burn-in & test socket workshop · burn-in conventional test flow assembly pre-b.i. test flow Ł...

64
March 4 - 7, 2001 Hilton Mesa Pavilion Hotel Mesa, Arizona Sponsored By The IEEE Computer Society Test Technology Technical Council Burn-in & Test Socket Workshop IEEE IEEE COMPUTER SOCIETY

Upload: others

Post on 20-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

March 4 - 7, 2001Hilton Mesa Pavilion Hotel

Mesa, Arizona

Sponsored By The IEEE Computer SocietyTest Technology Technical Council

Burn-in & TestSocket Workshop

IEEE IEEE

COMPUTERSOCIETY

Page 2: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

COPYRIGHT NOTICE• The papers in this publication comprise the proceedings of the 2001BiTS Workshop. They reflect the authors’ opinions and are reproduced aspresented , without change. Their inclusion in this publication does notconstitute an endorsement by the BiTS Workshop, the sponsors, or theInstitute of Electrical and Electronic Engineers, Inc.· There is NO copyright protection claimed by this publication. However,each presentation is the work of the authors and their respectivecompanies: as such, proper acknowledgement should be made to theappropriate source. Any questions regarding the use of any materialspresented should be directed to the author/s or their companies.

Page 3: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

Session 5Tuesday 3/06/01 8:00AM

Methods In Burn-in And Test

�Active Thermal Control During Burn-in�Ken Heiman - Micro Control Company

�Embedded Test Solution For Burn-in�Charles McDonald - LogicVision, Inc.

Presented By: Steve Pateras - LogicVision, Inc.

�Next Generation Burn-in & Test System For Athlon Microprocessors: 'HybridBurn-in'�

Mark Miller - Advanced Micro Devices

Technical Program

Page 4: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

1

ACTIVE THERMALCONTROL DURING

BURN-IN

Ken Heiman

Page 5: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

2

� New VLSI and Microprocessor devices aredissipating higher power during burn-in.

� New semiconductor technologies draw highcurrents when applying accelerated voltagesduring burn-in.

� Active thermal control during burn-in isrequired to manage all of the environmentaland production yield variables.

Semiconductor Problems

Page 6: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

3

� Power dissipation: How do you add and removeheat?

� Temperature control: How do you control DUTtemp so that all devices are aged equally?

� DUT to DUT power variations: How do youcontrol +/- 50% DUT power variations?

� DUT to DUT thermal resistance variations:Imperfections of DUT and heat sink surfacesproduce differences in thermal resistances.

New burn-in problems

Page 7: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

4

0 to 5 Watt Burn-in

� Low power� Unlidded socket, no

heat sink.� Oven air flow used to

heat DUT.� Difficult to control

uniform DUT temp.

Page 8: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

5

0 to 10 Watt Burn-in

� Lidded socket with aheat sink.

� Oven air flow used toheat DUT.

� Difficult to controluniform airflow +/-20% typical

� Power per DUT is notuniform +/- 50%

Page 9: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

6

0 to 25 Watt Burn-inActive thermal control

� Lidded socket with aheat sink,temp sensor,heater, and PIDcontroller per DUT

� Oven air flow used tocool DUT.

� Non-uniform airflow iscompensated for byindividual DUTheaters.

Page 10: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

7

0 to 50 Watt Burn-inActive thermal control

� Lidded socket with aheat sink,temp sensor,heater, and PID tempcontroller per DUT

� Individual DUT airflow control

� High current regulatorsrequired (25 amps perDUT)

Page 11: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

8

0 to 150 Watt Burn-inActive thermal control

� Liquid cooled heatsink.

� Individual DUT tempcontrol

� Low thermal resistance� High current regulators

(75 to 100 amps perDUT)

Page 12: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

9

Page 13: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

10

Temperature Control @50 WRt= (T1- T2)/Pwatts

� Dut Case temperturewithout active thermalcontrol with uniformairflow.

� 30 watt DUT +/- 50%, Rt = 1°C/Watt +/-20%.

� Worst case DUT tempdistribution 48°C(+30°C,-18°C).

� Dut Case temperturewith active thermalcontrol.

� 30 watt DUT +/- 50%, Rt = 1°C/Watt +/-20%.

� Worst case DUT tempdistribution +/-5°C

Page 14: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

11

Temperature Control @100 WRt= (T1- T2)/Pwatts

� Dut Case temperturewithout active thermalcontrol. Liquid cooledheat sink.

