carbon cullinane

Upload: nagwa-mansy

Post on 04-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Carbon Cullinane

    1/28

    Solvent Development for AqueousAbsorption/Stripping of CO 2

    The University of Texas at AustinJ. Tim Cullinane and Gary T. Rochelle

    April 27, 2004

  • 8/13/2019 Carbon Cullinane

    2/28

    Outline Overview Process Considerations Solvent Development

    Experimental Methods

    Development of Aqueous K +

    /PZ Other UT Research Activities

    Degradation

    Process Modeling Pilot Plant/Packing Selection

    Conclusions

  • 8/13/2019 Carbon Cullinane

    3/28

    U.S. CO 2 Emissions from Fossil Fuel

    Combustion by Sector Commercial

    4.8%

    Residential9.7% Power Plant - Petroleum

    2.0%

    Industrial31.8%

    Power Plant - Coal47.1%

    Power Plant - Natural Gas4.6%

    Total U.S. Emissions = 3635.7 Tg CO 2 Eq.Excludes Transportation, EPA (1999)

  • 8/13/2019 Carbon Cullinane

    4/28

    Advantages of Aqueous Absorption/Stripping

    Near Commercial Technology Process used for treating H 2 & natural gas MEA demonstrated on small coal plants Promoted K 2CO 3 used for H 2 treating

    Post-process Technology Development Lower cost and less risk to process Resolve problems in small pilot plants Demo Full-scale absorbers with 100 MW gas

    Problems 20 - 40% energy use High capital cost

  • 8/13/2019 Carbon Cullinane

    5/28

    Enhancing CO 2 Capture by Amines

    1. Contactor Development Packing

    2. Process Flowsheet Innovations Multi-pressure stripper

    Inter-cooling3. Energy Integration Power plant specific

    4. Engineering Development Large-scale equipment

    5. Solvent Development

  • 8/13/2019 Carbon Cullinane

    6/28

    CO2

    Capture by Amines

    Sour Gas10% CO 2

    2-4 mol H 2O/mol CO 2Sweet Gas1% CO 2

    Rich Amine Lean Amine Reboiler

    Absorber T = 4060 oC

    Stripper T = 100120 oC

    Cooler

    PCO2 * ~ 300 Pa

    PCO2

    * ~ 3000 Pa

    H = 20-25 kcal/mol CO 2

  • 8/13/2019 Carbon Cullinane

    7/28

    Solvent Development K +

    /PZ1. Thermodynamics2. Rates of Absorption3. Degradation

    4. System Modeling

    5. Pilot Plant

    Bench-Scale Work

    Fundamental

    Process Flowsheet

    Large-Scale Work

  • 8/13/2019 Carbon Cullinane

    8/28

    N NH H C

    O

    O

    N NO

    OH

    N

    +

    N O

    OH

    H

    N NO

    O O

    O

    O

    O OCO

    O

    O

    H

    H OO

    OH

    N NO

    OH C

    O

    O

    N NH H N+

    NH

    HH

    N N O

    O

    H

    CO2

    Absorption by K +/Piperazine

    +

    +

    +

    Carbonate Species

    Piperazine Species

    2+

  • 8/13/2019 Carbon Cullinane

    9/28

    PZ Speciation by 1H NMR

    NH

    CH2CH2

    NHCH2

    CH2

    NCH2

    CH2

    NCH2

    CH2

    CO

    CO

    O

    NHCH2

    CH2

    NCH2

    CH2

    CO

    NH

    CH2CH2

    NHCH2

    CH2

    NCH2

    CH2

    NCH2

    CH2

    CO

    OC

    O

    O

    NHCH2

    CH2

    NCH2

    CH2

    CO

    ONH

    CH2

    CH2

    NCH2

    CH2

    CO

    ONH

    CH2

    CH2

    NCH2

    CH2

    CO

    O

  • 8/13/2019 Carbon Cullinane

    10/28

    Wetted-Wall Column

    WWC(38 cm 2)

    N2

    CO 2

    Flow Controllers(4 6 L/min)

    Saturator

    (25 110o

    C)

    Heater (25 110 oC) Solution Reservoir

    (1000 cm 3)

    Condenser

    IR CO 2Analyzer

    Sample Port

    Pressure Control(35 60 psig)

    Pump(2 4 cm 3/s)

  • 8/13/2019 Carbon Cullinane

    11/28

  • 8/13/2019 Carbon Cullinane

    12/28

    Model Parameter Summary

    2037NMR, P CO2 *PZ, K +, CO 2, H 2O

    4063aNMR, P CO2 *PZ, CO 2, H 2O

    214UNIFACPZ, H 2O

    1204P CO2 *KHCO 3, K 2CO 3, H 2O

    6814Boiling pt. elev., P H2O *K 2CO 3, H 2O

    Data

    PointsParametersData TypesSystem

    a. 6 parameters for equilibrium constants also regressed

  • 8/13/2019 Carbon Cullinane

    13/28

    Loading (mol CO 2/mol PZ)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    F r a c

    t i o n o

    f T o

    t a l P Z

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    PZ

    H+PZCOO -

    PZH +

    PZ(COO -)2PZCOO-

    Total ReactiveSpecies

    Speciation in 1.8 m PZ at 60 oC~300 Pa ~10000 Pa

  • 8/13/2019 Carbon Cullinane

    14/28

    Loading (mol CO 2/(mol K+ + mol PZ)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    F r a c

    t i o n o

    f T o

    t a l P Z

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    PZ

    H+PZCOO -

    PZH +

    PZ(COO-

    )2

    PZCOO -

    Total ReactiveSpecies

    Speciation in 5.0 m K +/2.5 m PZ at 60 oC~300 Pa ~10000 Pa

  • 8/13/2019 Carbon Cullinane

    15/28

    Equilibrium in K +/PZ at 60 oC

    [CO 2(aq)] Absorbed (m)

    0 1 2 3 4

    P C O 2

    * ( P a

    )

    1

    10

    100

    1000

    10000

    1 . 8 m

    P Z

    3 . 6 m

    K + / 0

    . 6 m

    P Z

    3 . 6

    m K + / 1

    . 8 m

    P Z

    5 . 0 m

    K + / 2 .

