census techniques in ecology - uni salzburg · census techniques in ecology ... bodenkundliches...

64
Census Techniques in Ecology Methoden in der Ökologie LV# 444-561 Protocol Teilprotokolle Soil Fauna 1/8 (Erfassung der Bodenfauna)) Soil Field Techniques 2/8 (Bodenkundliche Felmethoden) Stream Ecology - I 3/8 (Fliessgewässeruntersuchung -I) Stream Ecology - II 4/8 (Fliessgewässeruntersuchung - II) (Census of Flora) 5/8 Erfassung der Pflanzenwelt Census of Fauna 6/8 (Erfassung der Tierwelt) Microclimate 7/8 Kleinklimamessung Bioindicators 8/8 (Bioindikatoren) October 6 th 1997 till October 13 th 1997 Handed in by: Pierre Madl (Mat-#: 9521584) and Maricela Yip (Mat-#: 9424495) Salzburg, 31 st October 1997

Upload: hoanganh

Post on 14-Jun-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Census Techniques in Ecology

Methoden in der Ökologie

LV# 444-561

Protocol Teilprotokolle

Soil Fauna 1/8 (Erfassung der Bodenfauna))

Soil Field Techniques 2/8 (Bodenkundliche Felmethoden)

Stream Ecology - I 3/8 (Fliessgewässeruntersuchung -I)

Stream Ecology - II 4/8 (Fliessgewässeruntersuchung - II)

(Census of Flora) 5/8 Erfassung der PflanzenweltCensus of Fauna 6/8 (Erfassung der Tierwelt)

Microclimate 7/8 KleinklimamessungBioindicators 8/8 (Bioindikatoren)

October 6th 1997till

October 13th 1997

Handed in by:

Pierre Madl (Mat-#: 9521584)and

Maricela Yip (Mat-#: 9424495)

Salzburg, 31st October 1997

MADL
Textfeld
biophysics.sbg.ac.at/home.htm
Page 2: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

References:

Protocol Title of References

1/8 • F. Schinner / R. Öhlinger / Ekandeler / R. Margesin Methods in Soil Biology Springer Verlag- 1995 - FRG

• W. J. Sutherland Ecological Census techniques Cambridge University Press 1996 - New York

2/8

• W. J. Sutherland Ecological Census techniques Cambridge University Press New York 1996 -USA

• E. Schlichting, H.P Blume, K. Stahr Bodenkundliches Praktikum Blackwell Science Berlin1995 - FRG

3/8

• N.D. Gordon, T.A. McMahon, B.L. Finlayson Stream Hydrology John Wiley & Sons -Melbourne 1992 - AUS

• J.D. Allan Stream Ecology Chapman & Hall - Michigan 1995 - USA• D. Meyer Makroskopisch-bioligische Feldmethoden ALG Hannover 1990 - FRG• Wetzel Robert G., Likens Gene E. Limnological Analyses, 2nd Edition, Springer-Verlag 1991• H.B.N. Hynes The Ecology of Running Waters Liverpool Univ. Press 1970 - UK

4/8

• N.D. Gordon, T.A. McMahon, B.L. Finlayson Stream Ecology John Wiley & Sons -Melbourne 1992 - AUS

• J.D. Allan Stream Ecology Chapman & Hall - Michigan 1995 - USA• W. J. Sutherland Ecological Census techniques Cambridge University Press New York 1996 -

USA 5/8

• W. J. Sutherland Ecological Census techniques Cambridge University Press 1996 New York -

USA• H. Janetschek Ökologische Feldmethoden Verlag Eugen Ulmer Stuttgart 1982 – FRG• M. Mühlbenberg Freilandökologie Quelle und Meyer Verlag Heidelberg 1989 - FRG

6/8

• F. Schinner / R. Öhlinger / Ekandeler / R. Margesin Methods in Soil Biology Springer Verlag- 1995 - FRG

• H. Janetschek Ökologische Feldmethoden Verlag Eugen Ulmer Stuttgart 1982 - FRG• W. J. Sutherland Ecological Census techniques Cambridge University Press 1996 - New York

7/8

• H. Janetschek Ökologische Feldmethoden Verlag Eugen Ulmer Stuttgart 1982 – FRG• H.H. Kreeb Pflanzenökologie und Bioindikation Gustav Fischer Verlag Stuttgart 1990 - FRG

8/8

• Schubert Bioindikatoren• H.J. Jäger, L. Steubing Monitoring of air pollutants by plants Junk Publishers The Hague

1982 - NL• I.F. Spellerberg Monitoring Ecological Change Cambridge University Press 1991 – UK• D.W. Jeffrey, B. Madden Bioindicators and Environmental Management Academic Press

London 1991 - UK• S.Ellisa, A. Mellor Soils and Environment Routiedge Publ. London 1995 - UK

Page 3: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 1/8 Soil Fauna1

Methods in Ecology(Methoden in der Ökologie)

Soil Fauna(Erfassung der Bodenfauna)

Protocol - 1/8

October 6th 1997

Instructors: Dr. W. FoissnerMag. A. Leitner

Handed in by:

Pierre Madl (Mat-#: 9521584)

Salzburg, in the month of October 1997

Page 4: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 1/8 Soil Fauna2

Introduction: The biosphere represents the fauna and flora which live above, at and below the Earth’s surface,along with organic material which is no longer alive.Because soil contains rock material, water, air and biota, it is the interface at which all the environmentalcomponents interact and is the most complex medium within environmental systems, both influencing andresponding to their operation. The geosphere determines the parent material from which a soil develops, thehydrosphere determines the presence of water which is vital for the operation of many of the processes of soilformation. The atmosphere determines the climatic conditions which influence their rate of operation, and thebiosphere determines which fauna and flora are available for participation in these processes.The use of soil provides information about past environmental conditions has been developed in more recentdecades through a number of disciplines.

The soil contains a rich variety of animals of very different sizes and life forms. The most abundant groups arethe Protozoa, Nematoda, Annelida, and Arthropoda.These microorganisms are involved in the shredding and decomposition of organic compounds to makethem available for reabsorbtion of sessile organisms like plants. Digging and burrowing animals help toincrease the pore volume and improve aeration as well as mixing of the soil.Grouped on a nutritional bases, animals are collectively categorized as• phytotrophic (feeding on living plants),• zootrophic (feeding on animal matter),• microtrophic (living on microroganisms), and• saprotrophic (utilizing dead organic matter).Since soil zoological investigations require adequate methods, the precise identification of the animalscollected is of essential importance.

Based on the size of the organism, this soil organisms are grouped into micro-, meso-, and macrofauna.• The microfauna utilizes pores with a diameter of less than 100[µm]; It consists of microscopically small eukaryotic, single-celled protozoans (amoebae, ciliates and

flagellates) and multicellular organism (rotifers, tardigrades, nematodes): together these phyla ofanimals consume considerable amounts of bacteria, fungi, and debris. Protozoans and Nematodasalone require approx. 103 to 105 bacteria each per cell division to maintain their daily metabolism.Therefore, being in direct contact to the surrounding environment due to their delicate externalmembranes these organisms can adapt quickly to changes in environmental patterns. Consequently,members of the microfauna are a really cosmopolitan group of organisms.

• The mesofauna (Acari, Collembola, Enchytraeidae) occurs predominantly in the larger pore space,i.e.: macropores of <2[mm]. Most member of these phyla (mites, springtails, potworms) feed onsubstrate like plant litter, fungi, mineral particles, or feces from other soil animas. As with theorganisms of the microfauna, the member of this category are highly adaptable as well; they are foundin moist mineral soils to deciduous litter; i.e.: approx.: 105 [individuals/m2].

• The macrofauna (Oligochates, Chilopoda, Diplopoda, Diptera, Coleoptera) utilize existing cracks androot canals, as well as, dig and burrow actively; they contribute considerably to the loosening andaeration of the soil. The distribution of earthworms, for instance, is strongly dependent on theirsurroundings like water content, soil type, vegetation and pH. In addition, their respective digginghabits splits them into litter dwellers, horizontal burrowers, and deep (vertical) burrowers. Due to theirsize, earthworms contribute a large fraction of the biomass in loamy meadows.Predators like centipedes depend highly on atmospheric humidity, therefore, they vary in numbersdepending upon the soil structure; e.g.: as many as 300 [individuals/m2] can be found in leaf litter ofdeciduous forests. Millipedes support the activity of earthworms and are found in almost all types ofsoil (excluding very acidic sites). They are primary decomposers of great soil-biological importance.Flies contribute heavily to the turnover in the soil. They are not only decomposers, but they are alsogreat predators and can reach up to 2000 [individuals/m2]. Beetles occur in all strata and trophiclevels. The smaller forms occur in the upper soil layers; among them are found fungivores, omnivoresand predators alike.

The microflora (prokaryota, autotrophic flagellates, diatoms, etc.) and macroflora (plants and fungi ingeneral) are not treated in this protocol.

The following pages list some simple procedures used during the course.

Page 5: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 1/8 Soil Fauna3

Sampling Organisms of the Macrofauna (Earthworms): The estimation of earthworm abundance is difficultdue to the heterogeneous moisture distribution of the soil and their special lifestyle. To obtain arepresentative result, at least a couple of probes should be taken with either method.

• A simple but not very reliable way to extract and countearthworms is the electrical method. A weak voltage (12V)is applied on a chosen area. The electrodes, arranged in acircle force the earthworms to abandon their darkenvironment and to emerge the surface. The effectivenessof this procedure is highly dependent upon soil water content.

• Handsorting is the most efficient procedure. A given area of0.25 [m2] is sorted out by extracting a layer, approx. 20[cm] deep. The top grass layer should be carefullyseparated to avoid further damage; crumble the soil,remove the earthworms found into a container, rinse, count,weigh, and return them back to the soil. Close theexcavation site, and try to put the soil layers back as theywere previously.

• The chemical extraction by using a diluted formalin solution is easier, Although both horizontal andvertical burrowing earthworms are affected, only thevertical burrowers will be counted. This technique gives anestimate of the individuals living underneath. Formalin usedin such diluted quantities will not kill the earthworms, butwill make the soil unpleasant for their normal activities.Deep dwelling borrowers, avoiding such a disturbance, willemerge to the surface. Depending on the water content ofthe soil, about 5 to 10 [l] of a 0.2 to 0.4 [%] formalinsolution is used. Pour 1/3 of the solution onto the sampling area of about 0.25 [m2] in repeatedintervals of 10 [min].

Remarks: Because of the toxicity of formalin, protection gloves and glasses should be used whenhandling this solution in concentrated form.

Results of Formalin and Handsorting techniques (¼ m2 for each group):

Lawn MeadowGroup Formalin-Solution Handsorting Formalin-Solution Handsorting

# Total mass [g] # Total mass [g] # Total mass [g] # Total mass [g]IIIIIIIV

Comments:

Materials used:procedure not executed

Materials used:i) frame covering 0.25[m2]i) spadei) digital balance

Materials used:i) frame covering ¼ [m2]i) formalin bottle200 [mL] volumetric flaski) bucket of water 5[L]i) digital balance

Page 6: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 1/8 Soil Fauna4

Sampling Organisms of the Mesofauna:Separation of invertebrates from soil, litter, and other debris can be achieved with a Tullgren funnel.The soil sample s filled into the funnel; the tungsten lampcreates a warm, dry, and well illuminated condition at the topof the funnel, which encourages cool-, shaded-, and moisture-loving invertebrates to move down the funnel through a filter,into a collecting bottle. If live specimens are required then alightly moistened piece of filter paper should be placed in thecollecting container. Funnels are usually left in operation for aweek or so, and if life specimens are being collected, theyshould be checked daily.The Berlese funnel is a slightly altered apparatus, in which hotwater is passed through an outer extra cage instead of a electrical light source, causing the same effectdescribed above.

Remarks: The use of desiccation funnels is not labor-intensive, since sorting can be left unattended. Butsmall and inconspicuous invertebrates are likely to be missed during sieving. Larger funnels tendto extract relatively more larger invertebrates than smaller ones, since smaller invertebrates maybecome desiccated within the larger funnel before they reach the collecting tube.

