carbon budget in a. crassicarpa pulpwood plantations in peatland

34
Workshop Enhancing Sustainability of Forestry Practices on Peatlands June 27, 2012, IICC Bogor Basuki Sumawinata, G. Djajakirana, Suwardi, Darmawan Carbon Budget in Acacia crassicarpa pulpwood plantation in Peatlands

Upload: globalenvironmentcentre

Post on 29-Jan-2018

793 views

Category:

Education


0 download

TRANSCRIPT

Workshop Enhancing Sustainability of Forestry Practices on Peatlands June 27, 2012, IICC Bogor

Basuki Sumawinata, G. Djajakirana, Suwardi, Darmawan

Carbon Budgetin Acacia crassicarpa pulpwood plantation in Peatlands

∆ABG - ∑E = ?

ABG : above and below ground

E : emission

BG ?below ground ≈ peat mass

peat mass:

• depth ~ surface level variation

• bulk density vs depth

• depth vs subsidence

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R0742

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R0743

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R0744

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R3701

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R3702

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R3703

Microrelief of plots on Acacia Plantation in Bukit Batu, Riau

surface level variation

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R0742

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R0743

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R0744

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R3701

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R3702

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

BBHA Plot R3703

Microrelief of plots on Acacia Plantation in Bukit Batu, Riau

surface level variation

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

WKS Plot J131

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

SBA Plot P21

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

SBA Plot P22

900

1100

Re

lati

ves

He

igh

t (c

m)

10 m

SBA Plot P23

surface level variation

Microrelief of plots on Acacia Plantation in Sei Tapah, Jambi and Sei

Baung, South Sumatra

Height

Differences

(cm)

BBHA/R074 BBHA/R370 WKS/J13 SBA/P2

1 2 3 4 1 2 3 1 1 2 3

0-10 24 24 17 30 19 41 36 38 19 37 29

10-20 32 18 22 30 32 31 26 38 35 18 25

20-30 19 14 18 18 26 18 16 15 13 15 19

30-40 8 9 10 10 12 9 9 7 6 5 3

40-50 5 12 9 3 6 2 5 1 1 1 1

50-60 3 6 6 0 3 0 2 0 0 0 1

60-70 0 0 0 0 2 0 2 0 0 1 0

Variation of height difference of peatland surface in

measurements plots in Riau, Jambi, and South Sumatra

surface level variation

bulk density vs depth

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0-10 10-2020-3030-4040-5050-6060-80

g/cm

3

Fra

ctio

n

Depth (cm)

9 years A. crassicarpa Plantation on Deep Peat

Plot #1

<106 µ

1000-106 µ

2000-1000 µ

5000-2000 µ

> 5000µ

BD

(b)

0.000.020.040.060.080.100.120.140.160.180.20

0%10%20%30%40%50%60%70%80%90%

100%

g/c

m3

Fra

ctio

n

Depth (cm)

Pristine Forest

<106 µ

1000-106 µ

2000-1000 µ

5000-2000 µ

> 5000µ

BD

(a)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0%10%20%30%40%50%60%70%80%90%

100%

g/cm

3

Fra

cion

Depth (cm)

9 years A. Crassicarpa Plantation on Deep Peat Plot

#2

<106 µ

1000-106 µ

2000-1000 µ

5000-2000 µ

> 5000µ

BD

BD of upper layer of the pristine forest

is comparable and even slightly higher

than of the plantation area

Within the depth of only the upper 1

m, variations can be easily measured. It

is much more difficult to get data at this

detail for the lower depth.

Riau, deep peat

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0%10%20%30%40%50%60%70%80%90%

100%

g/c

m3

Fra

ctio

n

Depth (cm)

A.Crassicarpa Plantation on Moderate Peat

(ex overlogged area)

<106µ

1000-106µ

2000-1000µ

5000-2000µ

>5cmµ

BD

(a)

-

0.05

0.10

0.15

0.20

0.25

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

g/c

m3

Fra

ctio

n

Depth (cm)

A.Crassicarpa Plantation on Shallow Peat

(ex over drained and burn area)

<100µ

1000-100µ

2000-1000µ

5000-2000µ

>5000µ

BD

(b)

The value of the upper layer BD

in South Sumatra (shallow peat)

is higher than the locations with

deeper peat but the dominance

of coarse fraction is still high.