� 100 watt DUT +/- 50%, Rt = .8°C/Watt +/-20%.

� Worst case DUT tempdistribution 112°C(+64°C,-48°C).

� Dut Case temperturewith active thermalcontrol.

� 100 watt DUT +/- 50%, Rt = .8°C/Watt +/-20%.

� Worst case DUT tempdistribution +/-5°C

Page 15: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

12

� Air and liquid cooled heat sinks are required for highpower burn-in.

� Active thermal control is required to compensate forairflow variations.

� Active thermal control is required to compensate for DUTto DUT power variations.

� Active thermal control is required to compensate forvariations in thermal resistance between DUT and heatsink.

� Active thermal control is required to maintain +/- 5° Ccase temperature uniformity.

Conclusions

Page 16: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

Embedded Test Solution for Burn-In

Charles McDonaldLogicVision, Inc.

email:[email protected]

Page 17: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 2

Agenda� What is Embedded Test?

� How can Embedded test enhance Burn-In

� Cost Savings with embedded test

� Hardware Implications

� Summary

Page 18: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 3

Time

Evol

utio

n

The Challenge forSemiconductor Testing

Conventional ATE

Semiconductors

�Moore�s Law�DSM

VDSMSOC

Test Challenge

Page 19: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 4

SOC Test Requirements

W(5FB 8A3)R(4C2 9E0)�

FunctionalTester

W(5FB 8A3)R(4C2 9E0)�

LogicTester

W(5FB 8A3)R(4C2 9E0)�

MemoryTester

W(5FB 8A3)R(4C2 9E0)�

Mixed-SignalTesterµP

Memory

MemoryMemory

Core

Logic

Logic

Logic

Logic

MixedSignalCore

Page 20: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 5

SOC Test - Embedded Test Solution

LogicVision�s Embedded Test

W(5FB 8A3)R(4C2 9E0)�

Low CostDigital Tester

�Test is embeddedduring the frontend of the designprocess

�Allows �divide-and-conquer�approach

�Each embeddedtest controllercosts about 1,000gates of siliconpenalty

µP

Memory

MemoryMemory

Logic

Logic

Logic

MixedSignal

Logic

Core

Core

Page 21: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 6

Conventional ATE

Time

Evol

utio

n

Semiconductors

�Moore�s Law�

The Solution for SemiconductorTesting

Embedded Test

and Exte

rnal Test

Embedded

Test

and External Test

Page 22: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 7

ASIC/SOC Test Solution

µC

Mem

ory

Mem

ory

Mem

ory

Mem

ory

Pll

LogicLogic

Logic

CORE

Page 23: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 8

Embedded Memories

Mem

ory

Mem

ory

Mem

ory

Mem

ory

µP Mem

ory

Mem

ory

Mem

ory

Mem

ory

Pll

LogicLogic

Logic

CORE Pll

Page 24: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 9

ASIC/SOC With EmbeddedMemory Test

µC

Mem

ory

Mem

ory

CORE

Mem

ory

Mem

ory

Pll

LogicLogic

Logic

CORE

bb

Cntrl

Addr

Din

Dout

BISTBIST CollarsCollars

Memories

bb

Memories

Page 25: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 10

logicBISTTM

System CK

Patte

rn G

ener

ator

Patte

rn G

ener

ator SOSI SM

SOSI SM

SOSI SM

SOSI SM

Sign

atur

eSi

gnat

ure

CK3

SOSI

Control &Control &At-SpeedAt-SpeedTimngTimng

SMSM

CK2CK2CK3CK3

System CK

System CK

CK3

CK2