A Tullgren funnel for separating small invertebrates from soil, litter, etc.,

Materials used:i) funneli) gaze-filteri) beakeri) formalin flaski) bucketi) spade or shoveli) lighting source or other

Page 7: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques1

Methods in Ecology(Methoden in der Ökologie)

Soil Field Techniques(Bodenkundliche Feldmethoden)

Protocol - 2/8

13th of October 1997

Instructor: Dr. T. Peer

Handed in by:

Pierre Madl (Mat-#: 9521584)

Salzburg, in the month of October 1997

Page 8: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques2

Introduction

The soil is weathered mineral material at the Earth’s surface, which may or may not contain organic matter, and oftenalso contains air and water. It may range in thickness from a few millimeters to many meters, and it is present over mostof the Earth’s land surface.Soils are complex, multivariate medium which plays an important role in all environmental disciplines. As a result, it isnecessary to understand the way in which they vary spatially and how their characteristics are suited to various forms ofenvironmental investigation and utilization. Soils have been recognized since history through its influence onagriculture, drainage and human settlement.

Before we do any soil survey:• It is necessary to know the purpose of the survey.• Required permission of authorities.• What information will be recorded and needed.• How much detail is required.• What scale will the survey operate.• How much time and what resources are available for the survey.• Finally, all the information gathered from the soil must be related to

the purpose of the survey.

Soil SamplingA homogeneous representative number soil samples are taken from thearea under investigation and combined to a bulk sample, thecharacteristics require are: soil texture, topography, soil depth, soilheaviness, presence of rocks/stones, moisture conditions.Orientation of the site of interest should be well illuminated (sunny side) and easily accessible.Best time to do sample is in spring before the beginning of the vegetation period, fertilization and plant growth do nothave much influence at this time.

Soil horizonsSoils often comprise a series of layers alignedroughly parallel with the surface, and the combined,vertical sequence of horizons are known as aprofile. The number of horizons vary betweenprofiles, they mostly have three basic horizons(A,B,C). different horizon combinations giving riseto different soil types. Profiles of the other soiltypes are usually a few centimeters or meters deep.• The uppermost layer (A) contains organic

matter, mixed with mineral material.• The underlying (B) is usually a more mineral

rich zone, into which material is often moved,vertically or laterally, from elsewhere in the soil.Combination of (A-B) is a solum.

• The deeper layer (C) represents the littlealtered form of the material from which the soilderives, known as the parent material.

• The underlying bedrock (D or R) are the soilsthat may occur as a geologically recent,superficial deposit, having been laid down by ariver, a glacier, the wind, or the sea.

A soil profile and pedon, showing soil horizons;The profile is a 2-D unit, while the pedon shows characteristics in 3D

When doing the excavation, separate the various layers into piles. To minimize disturbance after the survey, return thelayers in the way they were previously.

Materials used:soil corer,spadesawhatchetbucketyardstick (metric gauge)plastic bagscold boxgeological-, vegetation-,aerial-, topographical mapflask of 0.01 [M] HCl,mobile pH-meter,

Page 9: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques3

Soil formationThe process by which soils form can be divided into four groups:• Addition of material, both organic and inorganic, to the soil.• Transformation of this material via organic matter decomposition, weathering and clay mineral formations.• They are transfer within the soil by water or by mechanical means,• and it is loss from the soil via either the surface or subsurface.

PhasesThe soil is composed of three phases:• Solid phase, both mineral and organic material; the liquid and gas phases are in-between pores or voids.• Liquid component is the soil water, derived from precipitation, and ground water sources.• Gaseous component is the soil atmosphere or soil air, consist of a mixture of gases derived from the above-ground

atmosphere and from the respiration of soil organisms.

The major soil-forming processes

Page 10: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques4

Soil constituents

Mineral: The mineral fraction of soils is derived largely from weathering of the underlying parent material, which myconsist of consolidated bedrock (igneous-from molted magma, sedimentary-from erosion and weathering cycles ormetamorphic-from alterations due temperature/pressure) or unconsolidated superficial deposits (a variable of solidbedrock materials and are often classified as depositional environment).

Organic components: Soil organic matter is derived from different sources such as plant litter: which consists of plantdebris, leaves, stems, flowers, twigs, bark, branches of trees, etc.Other organic components are plant roots, root exudates, soil organisms, fecal remains, metabolites, etc. which arewashed into the soil.Soil organisms can be producers (plants), consumers (animals), decomposers (returning material to the soil), autotrophsand heterotrophs.They can be also classified according to their size: microorganisms (<200 micrometer)-fauna and flora, mesofauna (200-1000 micrometer) and macrofauna (>1000 micrometer)

Water: Soil water is derived from two principal sources-precipitation and ground water.Precipitation: rain, snow, hail fog, and mist. The proportion of precipitation that reaches the ground surface dependslargely on the nature and density of vegetation cover. On surfaces devoid of vegetation, precipitation reaches the soildirectly. On reaching the surface, water can either infiltrate the soil or, run off over the surface, and evaporate.The composition of soil water is a particularly dynamic characteristic, varying over periods of time. This behavior arisesfrom the intimate association between the water, small mineral and organic particles (clay and humus) and plant roots,which can involve the exchange of ions between these components. Soil water contains a number of dissolved solid andgaseous constituents, many of which exists in mobile ionic form, and a variety of suspended solid components. Basiccations (Ca2+, Mg2+, K+, Na+, NH4

+) may be derived from a number of sources.

Color: There other dissolved components in the soil usually minor and local in their occurrence. These include organicmaterial and silica, together with a number of pollutants such as heavy metals (lead, zinc, cadmium) and radionuclides(cesium).Soil water contains not only dissolved solids but also a number of suspended constituents. These include small particlesof mineral and organic material, which often results in discoloration and increased turbidity of soil water. Similarly,precipitates may accumulate in soil water, as a result of chemical changes as the water migrates through the soil.

Air: Water has a reciprocal arrangement in terms oftheir occupancy of soil pore space, in saturatedsoils, air content is low, whereas in dry soils thepore spaces are largely air-filled. Changes in waterand air content are particularly dynamic becausemuch of the water present in a saturated soil drainsaway rapidly, while heavy rainfall can quickly bringthe soil back to saturation. The gaseous constituentsof soil air are derived largely from the atmosphere,the respiration and metabolism of soil organisms,and from the evaporation of soil moisture. Soil airis continuos with the atmosphere provided that thesoil surface is not sealed due to compacting orcrusting, and such continuity ensures the freemovement and exchange of gases. In addition toCO2, organisms release other gases into the soil,including (CH4, H2) as a result of organic matterdecomposition.

Composition by volume of a typical topsoil

Page 11: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques5

Soil physical propertiesMineral particlesThe principal properties of soil mineral particles in an environmental context are their size, shape, nature of surface,orientation and mineralogy. The mineration fractions consists of particles of different sizes such as larger ones, cobblesand pebbles, sand, silt and clay (2mm in diameter). Most studies of soil is concerned with the (<2 mm) range and iscalled fine earth. It is the proportion by weight of the size categories within the fine fraction which defines the particlesize distribution or texture of a soil. Most soils comprise a continuos spectrum of particle sizes, and the width of thisspectrum is defined by the degree of sorting.

TextureCan be estimated in the field simply by rubbing the soil between thumb and forefinger. Sand grains are easilydistinguished by their coarseness, while silt has a distinctive soapy feel and clay is characteristically plastic andmoldable when moist. In order to analyze the soil in more detail, it is required laboratory analyzes such as the a CoulterCounter or laser diffractometer, a scanning electron microscope, which allows the particle sizes to be viewed in 3-dimentions. Minerals differ markedly in their composition such as physical and chemical characteristics: texture, acidity,and nutrient status.

AggregatesAggregation in soils is promoted by a number of physical, chemical and biotic forces. Physical forces: expansion,shrinkage associated with wetting and drying, compaction by raindrop impact, animal trampling and agriculturalmachinery. Chemical forces: electrostatic, presence of adsorbed cations in association with the negative surface chargeof colloidal particles such as clay and humus. Aggregates or peds, which persists during wetting/drying andfreezing/thawing cycles form the basis of soil structure.

Pore spaceVary in shape from spherical voids to tortuous, interconnecting cracks and channels. They also vary in size from largemacropores to fine micropores (<1 [µm]). Pore space will influence both the bulk density and the porosity of a soil.Porosity is a measure of the percentage volume of the pore space, and can be determined indirectly from particle andbulk density. Porosity and pore size distribution are influenced by a number of soil characteristics: texture, degree ofaggregation, bulk density, presence of swelling clays and organic content.

MoistureSoil water possesses free energy which is a measure of its potential for movement and change in the soil. In soils with ahigh moisture content, forces attracting the water to solid particles are weak and its free energy is high.Moisture is affected by: adsorption, water is attracted to the surfaces of colloids by electrostatic forces. Capillarity,water is held in soil pores by adsorptive forces at the water surface. Matric suction, combination of capillarity andadsorption. Osmosis, occur between solutions of different ionic concentrations.Several methods are available to measure soil moisture: it can be determined gravimetrically using bulk samples whichrequires weighing, field-moist, oven-drying, etc. the weight differences representing the moisture content, expressed as apercentage of either filed-moist or oven-dried soil.

TemperatureSoil temperature is a dynamic property because it varies between day and night, seasonally, it can be rapid and extreme.It is also influence by: texture, moisture and organic content.

MechanicsSoil mechanics properties are strength/stability: derived from interparticle and interped forces responsible for thedevelopment of soil structure. For stability: survival during wetting, breakdown or slaking, resistance to compression,and shear-indication for cohesion; for strength: related to soil properties, texture, organic content bulk density andmoisture content. and consistence of the soil.

ColorIs determined in the field, and provides useful information regarding the presence or absence of soil constituents. Forexample: dark colors are usually indicative of high organic, manganese, moisture content, while red colors is for soilrich in iron oxides, blue-gray colors indicate the presence of iron in its reduced form.The Munsell color notation has three components:• Hue-indicates major color present.• Value-measures the degree of darkness or lightness of the color.• Chroma-measure of color intensity.

Page 12: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques6

Interrelationship between selected soil properties

Soil Chemical Properties

Elements and compounds in a soil occur in two principal forms – as the chemicals that make up the structure of the basicsoil constituents, and as individual components which are held in the soil by interparticle attraction.The chemical that make up the structure of mineral material are determined by total chemical analysis, i.e. by atomicabsorption spectrometry following dissolution of the material in strong acids. Or by the more rapid method of X-rayfluorescence spectrometry.

Ion exchange: Is the most important soil property in that it plays a key role in plant nutrition, and in a broader context,in the development of many chemical characteristics of soils. Central to ion exchange is the way in which ions are heldon the surfaces of colloidal particles.

Acidity and pH: Acids in aqueous solutions undergo dissociation to release their constituent ions, namely (H+). Acidityis measured in terms of (H+) ion concentration using the pH scale.

Soil water in equilibrium with atmospheric CO2 (dissolved in precipitation)and from the soil air where it is a product ofsoil organisms respiration and decay, pH can sink below 5.0 because CO2 levels in soil air are greater than in theatmosphere: CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3

-

H+ is also released by plants in exchange for nutrient base cations, and part of nitrification in which NH4+ is converted to

NH3. The measurement of soil pH is usually made in a standard suspension of 1:2.5 weight to volume (e.g. 110 g of soilin 25 ml distilled water). Distilled water is often used to make up the suspension, a suspension made with a dilutesolution of calcium chloride (0.01M) in order to provide a more realistic value of H+ concentration minimizes Ca releasefrom the soil exchange complex. For this reason pH levels measured in CaCl suspension are generally lower than thoserecorded in a suspension made up with distilled water. Soil acidity promotes the development of further acidity throughaluminum hydrolysis, and this becomes an important source of H+ ions when soils become acidic. pH < 5.5, Al3+ ionsbegin to occupy exchange sites.Unpolluted rain water in equilibrium with atmospheric CO2 has a pH = 5.6

AerationSoil aeration relates to the amount of oxygen present in the soil atmosphere. A particularly useful indicator of degree ofsoil aeration is the redox potential (Eh) or oxidation-reduction status, a chemical species undergoes oxidation orreduction through the transfer of electrons (e-).