This is maybe an indication of

the compaction of the entire

depth.

South Sumatra (shallow peat) and Jambi (moderate peat)

bulk density vs depth

0

50

100

150

200

250

300

-20-18-16-14-12-10

-8-6-4-2024

0 1 2 3 4 5 6 7 8 9 10 11 12

Rain

fall (m

m/w

eek)

WT

(cm)

SM

(%)

Su

bsi

den

ce (

cm)

Month

9 years A. crassicarpa Plantation on Deep Peat

Rainfall A. Crassicarpa plot 1 A. Crassicarpa plot 2

A. Crassicarpa plot 3 A. Crassicarpa plot 4 Water Table

Soil Moisture

0

50

100

150

200

250

300

-20-18-16-14-12-10

-8-6-4-2024

0 1 2 3 4 5 6 7 8 9 10 11 12

Rain

fall (mm

/we

ek)

WT (cm

)SM

(%)

Su

bsi

den

ce (

cm)

Month

6 years A. crassicarpa Plantation on Deep Peat

Rainfall A. crassicarpa plot 1 and 2 A. crassicarpa plot 3

Water Table Soil Moisture

Riau, deep peat

0

100

200

300

400

500

600

700

800

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9 10 11 12

Rain

fall (m

m/w

eek)

WT

(cm)

SM

(%)

Su

bsi

den

ce (

cm)

Month

Pristine Forest (MTH)

Rainfall Pristine ForestWater Table Soil Moisture

Subsidence: compaction, depth, BD

-150

50

250

450

650

-12

-7

-2 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Rain

fall (m

m/w

eek)

WT

(cm)

Sm

%

Su

bsi

den

ce (

cm)

A. crassicarpa Plantation on Moderate Peat (ex logged-over area)

Rainfall Pipe A Pipe B

Water table Soil Moisture

Month

(a)

-50

50

150

250

350

450

550

650

-12

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Rain

fall (m

m/w

eek)

WT

(cm)

SM

(%)

Su

bsi

den

ce (

cm)

Month

Secondary Forest

Rainfall Pipe A

Water Table Soil Moisture (b)

Jambi, moderate peat Subsidence over varied between plots even in the

same peatland characteristic and management

0

50

100

150

200

250

300

350

-12

-10

-8

-6

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13R

ain

fall (m

m/m

ing

gu

)

WT

(cm)

SM

( %)

Su

bsi

den

ce

(cm

)

Month

1 year A. crassicarpa on shallow peat(ex- over drain and burnt area)

Rainfall Plot 1 Plot 2

Water Table Soil Moisture

0

50

100

150

200

250

300

350

-12

-10

-8

-6

-4

-2

0

2

4

0 2 4 6 8

Rain

fall (m

m/m

ing

gu

)

WT

( cm)

SM

( %)

Su

bsi

den

ce (

cm)

Month

4 years A. crassicarpa on shallow peat(ex- over drain and burnt area)

Rainfall Plot 1 Plot 2

Soil Moisture Wate Table

Subsidence: compaction, depth, BD

South Sumatra, shallowpeat

AG ?above ground ≈ biomass

• living trees

• dead wood

• litter

0

50

100

150

200

250

300

350

4000

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Rain

fall (mm

/we

ek)

Wate

r Table

(cm)

g C

-CO

2/m

2 /d

ay

WeekRainfall A.crassicarpa 3yr A. crassicarpa 1 yr

Pristine Forest Water Table A. crassicarpa 3 yr Water Table A. crassicarpa 1 yr

Water Table Pristine Forest

CO2 fluxes in 3-year old are greater than in 1-year old A. crassicarpa

The highest CO2 fluxes are recorded in week 7 while the lowest water table

measurement recorded in week 30. This indicates no direct correlation between CO2

fluxes and water level.

