacinama

    x1 (t) = A sin (J)t i y 1 (t) = A cos (J)t . Napisati jednacinu put:mje materijalne tacke.

    Materijalna tacka M izvodi istovremeno dve uzajamno normalne oscilacije, 1.4. predstavljene jednaCinama

    1.5.

    x(t) =IO sin 2t y(t) = 5sin ( 2t +%)rem]. Odrediti jednacinu putanje i brzinu tacke M nakon m3 s.

    Pomeraj neuravnotefone mase menja se po zakonu: z(t) =A:, sin (J)t +A,, cos