Page 13: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques7

Page 14: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 2/8 Soil Field Techniques8

NOTE SHEET No.:

for the Soil-Field-Research Date:

Investigator:

Location:Altitude [m]: Exposition: Inclination:Landscape, landsurface:Geology (parent material):Vegetation:Climate / weather:Soil hydrology:Human or animal influence:Disturbances:

Soil type:

Horizon-sequenceTickness [cm]BoundariesMoistureColorOrganic matterTextureStructurePorosityConsistenceLarger separatesCoatingsSpots / patchesRoot developmentCarbonatespH-Value

Biology:Development:Risks:Soil-stability:Protection:Other remarks:

Page 15: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 3/8 Stream Ecology - I1

Methods in EcologyMethoden in der Ökologie

Stream Ecology I(Fliessgewässeruntersuchung - I)

Protocol - 3/8

6th of October 1997

Instructors: Dr. W. FoissnerMag. A. Leitner

Handed in by:

Pierre Madl (Mat-#: 9521584)

Salzburg, in the month of October 1997

Page 16: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 3/8 Stream Ecology - I2

Introduction: Since soil contains rock material, water, air and biota, it is the interface at which all theenvironmental components interact and is the most complex medium within environmental systems, bothinfluencing and responding to their operation. The geosphere determines the parent material from which a soildevelops, the hydrosphere determines the presence of water which is vital for the operation of many of theprocesses of soil formation. The atmosphere determines the climatic conditions which influence their rate ofoperation, and the biosphere determines which fauna and flora are available for participation in these processes.The hydrosphere (mainly hydrogen and Oxygen) are the many forms in which water can occur at and below theEarth’s surface as seen with lakes, rivers, oceans, ground water, etc.

Substrate is a complex aspect of the hydrosphere. Current, together with available parent material, determines amineral substrate composition of a fresh water system. Organic detritus is found in conjunction with mineralmaterial, and can strongly influence the organism’s response to substrate. This includes everything on the bottomor sides of streams or projecting out into the stream, not excluding a variety of human artifacts and debris, onwhich organisms reside, it is very heterogeneous.Slower currents, imply finer substrate particle size often correlated with lower oxygen content. The size andamount of organic matter, which affects algae and microbial growth, vary with the substrate. Substrate itself ishighly variable from place to place, exhibiting small-scale patchiness both vertical and horizontally within thestream bed, and changing over time in response to fluctuations in flow.Inorganic substrate includes bed materials of many streams ranging from clays and silts to boulders and bedrock.Organic substrate in general consist of very small organic particles (<1 mm) and usually serve as food rather thanas substrate to which other organisms attach, except perhaps for the smallest invertebrates and microorganisms.Larger ones range from mosses, plant stems to submerged logs, generally functions as substrate rather than food.In autumn-shed-leaves on the stream bed are a substrate to insects that graze algae from their surfaces, and foodto insects that eat the leaves themselves. More commonly, are large organic substrates that serve as perches fromwhich to capture food items transported in the water column, as sites where fine detrital material accumulates,and as surfaces for algae growth.Autumn-shed-leaves are a significant feature of woodland streams during at least part of the year. Aggregationsof leaves on the stream bottom usually support the greatest diversity and abundance of invertebrates. Mosses andsome other plants that are macroscopic but relatively small maintain very high local densities of animals withoutthemselves serving of food. Plants serve as a refuge, and a trap for silt and organic matter, but provide little ornot direct nourishment. Submerged wood is yet another category of organic substrate,Clearly these are not amenable to the statistical averaging one does with mineral substrates.

Benthic Organisms of the substrateThe great majority of steam-dwelling macroinvertebrates live in close association with the substrate, and so theyhave been the main focus of organisms-substrate studies. Many taxa show some degree of substratespecialization. When one examines preferences among stones of various sizes, substrate specialization. Somestream-dwelling organisms are quite restricted in the conditions they occupy, and biologists have a number ofterms to describe these substrate specialists.Lithophilous taxa are those found in association with stony substrates. Streambeds of gravel, cobble and

boulders occur in a great many areas around the world, harboring a diverse fauna. Many specialists areequally common on stones of all sizes, some are demonstrably more likely to be found with a particularlysize class.

Larvae of the water penny (Psephenidae) occur mainly on the undersides of rocks, and often under boulders intorrential flow.

Pyralid moth larvae live underneath silken shelters constructed within depressions on rock surfaces. Attachedand encrusting growth forms require a substrate that is not easily overturned by current.

Diatom populations are greatly reduced by storms that scour and flip substrate.Mosses, bryozoans and sponges are found mainly on larger stones or in locations where scouring is infrequent.

An other way to categorize benthic organisms can be done with the following scheme:Microbenthos / Microphyta: . Protoista, single- and multicellular organism of auto- and heterotrophic origin.Macrobenthos: Animals of various taxa, e.g.: Plecoptera, Ephemoptera, Trichoptera, Turbellaria, Hirudinea,

Gastropoda, Bivalvia, Anphipoda, Isopoda, Diptera and Oligochaeta.Macrophyta: Macroscopic water plants, like Chlorophyta, and larger aquatic plants.

Page 17: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 3/8 Stream Ecology - I3

Methods in catching benthic dwellers: On estuaries and sandy or muddy shores, large, low-densityinvertebrates such as various polychaete and oligochaete worms, can be surveyed and monitored by diggingsubstrate samples. Invertebrates can then be extracted by wet sieving. Large polychaete worms rapidly retreatdeep into the substrate when sensing disturbance. If surveying larger molluscs or worms, the substrate can simplybe sorted by hand. Smaller invertebrates and those occurring at a higher densities are best sampled by takingsmaller substrate cores. The benthos must be carefully handled, taking care not to damage the delicateinvertebrates within it. The lower, unwanted portion can be discarded.There are many methods, but we only one to handle easy and practical ones discussed in class.

Sampling of Microbenthos: Brushing off encrustations the lowerside (bedrock-side) of larger stones present in the streambed, arepresentative aggregation of microscopic organisms can beobtained.

Sampling of Macrobenthos: Observation of the underside of lagerbedrocks (up to 20 or more) is an easy an fast method to detectthe most common species present in a stream system.

Pond nets: Ponds can be used as a quick methods of catching largenumbers of aquatic invertebrates. There is a variety oftechniques: moving the net in a figure of eight, above thebottom of the water, so that invertebrates on the substrate arestirred up and caught as they swim away, pressing the net rimagainst mossy stones to catch highly clinging nimphs ,andmoving the net at different speeds and depths through openwater and patches of aquatic vegetation. After taking the netout of the water, it should be allowed to drain the net contentsshould be emptied onto a white tray, sorted out and taking careof the specimens.

Wet sieving: Benthic invertebrates are best extracted by wet sieving,using, sieves of 2.0 mm, 1.0 mm, and 0.5 mm mesh size. Sorting may be made quicker and more efficientby adding a 1% solution of rose bengal dye, which stains translucent invertebrate pink.

Bucket sampling: With the help of bucket, collect a group of invertebrates, together with other fragments andwater, in the bucket, bring it to the surface, and examine the bucket.

Kick sampling: The majority of invertebrates in fast and slow-moving streams are found amongst stones andgravel on the stream bed. Kick sampling involves dislodging invertebrates in the stream bed by kickingand disturbing the substrate and catching the dislodged invertebrates in a net held a short distancedownstream. This technique is widely used to obtain macroinvertebrates for use in water qualityassessment. Then sorted out in a white or black tray. It is a quick method to estimate relative populationdensities, but tends to under-record invertebrates firmly attached to stones such as stone-cased caddis flylarvae.

Surber sampler: Is a refined method of kick sample which involves a frame glass bucket with an attachment net.The area to be sampled being defined by the frame resting on the substrate, Then observe the samples,select the ones of interest, push them inside the net with the help of a stick, rinse the net with the streamwater, and pull the whole sample to the surface with the help of a staff member.

Frame placed on stream-bed

Useful tools:i) water-resistant bootsi) latex glovesi) pocket-lensi) brushi) pipettei) tea-spooni) various sizes of glassbottlesi) sievei) flat traysi) various 1 [l] plasticbottlesi) conservation liquidi) soft tweezersi) towelsi) procedure not executed

Page 18: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 3/8 Stream Ecology - I4

Water Quality: Although technical means should be used to judge water quality, observation of watertransparency is an easy way to indicate levels of pollution. Sedimental flow patterns (organic sedimentsdoes not settle down as fast as mineral sediments) enrich the first hand judgments.Water quality data may include electrical conductivity, pH, concentration of heavy metals and other ions(ammoniom, chloride, sulfate), organic such as pesticides, dissolved oxygen, biological oxygen demand(BOD), turbidity, salinity and temperature.

In order to monitor waters, samples must be collected manually at fixed intervals of time. The aim is todetermine seasonal variability. Data should be reviewed to see if the range of discharges is adequatelysampled. -

For further information on this subject, see sub-protocol 4/8, Stream Ecology-II.

Water quality Index - WQI (after D. Meyer)

Level oforganic strain

(WQI)

Saprobic Index NH4-N[mg/l]

O2 Saturation [%]max. saturation

[%]

BOD5

[mg/l]Chloride Cl-

[mg/l]

I insignificant(very clean)

1.0 - <1.5 <0.1 95 - 100100 - 103

<1 <100

I-II low(clean)

1.5 - <1.8 stream: <0.2river: <0.3

85 - 95103 - 110

1 - 2 100 - 250

II medium(fairly clean)

1.8 - <2.3 stream: <0.3river: <0.5

70 - 85110 - 125

2 - 5 250 - 500

II-III intermediate(f.c. - doubtful)

12.3 - <2.7 <1.0 50 - 70125 - 150

5 - 7.5 >500 - 1500

III heavy(doubtful)

2.7 - <3.2 1.0 - <5.0 30 - 50150 - 200

7.5 - 11 >1500 - 2500

III-IV

very heavy(doubtful - bad)

3.2 - <3.5 5.0 - 10.0 20 - 30200

11 - 15 >2500 - 3500

IV excessively(bad)

3.5 - <4.0 >10.0 < 20 >15 >3500

Page 19: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II1

Methods in Ecology(Methoden in der Ökologie)

Stream Ecology - II(Fliessgewässeruntersuchung - II)

Protocol - 4/8

October 6th 1997

Part: Dr. R. Patzner

Handed in by:

Pierre Madl (Mat-#: 9521584)and

Maricela Yip (Mat-#: 9424495)

Salzburg, 31st of October 1997

Page 20: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II2

Introduction:Stream waters contains a variety of dissolved and suspended constituents, often muddy with sediments, anddrainage in limestone-rich regions are fertile while those containing only granite rocks are not. Many factorsinfluence the composition of river water, causing variations from place to place. Rain is one source of chemicalinputs to rivers, and a stream flowing through a region of relatively insoluble rocks can be chemically verysimilar to rain-water in its composition. But this varies with geology, and with the magnitude of inputs via otherpathways including volcanic activity and pollution. Materials are concentrated by evaporation and altered bychemical and biological interactions within the stream.

Water Quality: Although technical means should be used to judge water quality, observation of watertransparency is an easy way to indicate levels of pollution. Sedimental flow patterns (organic sediments donot settle down as fast as mineral sediments) enrich the first hand judgments.Water quality data may include electrical conductivity, pH, concentration of heavy metals and other ions(ammonium, chloride, sulfate), organic such as pesticides, dissolved oxygen, biological oxygen demand(BOD), turbidity, salinity and temperature.In order to monitor waters, samples must be collected manually at fixed intervals of time. The aim is todetermine seasonal variability. Data should be reviewed to see if the range of discharges is adequatelysampled.

Water quality Index - WQI (after D. Meyer)

Level oforganic strain

(WQI)

Saprobic Index NH4-N[mg/l]

O2 Saturation [%]max. saturation

[%]

BOD5

[mg/l]Chloride Cl-

[mg/l]

I insignificant(very clean)

1.0 - <1.5 <0.1 95 - 100100 - 103

<1 <100

I-II low(clean)

1.5 - <1.8 stream: <0.2river: <0.3

85 - 95103 - 110

1 - 2 100 - 250

II medium(fairly clean)

1.8 - <2.3 stream: <0.3river: <0.5

70 - 85110 - 125

2 - 5 250 - 500

II-III intermediate(f.c. - doubtful)

12.3 - <2.7 <1.0 50 - 70125 - 150

5 - 7.5 >500 - 1500

III heavy(doubtful)

2.7 - <3.2 1.0 - <5.0 30 - 50150 - 200

7.5 - 11 >1500 - 2500

III-IV

very heavy(doubtful - bad)

3.2 - <3.5 5.0 - 10.0 20 - 30200

11 - 15 >2500 - 3500

IV excessively(bad)

3.5 - <4.0 >10.0 < 20 >15 >3500

Saprobic index: Biotic scores are based on the presence or absence of certain taxa. The score is weightedaccording to the known tolerance of those taxa to pollution (levels of certain physical and chemicalvariables).Unpolluted running water sites are based on macro-invertebrate fauna. A comparison of observed andpredicted families is then used as a bases for assessment of environmental stress affecting rivercommunities.