In a non stagnated condition, CO2 fluxes from pristine forest is quite high

CO2 Fluxes in Riau site

Emission: measurement data

-50

0

50

100

150

200

250

300

350

4000

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Week

Rain

fall (m

m/w

eek)

WT

(cm)

C-C

O2g

/m2/d

ay

Rainfall A. crassicarpa 3 years Secondary Forest

A. mangium 2 years (Mineral Soil) Water Table A.crass 3 y Water Table Secondary Forest

CO2 fluxes in mineral soil are less than in peat soil

CO2 fluxes from forest plantation almost similar compared to secondary forest

In week 35 – 51, the water level increased, however CO2 fluxes remained high

CO2 Fluxes in Jambi site

Emission: measurement data

0

50

100

150

200

250

300

350

4000

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Rain

fall (mm

/we

ek)

Wate

r table

(cm)C

-CO

2g/

m2

/day

weekRainfall A. crassicarpa 4 yr A. crassicarpa 4 yr (-R-L)

A. crassicarpa 1 yr Abandoned Paddy Field (Mineral Soil) Water Table A. crassicarpa 4 yr

Water Table A. crassicarpa 1 yr Water Table Abandoned Paddy Field

CO2 fluxes in 4-yr old Acacia (with litter & fine roots) are > 4-yr old Acacia

(without litter and fine roots) > 1-yr old Acacia > abandoned paddy field

In 1-yr old Acacia, the highest water level recorded in week 39 – 41, however the

CO2 fluxes are at the lowest level

CO2 Fluxes, South Sumatra site

Emission: measurement data

0

100

200

300

400

500

6000

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Wate

r Table

(cm)

Soil M

ostu

ire (%

)g C

-CO

2/m

2 /d

ay

Week

Water Table A. crassicarpa 3 years A.crassicarpa 3yr A.crassicarpa 3 yr -R-L Soil Moisture

Comparison of CO2 Fluxes in 3-yr old A. crassicarpaWith and Without Litter and Fine Roots

Highest CO2 fluxes were observed when Soil Moisture is between Field Capacity and Wilting Point.And CO2 fluxes were observed at the lowest level when Soil Moisture is lower than Wilting Point, during week 19-30 when the water level is at minimum level. The difference between CO2 fluxes from Accacia plants with and without litter and roots reflected the difference of respiration speed and root ‘s exudate.

Emission: measurement data

0

50

100

150

200

250

300

350

400

450

500

550

6000

5

10

15

20

25

30

35

40

45

50

55

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

g C

-CO

2/m

2/d

ay

Week

Comparison between A. Crassicarpa 3 year and without root & litter in Jambi site

Water table A.crassicarpa 3 yr

A.crassicarpa 3 yr (-R-L) Soil Mostuire A.crassicarpa 3 yr

Soil Mostuire A.crassicarpa 3 yr (-R-L)

Wate

r Table

(cm)

Soil M

ostu

ire (%

)

Emission: measurement data

0

50

100

150

200

250

300

350

400

450

500-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Rain

fall (mm

/we

ek)

Wate

r Table

(cm)m

gC /

m2 /

day

Week

Rainfall A. crassicarpa 3 years A. crassicarpa 3 years -R-L

A. crassicarpa 1 year Pristine Forest Water Table Pristine Forest

Water Table A. crassicarpa

CH4 Fluxes in Riau site

There is no correlation between CH4 fluxes with water table level

Emission: measurement data

-50

0

50

100

150

200

250

300

350

400-20

-10

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

CH

(mm

/wee

k)

WT

(cm)

mg

C-C

H4

/m2/d

ay

Week

CH4 Fluxes in Jambi site

Rainfall A. crassicarpa 3 yearsSecondary Forest A. mangium 2 years (mineral soil)Water Table A. crassicarpa 3 yr Water Table Secondary Forest