    5 m P Z

    7 m ( 3 0

    w t % ) M E A

    6. 2 m

    K + / 1

    . 2 m

    P Z

  • 8/13/2019 Carbon Cullinane

    16/28

  • 8/13/2019 Carbon Cullinane

    17/28

    Normalized Flux at 60 oC

    P CO 2* (Pa)100 1000 10000

    N o r m a

    l i z e

    d F l u x

    ( m o

    l / P a - c m

    2 - s

    )

    1e-10

    5.0 M MEA

    3.6 m K +/0.6 m PZ

    3.6 m K +/1.8 m PZ

    6.2 m K +/1.8 m PZ

    3.6 m K +/3.6 m PZ

    2.5 m K +/2.5 m PZ

    5.0 m K +/2.5 m PZ

  • 8/13/2019 Carbon Cullinane

    18/28

    Absorption Rate in 5.0 m K +/2.5 m PZ

    P CO 2* (Pa)

    100 1000 10000

    N o r m a

    l i z e

    d F l u x

    ( m o

    l / c m

    2 - P a - s

    )

    1e-10

    1e-9

    40oC

    80 oC

    60 oC

    100 oC

    110 oC

  • 8/13/2019 Carbon Cullinane

    19/28

    Research Activities at UT Bench-scale

    Wetted-wall Column VLE, rates

    NMR speciation Degradation Other solid solubility, transport properties

    Modeling Thermodynamics Rate Process

    Pilot Plant Contactor Testing

    Solvent Testing

  • 8/13/2019 Carbon Cullinane

    20/28

    Oxidative Degradation of MEA

    OH CH 2 CH 2 NH

    H?

    O2

    NH 3

    Formaldehyde

    Formate, Acetate

    Rate is measured by NH 3 evolution from a sparged reactor vesselGas analysis is quick/liquid analysis requires long experimentsUncertainty in the stoichiometry of O 2 in the reaction

  • 8/13/2019 Carbon Cullinane

    21/28

    Degradation Results

    Conclusion: Mass Transfer Limited?

    45.816.7Air w/Agitation

    27.825.0Air

    Goff and Rochelle

    12.920.0Air Chi and Rochelle5.02.9Pure O 2Hofmeyer et al.

    2.61.050% O 2Girdler

    0.81.0Air Blachly and Ravner 0.40.006Air Rooney et al.

    Max. Rate(mM/hr)

    Gas Flow/Liq.Vol (min -1)

    SpargeGas

    Study

  • 8/13/2019 Carbon Cullinane

    22/28

    Process Modeling Explore Optimum Operating Conditions

    30

    40

    50

    60

    3 3.2 3.4 3.6 3.8 4 4.2 H e a

    t r e q u

    i r e m e n t

    ( k c a

    l / g m o

    l C O

    2 )

    lean loading (m)

    10

    5

    2.5

    P*CO2

    1.25 kPa

    optimumlean

    OptimalMEA

    40C Absorber 1.6 atm stripper

  • 8/13/2019 Carbon Cullinane

    23/28

    Process Configuration Explore unique flowsheets

    MultistageCompressor

    W=7.4 kc/mol CO 2

    CO 2130 atm

    Q=20 kc/mol CO 2

    118 C

    113 C

    Multipressure Stripper

    Leanldg=0.34

    Rich

    ldg=0.46 115 C

    4 atm

    2.8 atm

    2 atm

  • 8/13/2019 Carbon Cullinane

    24/28

  • 8/13/2019 Carbon Cullinane

    25/28

    Pilot Plant Operation NaOH/Air Screen packing areas

    Packing areas based on 0.75 H 2O/ft, 5 gpm/ft 2

    Solvent Simulation of absorber/stripper Quantify real solvent performance Includes impurities (Fe 2+, degradation, etc.)

    Packing Wetted Area (ft 2 /ft 3)CMR 2, plastic 27

    IMTP #40 44

    CMR 2, metal 48Montz B1-250 64Montz B1-350 91

  • 8/13/2019 Carbon Cullinane

    26/28

    Conclusions E-NRTL model describes speciation and VLE K + increases the amount of reactive species in

    solution CO 32-/HCO 3- is an effective buffer Apparent carbamate stability is increased w/ K +

    Solvent capacity increases with concentration andis comparable to MEA

    Habs can be lower than other amine-basedsystems and depends on the ratio of K +:PZ

    Absorption rate is 1.5 to 4 times faster than MEAor other amine-promoted K 2CO 3 solutions

  • 8/13/2019 Carbon Cullinane

    27/28

    Acknowledgements

    Texas Advanced Technology Program:

    contract 003658-0534-2001 George Goff Degradation Tunde Oyenekan Process Modeling Dr. Ben Shoulders The University of

    Texas at Austin, Department of Chemistry

  • 8/13/2019 Carbon Cullinane

    28/28

    Questions?