1. Executed Techniques: 1.1 Determining the content of Dissolved Oxygen1.2 Biochemical Oxygen Demand1.3 Determining Conductivity1.4 Determining pH1.5 Hardness of Water1.6 Spectrochemical Analysis in the case of Nitrate NO3

1.7 Taking a water sample with a Winkler flask1.8 Evaluating Soil Texture1.9 Determining Flow Velocity1.10 Measuring Profile of River Bed - Determining Flow Capacity1.11 Census of Fish population - Electrofishing - DeLury Method

2. Datasheet of Experiments

Page 21: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II3

1.1 Dissolved Oxygen in Water [mg/L]:Both O2 and CO2 gas occur in the atmosphere anddissolve into water according to partial pressure andtemperature. Air is nearly 21% O2 by volume andjust 0.03% CO2, but the latter is more soluble inwater. Although saturated freshwater has higherconcentrations of O2 than CO2, the difference is not so great.CO2 tends to deviate from atmospheric equilibrium in highly productive lowland streams where luxuriantgrowths of macrophytes and microbenthic algae can result in dealing with shifts in dissolved CO2.

The impact of high oxygen demand due to pollution can be exacerbated by high summer temperatures,i.e.: pollution reduces the solubility of O2 in water, and by ice cover in winter, which minimizes diffusion.It is a critical factor in aquatic ecology. Its concentration is affected by temperature, salinity, plantrespiration, organic material, organic pollution, and eutrophication.

Two major techniques to measure O2 in water:The Winkler titration (requires many chemicals, therefore not executed) or by the O2-electrode.The O2-electrode is a very convenient, time saving method and has the potential for continousmeasurament in remote areas.It consists of a multipurpose meter and a sensor, the probe provides direct monitoring.

Remarks: When taking readings with an O2-meter, a water flow must be present (or by slightly stirringprobe) since it abstracts O2 from the water. Rinse electrode with distilled water after use.Electrodes must be kept clean and moist.

Materials used:i) 1 beakeri) aqua destillatai) Oximeter (Fa.WTW)

Hypothetical effect oforganic pollutionin a river:

a & b, physical andchemical changes;

c, changes in micro-organisms;

d, changes in largerorganisms

Page 22: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II4

1.2 Biochemical Oxygen Demand - BOD [mg/L]:The biochemical oxygen demand is one commonstandard applied to monitoring and surveillance offresh water. It is considered to be an aspect ofchemical monitoring.The BOD is the ability of a given volume of water toused up oxygen over a period of five days at atemperature of 18 [°C]. A second bottle of the samewater body is kept for two days under the sameconditions as a reference.Organic matter in the sample of water decomposes and the amount of oxygen consumed is then calculated.See WQI -table heading this protocol.

Remarks: BSB2 and BSB5 - bottles have to be filled completely; make sure no that no air-bubbles are leftin the flask after placing the stoppers. Place bottles in a dark place at 18 [°C].Before determining O2 content, pop the magnetic topping onto electrode.Rinse electrode with distilled water after uses.

Materials used:i) 2 glass bottles with stopperi) distilled wateri) Oximeter (Fa.WTW)i) magnetic stirrer

Page 23: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II5

1.3 Conductivity of Water [S/m]:The total dissolved solids (TDS) content of freshwater is the sum of the concentrations of thedissolved major ions. The world average is about100 mg/l. Both the total and the concentration ofthe constituents vary considerably from place toplace, due to variability in natural andanthropogenic inputs. However, the vast majorityof the world’s rivers have TDS of more than 50% HCO3

- and 10-30% (CL- , SO42-). This reflects the

dominance of sedimentary rock weathering, and especially of carbonate minerals. Salinity is sometimesused with TDS. The ionic concentration of rain-water is more diluted: Na+, K+, Ca2+, Mg2+, and Cl-

derived also from particles of the air. Year to year variation in stream flow influences the amount ofdissolved material exported from a watershed because the concentration of most ions in stream water isrelatively constant, the amount exported is determined largely by stream flow.

Fresh water has a lower conductivity than sea water, because sea water has a higher ionic concentration.There are many laboratory conductivity meters. Meters that measure over a single wide range tend to beinaccurate, especially at the fresh water end of the scale. A better way is to use meters that focuses onwhichever part of the scale is relevant. The conductivity reading is in [mS/cm] and provides an estimate ofsalinity.Furthermore, water conductivity in fresh water systems gives an estimate of water polluting levels:

Water body conductivity [µS/cm]aqua distillata <10clean water current (free of carbonates) approx. 100clean water current (containing carbonates) approx. 350polluted water system (containing carbonates) approx. 500sea water approx. 55000

Remarks: Dip electrode into the water and slightly stirring it; rinse electrode with distilled water after use.

Materials used:i) 1 beakeri) aqua destillatai) conductivity-meter (Fa.WTW)

Page 24: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II6

1.4 Determining pH of Water[-]Most natural waters contain various bicarbonateand carbonate compounds, originating fromdissolution of sedimentary rocks. The calciumbicarbonate content of freshwater determines thepH or acidity/alkalinity balance. When CO2

dissolves in pure water, a small fraction ishydrated to form carbonic acid. Stream watersusually contains bicarbonates and carbonates , andH2CO3 readily dissolves calcium carbonate rocks,neutralizing the soil and river water, and forming calcium bicarbonate. Freshwater can vary widely inacidity and alkalinity due to natural causes as well as anthropogenic inputs. Extreme pH values, generallythose much below 5 or above 9, are harmful to most organisms, and so the buffering capacity of water iscritical to the maintenance of life. The CO2, HCO3

-, CO32- equilibrium serves as the major buffering

mechanisms.The pH is a measurement of hydrogen- (H+) or hydroxyl- (OH-) ion activity. For fast and accuratedetermination we used an portable electronic device, which is a pH-meter and an electrode. The electrodeis immersed in the solution (or directly into the water body) and the meter reads the pH.

Indication values (pH)• pH-levels around 7 indicate natural water.• pH-levels below 7 indicate acidic reactions• pH above 7 alkaline reaction.

Remarks: Adjust pH-meter before use; rinse electrode with distilled water after use.

Materials used:i) 1 beakeri) aqua destillatai) pH-meter (Fa.WTW)

Page 25: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II7

1.5 Hardness of Water [dH]:The hardness of water is caused by itsconcentration of polyvalent cations, principallycalcium and magnesium, which tend to precipitatesoap. It is measured and adjusted by watertreatment operators, it is expressed in terms of mgCaCO3. It can be computed from knownconcentrations of calcium and magnesium. Whenother hardness-producing cations are present insignificant amounts, their concentrations must bemeasured and included in the computations. Theconcentration [mg/l] of each hardness-producing cations is multiplied by the appropriate factor to obtainequivalent calcium carbonate concentrations:

Hardness CaCO3 equivalent [mg/l] = cation [mg/l] x factor

These equivalents are then summed to obtain the total hardness.

Using the test kit provided by Merck:• Rinse test-tube several times with sampling water.• Fill test-tube with 5 [ml] of water sample.• Add 3 drops of test-chemical (A); the water sample should change to a reddish hue (shake if

necessary).• Fill syringe with titrant solution to the maximum (0-mark).• Slowly dribble titrant into the test-tube containing the (now) reddish sample.

Stop adding titrant as soon as the hue shifts towards green.• The position of the piston (syringe) directly indicates the hardness of the water sample.

Materials used:i) 1 beakeri) aqua destillatai) Merck Test Kit

Page 26: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II8

1.6 Spectrochemical Analysis (nitrate NO3 [mg/L]):Nitrogen is often determined in water because it isimportant for plant growth, and maybe a limitingnutrient in water. If excessive quantities arepresent, eutrophication may result. Nitrogen existsin gaseous state in water and soluble in organicform. Soluble N exists in many forms andconstantly fluctuates between oxidized andreduced forms.Nitrate is determined by reducing all of the nitrateto nitrite and then determining this nitriteconcentration spectrometrically. Similarly thisprocedure can be used to trace chloride, phosphorous, nitrite, or ammonium.

Ammonium ion ↔ ammonia ↔ nitrite ↔ nitrateNH4

+ ↔ NH3 ↔ NO2- ↔ NO3

-

Using the test kits provided by Merck:• Use micro-spoon provided to put a scoop of reagent (NO3-1A) into the test-tube.• Add 5 [ml] of 96% sulfuric acid (H2SO4) to the sample (NO3-2A).• Pop the test-tube with a stopper and vigorously mix it with the shaker.• Slowly add 1.5 [ml] of water sample to the mixture (exergonic - beware of heat formation).• Let it rest for 10 [min].• Place test-tube into the measurement-cage and attend a few seconds before value is displayed.

Remarks: Use protection gloves and glasses when handling sulfuric acid!

Materials used:i) 1 beakeri) aqua destillatai) diluted sulfuric acidi) microspatulai) spectrophotometeri) 1 test tubei) electrical shaker

Page 27: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II9

1.7 Water Temperature [°C]:Water temperature increases in downstreamdirection, to a point where the water reaches anequilibrium with air temperatures. Watertemperature changes both seasonally and daily, butto a lesser degree than air temperature does.Local variations in shade, wind, stream depth,water sources and the presence of inpoundmentswill alter the general trends caused bygeographical position. Many organisms takeadvantage of these local variations. When water cools, it becomes more dense and sinks. The temperatureof a stream is critical to aquatic organisms through its effects on their metabolic rates and thus growth anddevelopment times. It is an important factor in regulating the occurrence and distribution of vegetation,fish, invertebrates, and other organisms. It affects other properties of water such as viscosity as well.

Taking a water sample with a Winkler flaskThis flask is used to obtain samples of water from different depths. The flask is dropped to the requireddepth and then the rope is jerked. This causes the elastic cord to stretch, pulling out the stopper andpermitting water to flow through the tube and into the bottle; then the rope is pulled quickly to close theinlets by sealing the flask. Then bring the sampled water to the surface.

Determining the Temperature: Measure both the surface- and deep water (1 meter) temperature with threedifferent meters.

Remarks: When using the analog meters, make sure that they are exposed long enough in the water.Do not conduct measurements under direct exposure from the sun, since solar radiation willslightly alter the readings.

Displacement sampler for water oxygen samples.

Materials used:i) 1 beakeri) aqua destillatai) digital thermometer (Fa.WTW)i) mercury thermometeri) alcohol thermometer

Page 28: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II10

1.8 Evaluating Soil Texture of Stream bed:In a stream, substrate usually refers to theparticles on the stream bed, both organic andinorganic. Studies of substrate compositionshould consider the average and range of particlesizes, the degree of packing or imbeddedness,and the irregularity or roundness of individualparticles.Substrate is a major factor controlling the occurrence of benthic (bottom) animals. A sharp distinctionexists between the types of fauna found on hard stream beds such as bedrock or large stones and soft onescomposed of shifting sands. The greatest number of species are usually associated with complex substratesof stone, gravels and sand. The composition of stream can be altered by sediment influxes from uplanderosion and by channel modification. Excessive siltation of gravel and cobble beds can lead tosuffocation of fish eggs and aquatic insect larvae and can affect aquatic plant densities. This in turn, canresult in changes mollusk, crustacean and fish populations. Generally, these changes tend to cause a shifttowards downstream conditions (unstable beds of fine materials), effectively extending lowland riverecosystems further upstream.

When sampling streams for suspended sediment it is important to obtain a sample which accuratelyreflects the stream’s sediment load. There are several technical to trap large and small particles called bedload samplers, pit-type, basket-type, pan-type, etc.Physical analyses include soil particles parameters like: size, shape, mineralogical composition, surfacetexture, orientation in space; bulk includes: color, average density, porosity, permeability.For this practical exercise, we only concentrate to determine the particle size.

Particle size analyses can be applied to any mixture of sediments which include: width , diameter,settling velocity, length [mm].Some of the techniques are:• Visual analyses (done by eye) classification: boulders, cobbles, gravel, sand and silt or clay.• Hand texturing: the soil composition is estimated from the feel and malleability of a wetted sample

(bolus), by working the bolus between the thump band forefinger.• Direct measurement: Individual boulders, cobbles and large gravel’s can be measured directly in the

field.• Dry sieving: is the most common used method for the analysis of sand sized particles. First separate,

pick and weigh all of the larger-sized rocks, Further subdividing may be desirable to preventoverloading the sieves when working down to sieve sizes of 2 mm and finer. A set of sieves ofrequired sizes is stacked together, decreasing in aperture size downwards.