Emission: measurement data

0

50

100

150

200

250

300

350

400-10

-5

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

Rain

fall (mm

/we

ek)

Wate

r Table

(cm)

C-C

H4

mg/

m2

/day

Week

CH4 Fluxes South Sumatra site

Rainfall A.crassicarpa 4 yr

A.crassicarpa 4 yr (-R-L) A. crassicarpa 1 yr

Abandoned Paddy Field Water Table A. crassicarpa 4 yr

Water Table A. crassicarpa 1 yr Water Table Abandone Paddy Field

Emission: measurement data

Land Characteristics Landuse (age)CO2 Fluxes

(ton C-CO2 ha-1y-1)

CH4 Fluxes

(kg C-

CH4ha-1y-1)

Mineral soil Acacia mangium, 2y 20.23 -2.12

Mineral soil Acacia mangium, 2y –R-L 11.58 -9.25

Mineral soil Eucalyptus, sp 2y 18.10 -4.94

Mineral soil Abandoned paddy field 15.97 1.31

Peat soil, deep Acacia crassicarpa 1y 35.77 -7.33

Peat soil, deep Acacia crassicarpa 3y 52.43 3.86

Peat soil, deep Acacia crassicarpa 3y –R-L 26.04 7.62

Peat soil, deep Pristine forest 33.04 5.42

Peat soil, deep Pristine forest –R-L 20.31 5.15

Peat soil, deep Open area (no vegetation) 11.06 -6.67

Peat soil, moderate Acacia crassicarpa 3y 34.31 12.94

Peat soil, moderate Acacia crassicarpa 3y –R-L 27.16 8.30

Peat soil, moderate Secondary (logged-over) forest 36.52 8.30

Peat soil, shallow Acacia crassicarpa 4y 37.59 -9.25

Peat soil, shallow Acacia crassicarpa 4y–R-L 26.38 14.83

Note: -R-L: without fine root and litter

Year-round Fluxes of CO2 & CH4 in A. crassicarpa and MHW forest in Peatland

Biomass Study

• Litter Fall

• Biomass Data

• Development DBH-Biomass Model

• Characteristic of Plant Biomass

Litter Fall of Acacia crassicarpa

Month Bukit Batu, Riau Sei Tapah, JambiSei Baung, South

Sumatra

Februari 2011 93.59 46.42 19.83

Maret 71.43 37.85 55.33

April 52.17 31.79 45.83

Mei 48.49 121.98 34.33

Juni 45.48 55.40 45.67

Juli 40.91 30.39 49.50

Agustus 43.36 54.41 31.00

September 51.26 38.96 40.83

Oktober 48.52 31.71 29.33

Nopember 48.66 27.36 29.83

Desember 40.57 76.42 40.33

Januari 2012 31.04 86.33

Total (g/m2/y) 637.54 583.73 508.17

Total (ton/ha/y) 6.38 5.83 5.08

Biomass study

Biomass study

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11

Bio

ma

ss (

%)

Month

Litter Decomposition Rate of A. crassicarpa

on the Top Layer at Riau, Jambi, and South

Sumatra sites

BBHA WKS SBARiau Jambi South Sumatra

35% remains

Relationship Between DBH with Height and Age A. Crassicarpa in Riau site

Biomass study

Biomass Equation for Riau site :

a= 192.196 b= 0.763 r2= 0.972

WT= a(D^2*H)^b

WT : Total Weight Wr : Root Weight Wk : Knot Weight

Ws : Stem Weight Wb : Branch Weight Wl : Leaves Weight

Biomass study

Biomass Equation for WKS :

WT= a(D^2*H)^b

WT : Total Weight Wr : Root Weight Wk : Knot Weight

Ws : Stem Weight Wb : Branch Weight Wl : Leaves Weight

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

20

40

60

80

100

120

140

0 1 1 2 2 3 3 4 4 5 5

% W

Tota

l wei

ght

Age

WT' (kg) Wr' (%) Wk' (%) Ws' (%) Wb' (%) Wl' (%)

a=142.471b= 0.544

r2= 0.494error= 7.674

Biomass study

y = -14361x2 + 13528x - 95212R² = 0.999

y = -14008x2 + 10451x - 51986R² = 0.969

y = -18648x2 + 14015x - 80660R² = 0.962

-

50,000

100,000

150,000

200,000

250,000

0 1 2 3 4 5 6

BBHA

WKS

SBA

Age

(Years)

Riau Prov. Jambi Prov. South Sumatra Prov.