LogicLogic C3 C3

LogicLogic C1 C1LogicLogic C2 C2

enabletestmode

boundary scan

Scan Chains

Scan Chains

Scan Chains

Page 26: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 11

ASIC/SOC With Embedded LogicTest

System CKSystem CK

PAT

TE

RN

GEN

ER

AT

ION

PAT

TE

RN

GEN

ER

AT

ION

SOSI SM

SOSI SM

SOSI SM

SOSI SM

SIG

NA

TUR

ESI

GN

ATU

RE

CK3

SOSI

Control &Control &At-S peedAt-S peedTimngTimng

SMSM

CK2CK2CK3CK3

System CKSystem CK

CK3

CK2

Logic C3Logic C3

Logic C1Logic C1

Logic C2Logic C2

boun dary scan

System CKSystem CK

PAT

TE

RN

GEN

ER

AT

ION

PAT

TE

RN

GEN

ER

AT

ION

SOSI SM

SOSI SM

SOSI SM

SOSI SM

SIG

NA

TUR

ESI

GN

ATU

RE

CK3SOSI

Control &Control &At-S peedAt-S peedTimngTimng

SMSM

CCKK22CCKK33

System CKSystem CK

CK3

CK2

Logic C3Logic C3

Logic C1Logic C1Logic C2Logic C2

boun dary scan

µCCORE

Mem

ory

Mem

ory

Mem

ory

PllCORE

Mem

ory

Sys tem CKSystem CK

PAT

TE

RN

GEN

ER

AT

ION

PAT

TE

RN

GEN

ER

AT

ION

SOSI SM

SOSI SM

SOSI SM

SOSI SM

SIG

NA

TUR

ESI

GN

ATU

RE

CK3SOSI

Control &Control &At-S peedAt-S peedTimngTimng SMSM

CCKK22CCKK33

System CKSystem CK

CK3

CK2

Logic C3Logic C3

Logic C1Logic C1Logic C2Logic C2

boun dary scan

System CKSystem CK

PAT

TE

RN

GEN

ER

AT

ION

PAT

TE

RN

GEN

ER

AT

ION

SOSI SM

SOSI SM

SOSI SM

SOSI SM

SIG

NA

TUR

ESI

GN

ATU

RE

CK3SOSI

Control &Control &At-S peedAt-S peedTimngTimng SMSM

CCKK22CCKK33

System CKSystem CK

CK3

CK2

Logic C3Logic C3

Logic C1Logic C1Logic C2Logic C2

boun dary scan

System CKSystem CK

PAT

TE

RN

GEN

ER

AT

ION

PAT

TE

RN

GEN

ER

AT

ION

SOSI SM

SOSI SM

SOSI SM

SOSI SM

SIG

NA

TUR

ESI

GN

ATU

RE

CK3SOSI

Control &Control &At-S peedAt-S peedTimngTimng SMSM

CCKK22CCKK33

System CKSystem CK

CK3

CK2

Logic C3Logic C3

Logic C1Logic C1Logic C2Logic C2

boun dary scan

System CKSystem CK

PAT

TE

RN

GEN

ER

AT

ION

PAT

TE

RN

GEN

ER

AT

ION

SOSI SM

SOSI SM

SOSI SM

SOSI SM

SIG

NA

TUR

ESI

GN

ATU

RE

CK3SOSI

Control &Control &At-S peedAt-S peedTimngTimng SMSM

CCKK22CCKK33

System CKSystem CK

CK3

CK2

Logic C3Logic C3

Logic C1Logic C1Logic C2Logic C2

boun dary scan

Logic

LogicLogic

Page 27: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 12

Test AccessAutomatic Generation and Assembly

of Boundary Scan Cells and Pads

IEEE 1149.1 TAP Controller withEmbedded Test Controller

Instructions

Automated Hook-up fromEmbedded Test Controllers

µC

Mem

ory

Mem

ory

Mem

ory

Mem

ory

Pll

LogicLogic

Logic

CORE

Boundary Scan & Pads

Boundary Scan & Pads

Boun

dary

Sca

n &

Pad

s Boundary Scan & Pads

TDI TDOTCK TMS

IEEE 1149.1 TAP

Low CostDigital Tester

Page 28: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 13

Customer Test Case

LogicBIST

MemBIST

TAP

� 500K Gates� 503 I/O Pins� 150MHz fmax� Full Boundary

Scan� 95% Bi-directs� 99.6% LogicBIST

coverage

Page 29: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 14

ATE Comparison

CapabilityPins

Vector MemoryScan Memory

PMU'sEPA

FrequencyATE Cost

Functional

5128M

128M512

175ps400MHz

>$3M

Structural

5100K

01

2ns20MHz *<$100K

* 300MHz High speed Clock card

Burn-InTester?