• Wet sieving: is a good methods for sizing coarse particles and sand-sized particles when aggregationproblems are encountered.

Class Size [mm]Stone > 63Gravel 20 - 63Coarse sand 6.3 - 20Medium sand 2.0 - 6.3Fine sand 0.6 - 2.0Very fine sand 0.2 - 0.6Silt 0.06 - 0.2

Examples of commonly used soil texturalclassification systems

Materials used:i) set of different sizes of sievesi) digital balancei) transparent plastic bags

Page 29: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II11

1.9 Waterflow [m/s]:Current is the most significant characteristic ofrunning water, and it is in their adaptations toconstantly flowing water that many streamanimals differ from their still-water relatives.Some species have an innate demand for highwater velocities, relying on them to provide acontinual replenishment of nutrients and oxygen,to carry away waste products and to assist in the dispersal of the species. At a given temperature, themetabolic rates of plants and animals are generally higher in running water than in still waters. However,it takes a great deal of energy to maintain position in swift waters, and most inhabitants of these zoneshave special mechanisms for avoiding or withstanding the current.

Current velocity can be measured by placing a float in the water and measuring the time taken to travel apredetermined distance.

Materials used:i) chronometeri) floating objecti) yardstick (metric)

Page 30: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II12

1.10 Profile of RiverbedTo describe the physical characteristics of astretch, a basic survey should include ameasurement of the channel slope, several cross-section profiles representative of the stream, adescription of bed materials and a sketch of thestream itself.Sites can be located at random, spaced uniformlyor selected as representative of a smaller area ofthe stretch.• A cross-sectional profile of a small stream can be obtained with a measuring tape and a meter rule a

and survey staff. If the stream has water in it, the water surface provides a horizontal surface fromwhich to take vertical measurements at several points along the horizontal line. The horizontaldistance to the measurement points and the vertical distance to the stream bed and water depth arerecorded. Measurement should be taken at each break in slope along the bed. The depth of water ateach edge should also be recorded.

• The bank slope is best measured using a staff and clinometer, it is held against the staff which is setagainst the bank, and the angle is read directly from the clinometer.

• The bank overhang is measured with a staff or meter rule from the farthest point of undercut to themost distant point of overhang.

• The bankfull width and depth provide a more standardized description of channel dimensions, thebankfull elevation is identified by scour lines, vegetation limits, changes between bed and bankmaterials, the presence of flood deposited slit or abrupt changes in slope. Training and experience willlead to consistent interpretations.

Field measurement of a stream cross-section.

Profiling river-bed

Materials used:i) yardstick (metric)i) cord (at least 10 [m] in length)i) leveli) water-resistant bootsi) clinimeter (not executed)

Page 31: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II13

Flow Capacity [m3/s]:

Channel cross-section showing vegetation zones, reflecting actual situation of the measured riverbedsection, where flow capacity has been determined.

Page 32: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II14

1.11 Census of Fish population:Fish capturing methods are of two categories:passive methods (rely on the fish swimming intoa net or a trap), and active methods in which thefish is pursued (electrofishing, SCUBA, etc.).The selection of the technique will depend onthe habitat to be sampled, Factors such as depth,clarity, presence of vegetation or speed of thecurrent will need to be considered. Ahydrographical survey prior to sampling may benecessaryThe mark-recapture technique is based on the recognizable (marked) organisms relapsed to the populationwill be recaught in numbers proportional to their abundance in that population. The size of the naturalpopulation can be estimated from the proportion of marked to unmarked organisms in random samplesobtained form the entire population. By using the DeLury procedure, the data obtained give an estimate(approximation) of how many individuals there are present in the surveyed area..Assumptions for mark-recapture technique:• There can be no difference in mortality or emigration between marked and unmarked organisms.• Tags or other marks must remain recognizable and must not be lost. All marks on recaptures must be

reported.• There must not be a difference in catchability between marked and unmarked organisms.• Marked organisms must be mixed randomly within the entire population.• There can be no unknown recruitment or immigration to the population.Handling of capture fish:• All the catched fish should be placed in a bucket of water (for narcotization use MS-222).• Weigh, measure (length) and/or mark one fish at a time, making sure that they do not escape from the

hands.• Return the fish to the bucket for recovery.• Proceed to return all the fish into the water.

Electrofishing:It involves passing an electric current through water via electrodes which stuns nearby fish, leading to thedisorientation and easy capture. Power is supplied by an electrical generator (or batteries for backpackunits) and is converted to the required form via an electrofishing unit or box. The circuit is completed byon/off switches on the anode. Several currents are used, producing different effects o the fish. The mostcommon is direct current (DC), because it attracts fish to the anode and causes fewer harmful effects to thefish than alternating current (AC).During electrofishing, anodes are often hand-held, while the cathode trails behind the boat or operator.The charge is usually kept on during fishing. The key is to be always close enough to the target fish toinduce a response and to explore all available habitats with the anode. The operator should always work ina upstream direction, as disturbed sediments flow away from the sampling area and the stunned fish drifttowards the operator. In streams and rivers, fish are captured efficiently and absolute measures ofabundance may be generated. Overexposition of stunned fish to the anode may lead to death. Large andthinner fish are easier to stun than smaller and thicker ones.

Remarks: Water and electricity are dangerous, people have been killed while electrofishing, therefore onlylicensed operators may electrofish. Wearing rubber gloves and boots at all times avoidingimmersion of any unprotected parts into the water. Equipment should have automatic dead-manswitches on the anodes. Emergency stop buttons (in case the operator falls in the water). Highnumber of personnel are required (minimum of three).

Materials used:i) bucketi) electrofishing uniti) fish neti) rubber fishing bootsi) safety rubber glovesi) measuring tubes (metric)i) MS-222 as anesthetic

Page 33: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II15

DeLury Method:A section of a stream, 2 to 3 [m] wide x 100 [m] in length has been surveyed.The fish census technique resulted in a catch of:

1st catch: 9 individuals2nd catch: 5 individuals3rd catch: 2 individuals

estimated number:NE = (xn+xn+1) / 2

Page 34: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 4/8 Stream Ecology - II16

2. Datasheet:

1. Dissolved O2 [mg/L] [%] 10. Fish [g] Std [cm] Tot [cm] K-FactorUniteich 7.9 96 Census

# 1 20 10 12 1672. Biochem. O2 Demand [mg/L] # 2 21 10 12 175

BOD2 9.8 # 3 21 10 12 175BOD5 6.8 # 4 23 10 12 192

# 5 28 10 12 2333. Conductivity [µS/cm] # 6 31 11 13 239

Pongau 116 # 7 31 11 13 239Uniteich 636 # 8 39 12 14 279

# 9 81 17 20 4054. pH [-] #10 134 20 23 583

Uniteich (ausfluss) 8.01 #11 135 20 23 587#12 144 20 23 626

5. Hardness [dH] #13 149 21 24 6214 #14 150 21 24 625

#15 175 22 25 7006. Spectrochemical NO3 [mg/L] #16 290 25 28 1036

Uniteich 0.9-1.0Pongau 3.9

7. Temperature [°C] at 1[m] [°C] at 0digital 15.6 17.2analogue (Hg) 15.1 17.0analogue(Probemeter)

15.6 17.5

8. Soil Texture (woo?) [g]Stone (> 63) -Gravel (20 - 63) 268Coarse sand (6.3 - 20) 461Med. Sand (2.0 - 6.3) 925Fine sand (0.6 - 2.0) 198Very fine (0.2 - 0.6) 46Silt(0.06 - 0.2) -

9. Flow Velocity [m/s]Hellbrunnerbach v1 0.19Hellbrunnerbach v2 0.20Hellbrunnerbach v3 0.2averaged 0.2

Page 35: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 5/8 Erfassung des Pflanzenbestandes1

Methoden in der Ökologie(Methods in Ecology)

Erfassung des Pflanzenbestandes(Census of Flora)

Protokoll - 5/8

7ten Oktober 1997

Betreut durch: Dr. W. StroblMag. B. Hummer

Eingereicht von:

Cäcilia Aigner (Mat-#: 9620537)

Pierre Madl (Mat-#: 9521584)

Anita Rötzer (Mat-#: 9472202)

Maricela Yip (Mat-#: 9424495)

Salzburg, im Oktober 1997

Page 36: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 5/8 Erfassung des Pflanzenbestandes2

Einleitung:Die Methoden der Vegetationsbescheibung und deren Aufnahme werden vom Zweck der Untersuchungbestimmt. Derzeit kommt die floristische Methode nach Braun-Blanquet am häufigsten zum Einsatz.Als Aufnahme bezeichnet man die listenmässigeErfassung sämtlicher vorkommender Pflanzen und ihrerMengenanteile. Voraussetzung ist die Kenntnis der Flora. Nicht sofort bestimmbare Pflanzen müssen gesammeltwerden. An den Kopf der Liste kommen allgemeine Angaben wie Datum, Ortsbezeichnung, Meereshöhe,Hangneigung, Exposition, , Grösse der Probefläche, Entwicklungszustand der Vegetation, Schätzung derGesamtdeckung (nach Schichten getrennt). Dazu Angaben über den Standort (v.a. Boden).

Auswahl und Abgrenzung der Probefläche:Sorgfältige Auswahl ist für den Erfolg späterer statistischer Auswertungen ausschlaggebend. Für einenallgemeinen Eindruck muss das Untersuchungsgebiet zuerst begangen werden.Weit verbreitete Vegetationstypen müssen in Optimum ihres Entfaltungsraumes studiert werden, bevorverarmte Randgebiete bearbeitet werden. Die Form der Probefläche ist unwesentlich , die Verteilung derProbefläche im Gesamtareal erfolgt an besten zufällig.Die Probefläche soll homogen sein, d.h. Pflanzenbestand und Standortbedingungen sollen keine grösserenSchwankungen aufweisen. Die Probefläche muss gross genug sein, um alle Arten zu erfassen, aber nichtgrösser als unbedingt nötig.

Zufallsverteilung:Unter sehr gleichmässigen Bedingungen sollten die verschiedene Pflanzen einer Pflanzengemeinschaftzufällig über die Fläche verteilt sein (nicht willkürlich!). Die Verteilung der Pflanzen im Gelände kanngemessen und kartiert werden; die einzelnen Arten können taxonomisch bestimmt oder nach Lebensformbeschrieben und ihre Mengenanteile festgestellt werden. Die möglichst umfassende Beschreibung derVegetation ist auf jeden Fall nützlich.Beispielhaft sei hier der tropische Regenwald genannt, der mit seiner komplexen Raumstruktur und derVielzahl ökologischer Nischen. Ähnlich homogen, wenn auch weit weniger komplex sind die artenreichensommergrünen Wälder des nördlichen Hemisfäre.Eine wirkliche zufällige Verteilung der Pflanzen im strengeren Sinn gibt es nicht. Selbst bei derErstbesiedelung von Ödland (Sukzession) führen morfologische Merkmale zu einer Musterbildung.

Antropogener Einfluss:In Mitteleuropa gibt es kaum mehr natürliche Vegetaton; seit mehr als 1000 Jahren ha der Mensch seineSpuren hinterlassen. Wälder und Wiesen werden bewirtschaftet; durch Düngung, Unkraut- undSchädlingsbekämpfung hat sich der Artenbestand verändert. Noch am ehesten naturbelassen sind dieHochregionen des Gebirges, in denen aber auch bis vor wenigen Jahren intensive Weidenutzung betriebenwurde.

Page 37: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 5/8 Erfassung des Pflanzenbestandes3

1. Vegetationsaufnahme - Artenspektrum:Eine einmalige Vegetationsaufnahme gibt nur einen einzigenAspekt wieder. Der jahreszeitliche Dominanzwechsel ist abereine wesentliche Eigenschaft der Vegetation; daher müssenAufnahmen aller charakteristischer Fasen gemacht werden.

In diesem Protokoll wurde nur eine einmaligeVegetationsaufnahme durchgeführt.

