cahpter xi cyril

19
 1 Chapter 11 Response Surface Methods and Other Approaches to Process Optimization

Upload: cyril-pilligrin

Post on 28-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 1/19

  1

Chapter 11 Response Surface

Methods and Other Approaches to

Process Optimization

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 2/19

  2

11.1 Introduction to Response

Surface Methodology Response Surface Methodology !RSM" is useful

for the modeling and analysis of programs in

#hich a response of interest is influenced $yse%eral %aria$les and the o$&ecti%e is to optimize 

this response.

'or e(ample) 'ind the le%els of temperature !(1"

and pressure !(2" to ma(imize the yield !y" of a

 process.

ε +=   "*! 21   x x f   y

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 3/19

  +

Response surface) !see 'igure 11.1 , 11.2"

-he function f is unno#n Appro(imate the true relationship $et#een y and

the independent %aria$les $y the lo#er/order

 polynomial model.

Response surface design

"*!"! 21   x x f   y E    ==η 

ε β β β β 

ε β β β 

++++=

++++=

∑∑∑<==   ji

 jiij

i

iii

i

ii

k k 

 x x x x y

 x x y

1

2

1

0

110  

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 4/19

 

A seuential procedure

-he o$&ecti%e is to lead

the e(perimenter rapidly

and efficiently along a

 path of impro%ement

to#ard the general%icinity of the optimum.

'irst/order model 34

Second/order model

Clim$ a hill

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 5/19

  5

11.2 -he Method of Steepest Ascent

Assume that the first/order model is an adeuate

appro(imation to the true surface in a small ragion

of the (6s. -he method of steepest ascent) A procedure for

mo%ing seuentially along the path of steepest

ascent.

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 6/19

  7

8ased on the first/order

model*

-he path of steepest ascent 99

the regression coefficients

-he actual step size is

determined $y the

e(perimenter $ased on process no#ledge or other

 practical considerations

∑=

+=k 

i

ii x y1

0:::   β β 

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 7/19

  ;

<(ample 11.1

 =  -#o factors* reaction time , reaction

temperature =  >se a full factorial design and center points

!see -a$le 11.1")

1. O$tain an estimate of error 2. Chec for interactions in the model

+. Chec for uadratic effect

A?O@A ta$le !see -a$le 11.2"

-a$le 11.+ , 'igure 11.5

-a$le 11. , 11.5

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 8/19

 

Factor 1 Factor 2 ResponseStd Run Block A:Time B:Temp yield

minutes degC percent

1 7 { 1 } 1 1 !"#!

2 $ { 1 } 1 1 %&#"

! ' { 1 } 1 1 %&% 2 { 1 } 1 1 %1#'

' " { 1 } & & %&#!

$ % { 1 } & & %&#'

7 1 { 1 } & & %&#7

( ! { 1 } & & %&#2" ( { 1 } & & %&#$

1 2:   0. 0.;;5 0.+25 y x x= + +

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 9/19

  B

-he step size is 5 minutes of reaction time and 2 degrees '

hat happens at the conclusion of steepest ascentD

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 10/19

  10

Assume the first/order model

1. Choose a step size in one process %aria$le* ( &.

2. -he step size in the other %aria$le*

+. Con%ert the ( & from coded %aria$les to the

natural %aria$le

∑=

+=k 

iii

 x y1

0

:::   β β 

 j j

ii

 x x

∆=∆

9:

:

β β 

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 11/19

  11

11.+ Analysis of a Second/order

Response Surface hen the e(perimenter is relati%e closed to the

optimum* the second/order model is used to

appro(imate the response.

'ind the stationary point. Ma(imum response*

Minimum response or saddle point.

Eetermine #hether the stationary point is a point

of ma(imum or minimum response or a saddle

 point.