Page 30: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 15

Burn-In Conventional Test Flow

Assembly

Pre-B.I. Test Flow� Logic/MemBist� At-Speed Funct� ATPG� DC I/O� Iddq

IX9000� 512 pin� 400MHz

Pre-B.I. Test

Final Test Flow� Logic/MemBist� At-Speed Funct� ATPG� DC I/O� Iddq

IX9000� 512 pin� 400MHz

Final Test

Burn-In Flow� toggle�serial scan

Burn-In

� clock� dc drivers

Wafer Sort Flow� Logic/MemBist� Low Speed Funct� ATPG� DC I/O� Iddq

Wafers

IX9000� 512 pin� 400MHz

Wafer Sort Test

Page 31: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 16

Burn-In Embedded Test Flow

Assembly

Burn-In Flow� logic/membist�membist�I/O structural

Wafer Sort Flow� logic/Mem BIST� I/O Structural� I/O Leakage� Static Idd

Wafers

Low Cost ATE� 30 pin� 20MHz channel� 300MHz Clock� High Current PS

Wafer Sort Test Burn-In

Burn-In System� clock� vec memory

Final Test Flow� Logic/membist� At-Speed Funct� ATPG� DC I/O� Iddq

High End ATE� 512 pin� 400MHz

Final Test

Page 32: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 17

Embedded Test Burn-In Test FlowLoad Units

Time0

Room Temp At-Speed TestTime0.1hrs Go/NoGo +Yield info

Low Speed Structural testTime0 + 24hrs Complete Cycle

Room Temp At-Speed TestTime0 + 24.1hrs Go/NoGo &

Diagnostics

Unload Final Test

Page 33: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 18

Logic BIST Low PowerMode

TAP

PreScaler

PLL

clkPad clkPLL

clkR

atio

test

Clk

enablestatus

freez

eMod

e

slowShiftMode 3

slow

Shift

En

Logic BIST Controller

prpgmisr

BIST clock tocore

0 0 00 0 10 1 00 1 11 0 01 0 11 1 0

1 1 1 1/8 speed 1/4 speed

7/8 speed 3/4 speed 5/8 speed 1/2 speed 3/8 speed

Full speed

slowShiftMode

Selectable Low-speed scan shift

At-speed scan launch & capture

BIST clock to core

SEfre

ezeC

lk

Page 34: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 19

Savings with Embedded Test Flow

·$450/hr·Test time·up-time

Wafer Sort Test

·$150/hr·< Test time·> Up-time

Pre Burn-In

Test

Final Test

·Reduced Config·< Test Time

Burn-In

·Early Detection·At-Speed Test·Go/No-Go·Diagnostics

$1.00 +$1.30 +$0.20 +$0.20

Total $2.70

Page 35: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 20

Hardware Implications

� IC Hardware� Logic and MemoryBist� Bi-directs on I/O�s� Global latched PASS/FAIL signal

� Burn-in Hardware� 10K vector memory 100K to initialize JTAG� 100K vector memory for diagnostics� Embedded Test Software for diagnostics� High Speed Clock for at-speed test� Use of existing JTAG on board O.K.

Page 36: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

BiTS 2001 21

Summary� Embedded Test allows for real at-speed

testing during burn-in� Implementation of embedded test reduces

overall test costs� Process steps can be reduced or eliminated

with embedded test� Manufacturing defects through burn-in can be

detected earlier in process� Expensive Final test ATE resources can be

implemented at burn-in test

Page 37: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

1

Next GenerationBurn-in & Test System

for AthlonMicroprocessors :�Hybrid Burn-in�

Mark MillerSr. Member of Technical StaffAthlon Product Development

Advanced Micro Devices

Page 38: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

2

What Is �Hybrid Burn-in� ?� New generation of burn-in technology at AMD that has

evolved due to the unique requirements of the Athlonand Duron microprocessor product lines

� More electrical features than �traditional� burn-in (minus ovens)

� Individual DUT temperature, voltage, and frequency control

� Able to execute X86 code and BIST code individually

� Failed units can be shutdown individually to prevent damage

� Real time individual data collection and communication to host

� �HBI� is actually a multiple position, independentlyprogrammed, low pin-count, tester that is able toeconomically run long test times (burn-in durations) atunique burn-in conditions

Page 39: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

3

The Purpose of Burn-in Is Not New :

� There is always a quality driven requirement toaccelerate various silicon failure mechanisms so thatinfant mortals can be removed from the generalpopulation before shipment to customers

� Silicon failure acceleration methods include :

�Temperature�Voltage�Circuit test / node toggle coverage�Current density (frequency)

Page 40: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

4

Why Hybrid Burn-in ?� New silicon technologies and high product transistor

counts ( >>50 million! ) preclude the use of traditionalmethods to accelerate failure mechanisms during burn-in

� Wide variations of static power ( ∆∆∆∆10W+ across wafer lots )

� High device currents at burn-in conditions ( up to 30A )

� Sensitive C4 chip-attach technology needs tight temp control

� Lower voltages with tighter tolerances are required by products

� Higher frequencies. External : 100-200MHz. Internal : >1 GHz

� Complex test interfaces require more flexible �drivers� to controlBIST, SCAN, JTAG interfaces, and X86 code execution

� Data collection required to support product qualifications and tomeasure continuous improvement.