Ort:

# Spezie

1 Hypericum tetrapterum L. (Johanniskraut)

2 Eurynchium striatum (Schönschnabel)

3 Galium aparine L. (Klebkraut)

4 Urtic dioica L. (Grosse Brennessel)

5 Calystegia sepium L. (gem. Zaunwinde)

6 Filipendula ulmaria L. Maxim (Ectes Mädesüss)

7 Rubus caesius L. (Kratzbeere)

8 Lythrum salicaria L. (Blutwegerich)

9 Galium aparine L. (Klebkraut)

10 Poa trivialis L. (gem. Rispengras)

11 Plantago lanceolata L. (Spitzwegerich)

12 Vicia gracca L. (Vogelwicke)

13 Lathyrus pratensis L. (Wiesen Platterbse)

14 Sorbus aucuparial L. (Eberesche)

15 Mentha logifolia L. (Rossminze)

16 Acer pseudoplatanus L. (Bergahorn)

17 Spirea mecensis L. (Spierstrauch)

18 Phragmites australis (CAV.) (Schilfrohr)

19 Valeriana officinalis L. (Baldrian)

20 Dactylis glomerata L. (Wiesen Knäuelgrass)

21 Heracleum sphonedylium L. (Wiesen Bärenblau)

22 Phalaris phragmitis L. (Glanzgras)

23 Lolium perenne L. (engl. Raygras)

24 Taraxacum officinale (gem. Löwenzahn)

25 Galium molugo L. (Wiesenlabkraut)

26 Fraxinus excelsior L. (gem. Esche)

27282930

Material:Bestimmungsbuch ausBotanik

Page 38: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 5/8 Erfassung des Pflanzenbestandes4

2. Mengenschätzung, Frequenz: [%]Mit dieser Methode wird innerhalb der Probefläche (zufälligverteilt oder nach einem bestimmten Muster) eine grössereZahl von flächengleichen Kleinquadraten abgesteckt. DieFlächengrösse dieser Quadrate kann frei gewählt werden (imGrünland am besten zwischen 25 und 1200 [cm2]. Nun wirdfür jedes Kleinquadrat eine Artenliste erstellt, die beigeringen Flächengrösse selbstverständlich immer nur wenige Namen umfasst.Die Frequenz einer Art ergibt sich dann durch die Auszählung der Kleinflächen, in denen die zuuntersuchende Art vorkommt. Sie wird in der Regel auf die Gesamtzahl der Kleinflächen bezogen und alsFrequenzprozent angegeben.

Anmerkungen: Das Verfahren ist sehr zeitaufwendig und durch zahlreiche Keimlinge und kleine Rosetten(die einwandfrei zugeordnet werden müssen) meist sehr mühsam. Ein besonderer Nachteil liegtdarin, dass die Ergebnisse der Frequenzbestimmung in gewissem Umfang von der gewähltenGrösse der Kleinquadrate abhängt. Demgegenüber steht der Vorteil dass bei korrekter Anwendungdas Ergebnis nicht von der subjektiven Beurteilung des Beobachters abhängt.

Die Grösse der Kleinflächenbeeinflusst das Ergebnis derFrequenmzbestimmung, aberauch die Aussage über denBindungstrend (Musterbildung)zwischen den Arten A, B, C.

Bei gleicher Individuenzahlbeeinflusst auch diePflanzengrösse das Ergebnis derFreqwuenzbestimmung

Die Raumverteilung(Dispresion) ist ebenfalls vongrossem Einfluss auf dieFrequenz

EigenaufnahmeMithilfe der Frequenzbestimmung:

Material:i) Frequenzrahmen 0.5 x0.5 [m] in 10 [cm2]geteilte Quadrate

Page 39: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 5/8 Erfassung des Pflanzenbestandes5

3. Transekt Methode: [%]Eine Frequenzbestimmung entlang eines ökologischenGradienten ergibt ein Transekt.Solche Profile sind überall dort empfehlenswert undaufschlussreich, wo sich die Vegetation in klarerAbhängigkeit von einem oder wenigen Standortfaktorenändert und zunächst keine floristisch einheitliche Fläche erkennbar ist. Ein Transekt liefert unter anderemAntwort auf die Frage, ob es sich tatsächlich um einen kontinuierlichen Übergang handelt oder obfloristisch homogene Teilbereiche abgrenzbar sind.Dazu wird entlang einer parallel zum standörtlichen Gradienten verlaufenden Markierungslinie einStreifen bestimmter Breite abgesteckt. Anschliessend werden innerhalb dieses Streifens in regelmässigenAbständen Frequenzbestimmungen durchgeführt. Die Breite des Streifens und der Minimalabstand derFrequenzerhebungen muss nach standortlichen Situationen festgelegt werden.

Anmerkungen: Transekte sind sehr zeitaufwendig. Eine wesentliche Zeitersparnis lässt sich erreichen,wenn auf Frequenzbestimmung verzichtet wird und statt dessen auf etwas vergrössertenKleinflächen (30 x 30 [m] bis 50 x 50 [m]) sie Deckung der einzelnen Arten entsprechend derBraun Planquet Skala abgeschätzt wird.

Material:i) Massstab (mind. 25 [m]lang

Page 40: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 5/8 Erfassung des Pflanzenbestandes6

4. Vegetationsaufnahme nach Braun-Blanquet Methode: [%]Sie besteht im wesentlichen aus einer kompletten Artenlisteund der nach einer bestimmten Klassifizierung geschätztenHäufigkeit.Mit einiger Übung und Erfahrung liefert dieses Verfahren beimässigem Zeitaufwand Resultate ausreichender Genauigkeit.Ein schwieriges Problem ist die richtige Wahl der Probenfläche. Sie sollte einheitlich sein (keineStörstellen, Randstrukturen, oder standörtlich abweichende Kleinflächen enthalten) und eine mehr oderminder gleichmässige Verteilung der beteiligten Pflanzenarten aufweisen.Die Grösse der Aufnahmefläche sollte so gewählt werden, dass möglichst alle Arten der beteiligtenPflanzengemeinschaft enthalten sind, andererseits nicht zu gross da man sonst mit der Homogenität derPflanzenverteilung in Konflikt geraten könnte.Die ökologische Aussage, die das Vorhandensein oder Fehlen einer Pflanze liefert, lässt sich durchAngaben zur Menge der einzelnen Arten weiter präzisieren. Nach Braun-Blanquet geschieht das mit einerSkala, die sowohl die Individuenanzahl (Abundanz) als auch die Deckung der einzelnen Arten(Dominanz) auf der Probefläche berücksichtigt.Beide Grössen werden in einer 7-stüfigen Klasseneinteilung vereinigt, deren Klassenkennzeichnung alsArtmächtigkeit bezeichnet wird.Folgende Artenmächtigkeitsskala wird verwendet:

R (1) selten (meist nur ein Exemplar)s+ (2) 2-5 Individuen, spärlich, nur wenig Fläche deckend1 (3) 6-50 Individuen, Deckung unter 5%2 (4) über 50 Individuen, Deckung 5-25%3 (5) Individuenzahl beliebig, Deckung 25 - 50%4 (6) Individuenzahl beliebig, Deckung 50 - 75%5 (7) Individuenzahl beliebig, Deckung 75 - 100%

Anmerkungen: Grössere Genauigkeiten wären nur durch erheblich aufwendigere Verfahren erreichbar; derdafür erforderliche Zeitaufwand ist entsprechend gross.Häufig wird diese Klassifizierung durch den Geselligkeitsgrad (sociability) erweitert (es lässt sichnicht erkennen, ob es sich um eine grosse Zahl kleinwüchsiger Pflanzen oder wenige grosseRosetten handelt).Auch die Vitalität (performance) als Ausdruck der Üppigkeit, Kümmerlichkeit die übers normaleMass hinausgeht kann vermerkt werden – beides wurde in diesem Protokoll nicht berücksichtigt.

Entwicklungsfasen eines Waldes, Optimal-, Terminal-, Zerfallsfase; die Schichtung verliert sich,gruppenweise Verjüngung setzt ein

Material:i) Massstab (mind. 25 [m]lang

Page 41: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 5/8 Erfassung des Pflanzenbestandes7

Aufnahmeblatt:

Aufnahme Nummer: Region Datum:

Ort: Kartenblatt (Koordinaten):

Meereshöhe: Exposition: Inklination:Geländemorfologie: Höhen-, Vegetationsstufe:

Gesteinsunterlage: Boden:

Bewirtschaftung: Mikroklima:Aspekt:

Vegetation der Aufnahmefläche: Grösse: Deckung:

Höhe Deckung Alter Sonstiges Höhe Deckung Alter SonstigesBS.1 SS.1BS.2 SS.2

Bemerkgn. KSMS

Page 42: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates1

Methods in Ecology(Methoden in der Ökologie)

Census of Fauna(Erfassung der Tierwelt)

Protocol - 6/8

October 8th 1997

Instructors: Dr. J. R. HaslettE. Traugott

Handed in by:

Pierre Madl (Mat-#: 9521584)

Salzburg, in the month of October 1997

Page 43: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates2

Introduction: A number of techniques can be used for ecological field studies. The choice in using a particularmethod is primarily based on the purpose the study is aiming at. To determine the importance of a site, thepopulation size of the species, the habitat requirements of a species, the reasons for the species decline, etc. itis important to plan the work carefully. The data must be stored in a way that it can be retrieved andunderstood by others in the future, such as data sheets, in files or computer records, properly labeledspecimen, etc. It is useful to determine the exact locations where species of particular interests were found.

Designing and Planing ecological field Studies:• Purpose of the study,• What information will be needed, and what is worth to be recorded,• How much detail is required,• On what scale will the survey be operating,• How much time and what resources (funds, time, etc.) are available to conduct the survey.

Selection of suitable study sites: The activity of most invertebrates, is often influenced by weather conditions andtime of the day. The level of activity may determine in which micro- or habitat a particular individual is atany one time, how easy the individual is to locate and to catch, and how likely it is to enter a trap.• Accessibility of is the site (especially if heavy equipment is needed),• What are the necessary materials needed to conduct the investigation,• Availability of the organism to be studied at a particular site,• Required permission of authorities (parks, conservation zones, etc.)

Designing the sampling program: The difficulty of identifying many invertebrate species, together with the needto prevent invertebrates once caught in traps from devouring each other or dying and decaying, oftenrequires them to be killed and preserved. Catches of individuals within the trap therefore will reflect boththe abundance and activity of the species, together with the species susceptibility to be caught in theparticular trap.• How many samples are needed (excessive sampling is time consuming, could alter population density,

and will result in intense evaluation work after the survey). Any trapping program should take intoaccount the likely effect that such removal of invertebrates may have on local population. Thisparticularly important in the case of trapping large sexually mature invertebrates such as dragonflies,butterflies, and crickets, where the colony may only include a small number of adults.

• Which sampling pattern to use (random, periodic, limiting area, etc.),• Time of sampling (periodically, seasonal or daily, at what times are organisms active, etc.).

Sampling Populations of Organisms:Invertebrates are able to exploit very small and specific areas within the environment (microhabitats). Anumber of these individuals spend their larval stage in different habitats than as adult organisms.Changes over time: It may be necessary to sample on a number of occasions throughout the year, in order toobtain a representative selection of species present. The importance and value of biological monitoring is theinterest in the changes in populations of plants, animals, loss of habitat, disturbance, changes in land use,decline or rise in population, etc. which can be directly related to antropogenic influences, successionalchanges, or other impacts.Spatial variations: When surveying invertebrates at a particular site, it will be necessary to sample a widerange of different microhabitats e.g. within a woodland (dead wood of different tree species at different stagesof decay and moisture content, the leaves of a variety of different three and shrub species, wet and dry leaflitter, soil, bare ground, etc.) and macrohabitats, e.g.: cross-section of an alpine valley or other larger spatialgradients.Community structure: Species that occur together in space and time gives an estimate of the diversity andrelative abundance present. The higher the probe, the better the interpretability of its structure.

Page 44: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates3

Two Major Categories of Sampling Methods:Relative Methods provide information on relative frequencies of occurrence. The fact that more individualspresent at one site or time, and fewer at an other site or time allow comparisons to be made. Relative Methodsare less disturbing compared to absolute sampling methods.• Counting numbers per unit effort (CPUE): Timed searches are useful to make quick assessments of the

invertebrate. Such method is to search each small (<1 hectare) for a total of three minutes. Searching eachhabitat within a period of time in proportion to its area. In terrestrial habitats the number of individualscounted in a set period of time has been used to obtain relative estimates of conspicuous taxa such asbutterflies at different heights; e.g.: sweep netting, etc.

• Trapping: The action of the organism itself determines the outcome of the catch, weather lured oraccidentally caught; e.g.: pitfall traps, flight intersection traps, water traps, catch-recatch method, etc. Alltrapping methods rely on invertebrates actively entering the trap. Catches of individuals within the trapwill reflect both the abundance and activity of the species, together with the species’ susceptibility tobeing caught in the particular trap.