2 2

0 1 1 2 2 12 1 2 11 1 22 2 y x x x x x xβ β β β β β ε  = + + + + + +

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 12/19

  12

-he second/order model)

bxy

bBx

Bbx

Bxxbx

s

1

s

F0

222

11211

2

1

2

1

0

21::

2

1

:

29::

29:29::

 and

:

:

:

*

*FF::

 s

kk 

k k  x

 x

 x

 y

+=

−=

=

=

=

++=

β 

β 

β β 

β β β 

β 

β 

β 

β 

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 13/19

  1+

Characterizing the response surface)

 = Contour plot or Canonical analysis

 = Canonical form !see 'igure 11.B"

 = Minimum response) i are all positi%e

 = Ma(imum response) i are all negati%e

 = Saddle point) i ha%e different signs

22

11::

k k  s   ww y y   λ λ    +++=  

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 14/19

  1

<(ample 11.2

 = Continue <(ample 11.1

 = Central composite design !CCE" !-a$le 11.7 ,'igure 11.10"

 = -a$le 11.;  ANOVA for Response Surface Quadratic Model

Analysis of variance table [Partial sum of squares]Sum of Mean

Source Squares ! Square Value Prob "

)odel 2(#2' ' '#$' 7"#(' * &#&&&1

 A 7.92 1 7.92 111.93 < 0.0001

B 2.12 1 2.12 30.01 0.0009

 A2  13.18 1 13.18 186.22 < 0.0001

B2  6.97 1 6.97 98.56 < 0.0001

 AB 0.25 1 0.25 3.53 0.1022 

Residual &#'& 7 &#&71

Lack of Fit 0.28 3 0.094 1.78 0.2897  

Pure Error 0.21 4 0.053

Cor Total 2(#7% 12

1 2 1 2

2 21 2

: ;B.B 0.BB 0.52 0.25

1.+ 1.00

 y x x x x

 x x

= + + +

− + −

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 15/19

  15

-he contour plot is gi%enin the natural %aria$les

!see 'igure 11.11"

-he optimum is at a$out

; minutes and 1;7.5

degrees

yield

 A : ti m e

    B

   :    t

   e

   m

   p

(&#&& (2#'& ('#&& (7#'& "&#&&

17&#&&

172#'&

17'#&&

177#'&

1(&#&&

7 $ # " ' %

7 7 # $ & ' $

7 ( # 2 ' 7 !

7 ( # 2 ' 7 !

7 ( # " & ( "

7 " # ' $ & $

'

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 16/19

  17

-he relationship $et#een ( and #)

 = M is an orthogonal matri( and the columns of

M are the normalized eigen%ectors of 8.

Multiple response)

 = -ypically* #e #ant to simultaneously optimizeall responses* or find a set of conditions #here

certain product properties are achie%ed

 = O%erlay the contour plots !'igure 11.17"

 = Constrained optimization pro$lem

"!F sxxMw   −=

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 17/19

  1;

11. <(perimental Eesigns for

'itting Response Surfaces Eesigns for fitting the first/order model

 = -he orthogonal first/order designs

 = G6G is a diagonal matri(

 = 2  factorial and fractions of the 2  series in

#hich main effects are not aliased #ith each

others = 8esides factorial designs* include se%eral

o$ser%ations at the center.

 = Simple( design

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 18/19

  1

Eesigns for fitting the second/order model

 = Central composite design !CCE"

 = n' runs on 2 a(ial or star points* and nC centerruns

 = Seuential e(perimentation

 = -#o parameters) nC and α

 = -he %ariance of the predicted response at ()

 = Rotata$le design) -he %ariance of predicted

response is constant on spheres

 = -he purpose of RSM is optimization and the

location of the optimum is unno#n prior to

running the e(periment.

xX)(X'x'x  1−=   2""!:!   σ  yVar 

7/25/2019 cahpter XI cyril

http://slidepdf.com/reader/full/cahpter-xi-cyril 19/19

  1B

   3 !n'"19 yields a rotata$le central composite

design

 = -he spherical CCE) Set  3 !"192 

 = Center runs in the CCE* nC) + to 5 center runs

 =  -he 8o(/8ehnen design) three/le%el designs

!see -a$le 11."

 = Cu$oidal region)

face/centered central composite design !or

face/centered cu$e"   3 1

nC32 or +