Page 41: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

5

Transistor Leakage History

AMD Microprocessor Static Leakage

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00 0.00 0.00Transistor Drive Strength

Tran

sist

or O

FF L

eaka

ge

Am486

Athlon

K6

Page 42: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

6

Temperature and Voltage Effects

Static Current vs. Voltage and Temperature

0

5

10

15

20

25

30

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Voltage

Cur

rent

130C

90C

25C

Page 43: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

7

Thermal Runaway� Thermal runaway is a destructive positive feedback condition

that can occur when inadequate thermal control is combinedwith a silicon process technology where leakage increasesexponentially with temperature

Page 44: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

8

Overheating Causes Failures

� The original Athlon qualification lots had failuresdue to thermally over-stressed C4 bumps. This wasdue to the wide variation in device leakage currentsand inadequate (inflexible) thermal control duringthe accelerated life testing

< C4 bump delamination

Page 45: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

9

Chernobyl EffectTest sockets can be destroyed by thermal runaway.Active thermal control with constant die temperaturefeedback insures stable temperature and preventsproduct or hardware damage

Page 46: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

10

What�s Different ?� 35 amps per DUT available vs. ~2 amps in traditional BI

� Individual Vcc control from 1 V � 3 V

� Individual thermal control from 25C - 140C

� Additional test access through JTAG and AMD special test modes

� Ability to run ATPG patterns through SCAN port with special clocks

� Independent test programming capability with visual C control code

� Directed testing with X86 code that is loaded to Athlon�s cache

� Higher node toggle coverage possible with tester interface

� More tightly controlled temperature allows shorter BI duration

� Individual voltage stress is possible

� Real time data collection per unit

Page 47: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

11

Burn-in Specs Drive Test Costs

� Inadequate thermal capability at burn-in can force aproduct�s back-end flow to include an expensive VLSItest insertion to screen out units that might thermallyrunaway

� �Hybrid burn-in� customizes conditions per DUT andeliminates the requirement for a pre-burn-in test

ATE

Traditional Burn-in

ATE

ATE

Hybrid Burn-in

ATE

Not Required

Page 48: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

12

Block Diagram of Traditional Burn-in System

Athlon

Athlon

BIB

multipleDUTs

Single Common Power Supply

for 100�s of DUTs

PassiveHeatsinks

Airflow

DRIVER

CommonClock

Generation

CommonTest

PatternGeneration

Oven Required

Page 49: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

13

Block Diagram of Hybrid Burn-in System

Athlon

ActiveHeatsink

Fan

TemperatureSense

Control

Control

IndependentThermal

ManagementCircuits

IndependentVoltageSupply Source

Sense

IndependentFrequency

Control

IndependentTest Pattern

Control

X86 based tester running standard C++ code independently controls Athlons DUTs and their support circuitry

Drive

Compare

- NO Oven Required -Standard circuit boards and components are used

Page 50: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

14

Hybrid Burn-in Hardware Configuration

TesterSystem

ControllerBoard

K7

Tray- 10 Athlons per tray- Modular configuration

Rack- 6-7 Trays per rack- Ethernet access

TRAY # 6

TRAY # 5

TRAY # 4

TRAY # 3

TRAY # 2

TRAY # 1

K7

K7 K7

K7 K7

K7 K7

K7 K7

Page 51: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

15

Hybrid Burn-in System Configuration

Cell- 3 racks / cell

Site- 100s of cells per site

Cell-hostcomputer

Site-hostcomputer

AMD

Cell #1 Cell #2 Cell #3

Page 52: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

16

K7 Hybrid Burn-in Prototype Chassis

Page 53: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

17

Operator Interface via Touch-screen

Page 54: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

18

AMD Burn-in Facility

Page 55: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

19

Hybrid Burn-in Benefits� Handles very high leakage (fast $$) devices that otherwise

could not be burned in

� Removes the need to prescreen parts based on power orthermal requirements. All types of parts are run togethergreatly simplifying production logistics and reducing cost

� Customized conditions for individual parts on the fly

� Able to detect over-temp and fail conditions so that individualDUTS can be shut off to insure that hardware is not damagedand neighbor parts are not affected. One failing unit cannotbring down the entire BIB

� Real time data collection on every unit at programmable timeintervals allows a new level of insight to the real productionconditions and the failure rates over time.