Absolute Methods provide an absolute measure of population density at the time and place of sampling - thenumber of individuals present per unit area or volume of habitat; e.g. D-Vac, handsorting method, etc.Absolute methods do have quite a disturbing effect and will alter the sampled area to a certain degree(physically or chemically).Transect Methods: These methods are used to survey changes in vegetation along an environmental gradientor through different habitats. This can be done by using line-, belt transects or gradsects (for larger areas).Estimating of cover within a transect requires is mainly used for flora field studies and requires quite someexperience. Transect methods can be considered as intermediates, they are either absolute or relative - just amatter of size and effort.

Marking / Following Individual Organisms:Mark - Recapture is a suitable method for estimating populations, for physiological and behavioral studies,reveals habitat preferences, migration patterns etc. Invertebrate taxa with hard exosceleton are the mostwidely used. The exosceleton is marked (avoiding joints or sensory organs) using an oil-based enamel paint.Other methods include marking the wings of butterflies and moths with felt tip pen after first rubbing a smallpatch of scales off, and gluing on individually numbered tags (carapace of crabs).This method can also be used with modular organisms (have intermediate iteration of the repeated parts orunits of structure), such as plants. However, marking, locating and identifying individuals can be very timeconsuming and detailed work in a dense population especially when plants are small.Permanent quadrants, or markers will move over time due to soil movements and intentional or accidentalinterference of animals. Certain types of markers can be lost through vandalism. If an individual is onlymapped or if the marker is not fixed to the plant, then if the plant dies and a new plant grows in the sameplace, this individual might be mistaken by the old one.New individual may grow through the wired ring to create the same problem.

Killing & preserving insectsAll insects and hard-bodied invertebrates can be killed and preserved by dropping them into 70% alcoholsolution. Although most other invertebrate groups can be adequately preserved in alcohol, many are betterfixed beforehand. Fixation is the process of stabilizing protein constituents in body tissue to help maintainthem in a similar condition to that when the animal was still alive.When using alcohol solution to store invertebrates for up to a year or longer, containers should be thoroughlysealed (since alcohol quickly evaporates) in addition to 5% glycerol to prevent specimen from becomingbrittle, or from completely drying out, should all the alcohol evaporate. Lepidoptera (Butterflies and moths)should be pinned to prevent damage to the scales on their wings.Labeling should be done immediately after classification by placing the card along with the specimen into thejar containing the solution. Since labels attached to the outside invariably fall off eventually.

Some simple methods for catching insects. These are easy to use and quite efficient.

• Pitfall Traps• Suction Sampling• Flight Intersection Trap• Sweep Netting• Water Traps

Page 45: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates4

Pitfall Traps: Animals active on the soil surface are caught in containers that are burrowed at ground level.Crawling insects are trapped, killed, and preserved in aformalin solution. The content of the pitfall trap is sortedaccording to animal groups. The animals are then preservedin ethanol, then calculate the activity and abundance.The buried jars should be filled with formalin solution (aboutan inch high). The protection plate should be positionedslightly above ground over the jar to keep rainwater fromfilling it.After traps have been emptied, it is worth wiping their insidesurfaces with a cloth, to keep them clean and smooth (particularly if slugs and snails have entered and leftbehind a mucus trail). In most cases it is sensible to make the position of traps with a small post, or flag, sincethey can be surprisingly difficult to relocate, especially if left for long periods during the growing season.The number of jars is dependent on the site structure, For uniform habitats, 8-10 traps per site are usuallyenough. For sites with more complex structures, consider the different subunits within the habitat by usingabout 5 jars per subunit. Depending upon species abundance, check traps periodically.Catches in pitfall traps are a product of both invertebrate density and activity.

Remarks: Marking traps are conspicuous to passers-by and grazing stock, which may damage them. Somespecies of ground beetle, once caught, emit pheromones that attract other individuals to the trap,slightly altering the actual distribution. Catch rates vary with the nature of the surrounding vegetation.Tend to catch larger invertebrates (<3mm long). Despite these facts, it is one of the most commonmethod because it is cheap and easy for catching very large numbers of invertebrates. Requiresminimum effort.

A pitfall trap for catching invertebrates moving on the surface of the ground or amongst low vegetation

Materials used:i) 200 [mL] jarsi) coverage plate on tinypilesi) formalin flaski) spatula or shovel

Page 46: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates5

Suction Sampling: It involves the sucking up of invertebrates from aknown area of vegetation into a net with a motor drivenapparatus (D-Vac). The animals will reach the suctioncontainer alive. It is necessary to keep the sampler runningbetween individual sucks to prevent collected specimens from escaping. Remove the filter inset including itscontents, close it, and transport if into the laboratory for further investigation.

Remarks: Can be heavy and tiring to carry long distances. Require refilling with a petrol/oil mix at frequentintervals. Prone to breaking down. Refills need filter. Expensive. It is influenced by the weatherconditions such as rain, wind, grass too wet, etc. Collects fewer invertebrates per unit time spend in thefield. Suction sampling under-records large invertebrates (>3[mm]) that can take shelter or are firmlyattached to the vegetation, as well as those organisms that can sense the approaching vibrations, andnoise and take evasive action. Suction sampling is only effective in vegetation less than 15 [cm] high.The sorting of the material can be made easier by cooling the samples (freezer, freezing sprays) andyields the number of individuals per square meter.

This suction sampler can be used to suck up invertebrates from low vegetation and bare ground.

Materials used:i) D-Vac device

Page 47: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates6

Flight Intersection Trap: It is a device suitable to collect flying insects: it works by blocking flying insects with ascreen of fine black netting. Blocked insects then drop downinto collecting trays or are guided upwards into a collectingbottle (Malaise trap).It basically resembling a sac, supported by lateral as well as aroof-like framework. The entire tent-like structure is fenced offwith a mosquito net in a way that two main entrance areas areleft open. The central chamber is divided by a white net in a way that approaching insects can’t proceed withtheir intended flight-path. Insects obstructed by this net tend to redirect their route upwards to overcome theobstacle where the funnel-like roof-construction force them to fly directly into the sealed containers partiallyfilled with formalin or other narcotizing substances. A battery operated lights can be useful to attractnocturnally active organisms.The catch will reflect both the abundance and activity of particular species..

Remarks: Expensive structure. Subject to vandalism by passers-by. Area of research requires approvedpermission. Flight interception traps are rarely used to compare numbers of insects between sites or atthe same site overtime. The rate of collection is highly dependent upon the location, wind, position ofthe sun. It is pretty effective at catching smaller, more agile flying insects (Hymenoptera).

Malaise Trap after Townes

Materials used:i) Malaise Trap (Townes)i) formalin flask

Page 48: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates7

Sweep Netting: The method involves passing a sweep net (Kescher net - similar like a butterfly catcher) through thevegetation using alternate backhand and forehand strokes. Nets need to have a reinforced rim. An easy way tostandardize the method is, for each sample to consist of a series of net sweeps of approximately 1m in lengthtaken every other pace while walking at a steady speed throughthe vegetation. After a series of sweeps, invertebrates caught inthe net can be easily collected.

Remarks: Sweep netting cannot be carried out if thevegetation is damp and does not work well in vegetation less than 15 [cm] high. The catch obtainedwill also be influenced by the speed, depth, and angle at which the net is pulled through the vegetation.This method is well suited for surveying purposes.

A sweep-net used for catching invertebrates in low vegetation

Materials used:i) Kescher net

Page 49: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 6/8 Field Studies - Invertebrates8

Water Traps: Many flying insects are attracted to certain colors and can be attracted to and caught in colored water-filled bowels. Yellow bowel are the best for catching both fliesand Hymenoptera. White bowel also attracts flies, but has astrong repellent effect of Hymenoptera. Neutral coloredbowels, such as brown, gray, or blue are used, these will havethe least attractant/repellent effect on insects, and so reduce theselectivity of the sampling. The species composition of watertrap catches varies with the height of the trap. Therefore, ifbeing used to survey an area, a number of trapped should be setat different heights to catch a wide range of species. Conversely, if being used to compare catches betweensites, or at the same over time, the height that the trap is set about should be kept unchanged.. To keep leavesfrom falling into the bowels, a wide-mesh gauze can be fixed above it. Traps should be emptied at least oncea week.

Remarks: Variable rippling of water, caused by wind will also affect the trap. Insects captured in that wayare sometimes eaten by birds - once learned about this source, they will visit regularly. Water trapsshould also be kept out of reach from grazing stock, since they use them as drinking troughs. Trapshave to be emptied at frequent intervals, otherwise, contents will decay unless a preservative is used(preservatives will effect the attractiveness of the trap) or flushed out after heavy rain. Likely to bedisturbed by passers-by.They can be used in all habitats. Insects caught in the taps will depend on their activity and theirattraction to the color as well as their abundance.

A water trap for attracting and catching small flying insects.

Materials used:i) bowels of variouscolorsi) bucket of water

Page 50: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung1

Methoden in der Ökologie

Methoden der Kleinklimamessung(Microclimate)

Teilprotokoll - 7/8

9ten Oktober 1997

Betreut durch: Dr. P. HeiselmayerMag. Eichberger

Eingereicht durch:

Pierre Madl (Mat-#: 9521584)

Bernhard Schmall (Mat-#: 9620737)

Maricela Yip (Mat-#: 9424495)

Salzburg, im Oktober 1997

Page 51: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung2

Einleitung: Die auf Lebewesen in ihrem natürlichen (Biotop) einwirkenden Faktoren können in klimatische,biotische und orografische (den Boden betreffend) Einflüsse eingeteilt werden.Die elementarsten dieser Faktoren sind hinsichtlich klimatischer Einflüsse sind Sonneneinstrahlung, Temperatur,Luftfeuchtigkeit, Niederschlag, Wind, CO2-Konzentration und Bewölkung.

Aus klimatischer Sicht unterscheidet man Witterung und Klima folgendermassen:Als Witterung bezeichnet man den Zustand der Atmosfäre im gegebenen Augenblick und wird durch dasZusammenwirken der einzelnen klimatischen Faktoren bestimmt.Unter Klima versteht man den mittleren Zustand und den gewöhnlichen Verlauf der Witterung an einembestimmten Ort.

In meteorologischen Stationen werden die einzelnen Messpunkte so gewählt, dass die gewonnen Daten möglichstwenig durch örtliche Gegebenheiten beeinflusst werden (Bodenbedeckung, Hangneigung, Bauwerke, etc.) d.h.:bodenfern und freistehend. Die Datenreihe, repräsentativ für eine um die Station liegende Gegend, erfasst somitdas Makroklima.Je näher man sich der Bodenoberfläche nähert, desto grösser werden räumliche und zeitliche Unterschiedeindividueller Umweltfaktoren die Messdaten beeinflussen. Das Klima der bodennahen Luftschicht wird alsMikroklima bezeichnet.

Die im Verlauf der Übung gesammelten Daten und deren Bestimmung beziehen sich ausschliesslich auf dieErfassung mikroklimatischer Schwankungen die direkt oder indirekt durch die Sonneneinstrahlung gesteuertwerden.

Strahlung: Sonneneinstrahlung ist als elektromagnetische Strahlung (EMR) durch ihre Wellenlänge “λ“ [nm]und ihre Intensität “I“ [W/m2] gekennzeichnet. Im gesamten Strahlungsbereich weist die EMR kalorischeWirkung auf, i.e.: der strahlungsabsorbierende Körper wird erwärmt. Kürzere Wellenlängen (<1200[nm]) rufenausserdem chemische Veränderungen hervor (E = h⋅f).Unter Strahlungswärme versteht man die gesamte während einer Zeiteinheit absorbierten Strahlung [J/m2].Dabei werden aus der Vielzahl der Erfassungsmethoden drei elementare Verfahren herangezogen die direkt bzw.indirekt die zu erfassenden Grössen beeinflussen:Eine weitere wichtige daraus resultierende Grösse ist der Wind. Er ist einer der wichtigsten mikroklimatischenUmweltfaktoren, der vor allem die Temperatur, Niederschlags- und Verdunstungsverhältnisse beeinflusst.Windgeschwindigkeit und Windrichtung steuern aber auch den Austausch von Wärme, Luftfeuchtigkeit, O2 undCO2, zwischen Lebewesen und ihrer Umgebung zu bestimmen so massgeblich die Lebensbedingungen fürPflanzen und Tiere.