Popula-

tion

Biomass/

tree (kg)

Total

Biomass

(ton)

Popula-

tion

Biomass/

tree (kg)

Total

Biomass

(ton)

Popula-

tion

Biomass/

tree (kg)

Total

Biomass

(ton)

1 1,933 12.78 24.7 1,767 20.67 36.5 1,800 22.33 40.2

2 2,267 53.04 120.2 1,800 56.95 102.5 1,600 75.95 121.5

3 1,967 91.72 180.4 1,700 84.12 143.0 1,533 121.66 186.5

4 1,700 126.53 215.1 1,233 105.79 130.4 1,033 160.46 165.8

5 1,411 157.94 222.9 1,010 123.66 124.9 821 194.17 159.4

Biomass study

Carbon Budget

Description (kg C/ha) Year I Year II Year III Year IV Year VDeadwood stock from last year - 11,006 22,319 litter stock from last year 140 749 1,312 1,711

litter fall this year 400 1,999 3,000 3,577 3,706 deadwood this year 13,758 16,892 22,822 E0 11,000 11,000 11,000 11,000 11,000

Decomposition of litter 260 1,391 2,437 3,178 3,521 Decomposition of deadwood 2,752 5,580 9,028

260 1,391 5,188 8,757 12,549

Total C decomposition 11260 12,391 16,188 19,757 23,549 litter stock 140 749 1,312 1,711 1,896 Deadwood stock - 11,006 22,319 36,113 Total stock 140 749 12,318 24,030 38,009 HarvestPlant remain 44,571 Root remain 2,500 Reject wood/plant 11,143 shrub 1,000

budget 96,222 55,000

Total C lost (kg/ha/5 y= 83,085 Sequestra-

tion 41,222

Tahun I Tahun II Tahun III Tahun IV Tahun V

deadwood stock from last year - 3,365 22,453

litter stock from last year 268 847 1,346 1,429

litter fall this year 766 2,150 3,000 2,736 2,620

deadwood this year - 4,206 24,702 13,788 E0 11000 11,000 11000 11000 11000

Decomposition of litter 498 1,572 2,500 2,654 2,025

Decomposition of deadwood - - 841 5,613 7,248 498 1,572 3,341 8,267 9,273

Total C decomposition 11,498 12,572 14,341 19,267 20,273

litter stock 268 847 1,346 1,429 2,025

deadwood stock - - 3,365 22,453 28,993

Total C stock 268 847 4,711 23,882 31,018 Harvest

Plant remain Kg C/ha 24,979

Root remain 2,500

Reject wood/plant 6,245

Shrub 1,000

budget 65,742 55000

Total C loss: 77,952 kg C/ha/5y sequestration 10,742

• Calculation of carbon budget in peatland using the model of

∆ABG - ∑E = ? is facing uncertainty with respect to

below ground carbon stock measurement/estimation due to

great variation in land surface and BD.

• An alternative concept of carbon budget calculation is by

considering all possibility of C sequestration from produced

biomass and the emission of just from the peat material

decomposition.

Conclusion

• Calculation of Carbon budget of Acacia Crassicarpa

plantation on peatland using the alternative concept shows

that the carbon budget tends to be positive depending on the

plantation management, in that the highest the production

the highest the sequestration.

• With a constant emission from peat decomposition, then

high production as the reflection of best fit management is

the measure for reducing emission.

Conclusion