Page 56: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

20

Benefits (Continued)

� Microsoft visual C++ test programming environment that isvery similar to that used in many simple VLSI testers

� Higher capacity, better accelerations (therefore shorterdurations) vs. traditional burn-in

� Improved quality : HBI is really another test insertion that iscapable of detecting and excluding defective parts

� Quality is also improved because parts can be thoroughlytested at many temperatures during the burn-in/test cycle andthis is usually impractical on short ATE test insertions

� Standard support components can be used since only the DUTand socket reach temperatures in excess of 50C. No ovens orspecial high temperature rated boards are required

Page 57: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

21

HBI Voltage Control Data

Hybrid Burn-in Voltages(samples at 10 minute intervals on production Athlons)

0200400600800

1000120014001600

1.66

1.68 1.

7

1.72

1.74

1.76

1.78 1.

8

1.82

1.84

1.86

1.88 1.

9

1.92

1.94

1.96

Mor

e

Volts

Qty

. of m

easu

rem

ents

Page 58: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

22

HBI Thermal Control DataTemperature Measurements from 100s of

Production Athlons With Wide Power Variations ( 10 min intervals )

0500

1000150020002500300035004000

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

Temperature (C)

Num

ber o

f m

easu

rem

ents

Page 59: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

23

HBI Fail Tracking in Time

Hybrid Burn-in Failure Monitor Time Logs

0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19 Normalized Time of Failure

Nor

mal

ized

Fai

lure

Qty

.

Select duration to achieve desired FIT rate (quality level)

Page 60: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

24

Tradeoffs� Initial capital cost is 3X higher than traditional burn-in but still

significantly less expensive than most commercial full featuregeneral purpose, burn-in systems

� Hardware reliability is worse simply because there are morecomplex active components to fail than traditional burn-in

� More complex setup and programming. No DIP switches!Need VLSI test engineers to develop C++ burn-in programs

� Need higher level of operator training at burn-in vendors dueto more complex interfaces. This also increases per insertioncost charged by vendors

� Clean and fully air-conditioned facility is required

� Lead time to fabricate is 3X longer than traditional BI due tomany long lead components (Tantalum caps, etc)

Page 61: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

25

Status

� Hybrid burn-in is in full scale ramp at AMD with tens ofthousands of positions up and running Athlon production

� Individual thermal, voltage, and frequency control has allowedmany Athlons to ship that would have otherwise been unableto burn-in under a traditional set of conditions

� AMD has internally managed the design, procurement, andfabrication of the systems in order to achieve aggressiveschedule and cost goals.

Page 62: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

26

� Beyond Burn-in

� Demonstrating ATPG pass/fail testing to reduce high costVLSI tester loading

� Implementing full temperature range tests that are notpractical with high cost VLSI testers that must keep short testtimes

� Implementing more exhaustive commercial grade test flowsthat make full use of the burn-in hours to fully test products

� Demonstrating ATPG delay fault testing at rated productspeeds so that full vector sets are covered at high frequency

� Exploring full potential of unlimited JTAG access. Athlonutilizes many private instructions that can be exercised duringburn-in

Page 63: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

27

Summary� Sub-micron products widely variable power dissipation requires

efficient thermal solutions with flexible feedback and control

� Ever lower voltages and higher DUT currents require dedicatedvoltage sources to compensate for the smallest voltage drops

� Higher product frequencies require site level clock generation

� Complex products require flexible, independent, patterngenerators to allow true �test during burn-in�.

� The challenge met by Hybrid Burn-in was to satisfythese new requirements of Athlon while providing anew cost effective burn-in architecture for the future

Page 64: Burn-in & Test Socket Workshop · Burn-In Conventional Test Flow Assembly Pre-B.I. Test Flow Ł Logic/MemBist Ł At-Speed Funct Ł ATPG Ł DC I/O Ł Iddq IX9000 Ł 512 pin Ł 400MHz

28

Acknowledgment

� Hybrid burn-in is a design evolution based on years ofprevious work by earlier AMD K5 and K6 engineeringteams in partnership with numerous sub-contractorsand component suppliers who have performedsuperbly to accomplish this project within the requiredscope and schedule.