Protokollübersicht:

1. Folgende Messgrössen und deren Erfassung wurden während der Übung besprochen:1.1 Fotosynthetisch aktive Strahlung1.2 Bodenoberflächen Temperatur mittels Thermoelement1.3 Relativen Luftfeuchtigkeit mit dem Aspirationspsychrometer nach Assmann1.4 Windstärkemessung anhand eines thermischen Anemometers1.5 Potentielle Evaporation1.6 Bodentemperatur

2. Praktische Ausführung2.1 Allgemeines zum Standort, Geologie, Klima und Vegetation des Messplatzes2.2 Diskussion2.3 Tabellarische Übersicht der gewonnen Daten2.4 Grafische Darstellung der Tabelllenwerte

Page 52: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung3

1.1 Bestimmung der fotosynthetisch aktiven Strahlung (PhAR) - [µmol Photonen /(s⋅m2)]Der Wellenlängenbereich für fotosynthetisch wirksameStrahlung liegt zwischen 380 und 749[nm] und wirdübereinkommensgemäss auf den Bereich 400-700[nm]festgelegt. Für die Berechnung von Energie-ausnützungskoeffizienten der pflanzlichen Stoffproduktion istdie Erfassung der auf den Pflanzenbestand einfallenden,reflektierten und von Blättern absorbierten PhAR notwendig.Einfallswinkel (Sonnenstand) und Beschattung (Wolken,Vegetation, etc), fliessen in die Messwerterfassung mit ein.

Anmerkung: Messfühler besitzt eine Abschirmkappe (rot) welche bei direkter Sonneneinstrahlung überden Sensor gestopselt wird - kam aufgrund der Schattenlage des Messplatzes nicht zum Einsatz.Weiters sollte Messfühler nicht durch Anwesenheit von Zweit-/Dritt-Personen zusätzlichBeschattet werden.

Messfühlerposition und Datenerfassung: 5 Mess-Durchgänge in 30-minütigem Abstandà 4 Positionen (5/10/50/200 [cm] Höhe)

Material:i) PhAR-Meter (mitgeladenen Akuusatz)i) Masstab (mind. 2 [m]lang)

Page 53: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung4

1.2 Bestimmung der Bodenoberflächen-Temperatur mittels Thermoelement [°C]:Elektrische Thermometer sind sehr klein gebaut undermöglichen Fernmessungen. Durch eine nachfolgendeelektrische Verstärkung kann eine sehr hohe Messgenauigkeiterzielt werden. Der eigentliche Messfühler (Thermoelement)besteht aus zwei Kontaktstelle zweier an ihren Endenmiteinander verdrillter und verlöteter Drähte ausverschiedenen Metallen, meist Kupfer und Constatan (fürhöhere Temperaturen: Pt - Pt-Rhodium oder Th-Mb Elemente). Eines der Thermopaare wird dabei einerkonstanten Temperatureinwirkung ausgesetzt (Referenz) . Lediglich das zweite Paar wird alsRelativmessfühler zur Temperaturbestimmung eingesetzt. Bei Erwärmung, Abkühlung entsteht aufgrunddes Prinzips der elektrochemischen Spannungsreihe eine elektromotorische Kraft (EMK), welche derzweitenj (Referenzfühler) entgegenwirkt. Eine nachgeschaltete Verstärkerstufe ermöglicht die Erfassungder gesamt EMK (ist proportional der Temperatur) mit einer digitalen oder analogen Anzeige.

Anmerkung: Vor Beginn der Messung sollte Messfühler kalibriert werden - Justage per Kalibrierungs-Potentiometer und Nullwertschalter auf die “0“-Marke des Zeigerinstrumentes.Thermosensor nicht mit den Händen auf den Boden drücken - es genügt die oberste Bodenlage zuvermessen (Körperwärme)

Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstandà 5 Positionen

Thermoelemente zur Temperaturmessung:A; TemperaturdifferenzmessungB, Absolutmessung, wobei die Vergleichslötstelle in Eiswasser getaucht wird (4°C-Referenz)C, Thermosäule, in Serie geschaltene Thermoelemente, zur Bodentemperatur-Differenz-MessungD, Parallelschaltung, Mittelwertbildung der drei frei stehenden Thermoelemente, wobei viertes Elementals Referenzelement zu betrachten ist (analog B)

Material:i) ThermoelementgestützesTemperaturmeter (mitgeladenen Akkusatz)

Page 54: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung5

1.3 Erfassung der relativen Luftfeuchtigkeit mit dem Aspirationspsychrometer nach Assmann [%]Das Gerät, als Aspirationsthermometer mit zweiThermometern und einem nachgeschalteten Lüfterausgeführt, erfasst Lufttemperatur und Verdunstungskälte.Durch einen mit destilliertem Wasser getränktenTextilstrumpf wird eines der Thermometer durch den vomGebläse verursachten Luftzug abgekühlt. Je trockener dieaspirierte Luft, desto grösser die Verdunstungskälte. Diedadurch entstehende Temperaturdifferenz ist der relativenLuftfeuchte proportional.Das Gerät ist in ein doppeltes Gehäuse eingebaut um die Temperaturerfassung durchSekundärwärmeemitenten (Hand- Körperwärme) nicht zu verfälschen.

Anmerkungen: Gebläseöffnungen während der Messung nicht mit den Händen abdecken; sicherstellen,dass Textilstrumpf vor jeder Messung mit destilliertem Wasser befeuchtet wurde.

Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstandà 4 Positionen (5/10/50/200 [cm] Höhe)

Aspirations-Psychrometer nach Assmann

Material:i) Aspirationsmeter (mitfedergetriebenen Gebläse)i) destilliertes Wasseri) Massstab (mind. 2 [m]lang)

Page 55: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung6

1.4 Thermischer Windmesser (Hitzdraht Anemometer) [m/s]:Heizt man einen Körper (Heizdraht) elektrisch mit konstanterLeistung, so hängt die Differenz zwischen Körpertemperaturund Lufttemperatur von der Windgeschwindigkeit ab. DieseTechnik eignet sich daher bestens zur Bestimmung kleinerWindgeschwindigkeiten wie sie vor allem im Inneren vongeschlossenen Pflanzenbeständen auftreten.

Anmerkungen: Vor Inbetriebnahme kalibirert sich das Messgerät automatisch - dabei sollte jedoch derMessfühler von der Schutzlamelle (Schieberegler am Messfühlergriff) noch geschlossen sein.Während der Messung nicht unnötig zum Messfühler blasen, husten, etc.

Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstandà 4 Positionen (5/10/50/200 [cm] Höhe)

Material:i) Hitzdraht-Anemometer(mit geladenen Akkusatz)i) Massstab (mind. 2 [m]lang)

Hitzdraht-Anemometer

1) Manganin φ 1mm2) 2) Manganin φ 0.2mm3) Konstantan φ 0.3mm4) Heizdraht aus NiCr φ 0.08mm5) Bakelit6) Cu-Rohr φ 5mm7) Cu-Kugeln φ 6mm

Page 56: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung7

1.5 Potentielle Evaporation (Piche Evaporimeter) [ml/min] bzw. [m3/h]:Die Wasserabgabe von einem Blatt und einer freienWasseroberfläche ist unterschiedlich. Im letzeren Fall erfolgteine nahezu ungehinderte Änderung des Aggregatzustandes,da gasförmiges und flüssiges Wasser unmittelbaraneinandergrenzen.Im Blatt einer Pflanze ergeben sich aufgrund des Zellgerüsteskomplizierte Grenzverhältnisse aufgrund der vorhandenenMatrix. Um das jeweilige Verdunstungspotential derAtmosfäre objektiv erfassen zu können, ist ein geeignetesMessverfahren notwendig.Das Piche Evaporimeter erfüllt diese Bedingungen.

Dazu benutzt man ein Bürettenrohr und füllt es zu ¾ mit destilliertem Wasser auf. Mittels eineKlemmfeder wird am offenen Ende eine Filterpapier-Scheibe eingespannt. Aufgestellt wird dasEvaporimeter mit der Filterscheibe nach unten in der zu untersuchenden Verdunstungshöhe (hier 5, 10, 50[cm] Distanz zu Bodenniveau).Durch das Umdrehen saugt sich die Papierscheibe mit Wasser an und befeuchtet sich. Sie wird durch dendabei entstehenden geringen Unterdruck, zusätzlich zur Kraft der Feder an die Burettenöffnungangedrückt. Weiters verhindert das Filterpapier ein auslaufen der Flüssigkeit.

Anmerkungen: Verdunstungsplättchen sollten über den gesamtem Messerfassungs-Zeitraum ungestörtbleiben (während Ablesung ist Annäherung unumgänglich). Morgendliche Messungen verlaufenfehlerhaft, da beiSonneneinstrahlung(Wasser undLufterwärmung) dieFlüssigkeit aus demGefäss gepresst wird.Ablesungen sind nur solange zulässig, als sichkein flüssiges Wasserauf der Papierscheibeansammelt (tritt beiRegen auf). In solchenFällen muss derWasserüberschussabgesaugt werden.Das Bürettenrohr ist mitder aufgedruckten Skalain 1/100 [ml] eingeteilt.Dadurch ist es möglichAblesungen schon nach5 [min] vorzunehmen.

Messfühlerposition undDatenerfassung: 5Messdurchgänge in 30-minütigem Abstandà 3 Positionen (5/10/50[cm] Höhe)

Material:i) Bürettenrohri) Massstabi) Filterpapierscheiben(mit 3 [cm] Durchmesser)i) Klemmfederni) Befestigungsklammerni) Befestigungsstützen(mind. 1[m] lang)

Page 57: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung8

1.6 Bodentemperatur (Stechthermometer) [°C]:Bodentemperatur kennzeichnet den Energieumsatz im Bodenund steht in enger Beziehung zum Wasser-Luft Haushalt; siebeeinflusst ausserdem die Stoffwechseltätigkeit derVegetationsglieder eines Standortes, vor allem derMikroorganismen.

Anmerkungen: Messfühler in das Erdreich treiben undabwarten bis Handwärme durch Bodenwärme ersetzt wurde (zeitverzögert). Sicherstellen dasZeigerausschlag in der Testposition den “0“-Wert erreicht.

Messfühlerposition und Datenerfassung: 5 Messdurchgänge in 30-minütigem Abstandà 3 Positionen (2/5/10/ [cm] Tiefe)

Thermoelemente zur Temperaturmessung:A; TemperaturdifferenzmessungB, Absolutmessung, wobei die Vergleichslötstelle in Eiswasser getaucht wird (4°C-Referenz)C, Thermosäule, in Serie geschaltene Thermoelemente, zur Bodentemperatur-Differenz-MessungD, Parallelschaltung, Mittelwertbildung der drei frei stehenden Thermoelemente, wobei viertes Elementals Referenzelement zu betrachten ist (analog B)

Material:i) Stechthermometer (mitgeladenen Akkusdatz)i) Massstab

Page 58: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung9

2. Praktische Ausführung:

2.1 Allgemeine Angaben zum Standort der Datenerfassung:

Standort: Salzburg - Freisaal, 100 [m] westlich der NAWI (hinter dem UNI-Teich) unter der Eiche;Meereshöhe: 422 [m]Terrain: eben

Geologie: Nördliche Kalkalpen (grossgeologisch) Moräne und Alluvium (abgelagertes Gesteinsmaterialder Gletscherformation während der letzen Eiszeiten sowie Ablagerungen von Schwemmaterial desnahegelegenen Flusses, Salzach).

Klima: Gemässigtes, feuchtes Klima (im Nordstau der Alpen);durchschnittliche Niederschlagsmenge pro Jahr: 1300 [mm]Jahresdurchschnittliche Temperatur: 9°[C]Dominante Windrichtung: West

Vegetation: Mehrmahdige Wiese, mit gepflanzten Kulturbäumen und -sträuchern; nahegelegener Bach(Hellbrunnerbach) und künstlich angelegter Teich (UNI-Gewässer); sowohl Boden als auch Gewässerstark eutrofiert (Hinterlassenschaft von 4-Beinern).

Witterung: Leicht bis stark bewölkt - herbstlich warm

2.2 Diskussion:

Die hier kurz angerissene Gegenüberstellung beruht auf den Vergleich der hier gewonnenen Daten mitjenen Werten der Gruppe “Wiese“ (Zocher, Machart, Hager):

Strahlungswerte der 1445er Serie sind folge einer kurzzeitigen starken Sonneneinstrahlung (gesamtesSpektrum); im Vergleich dazu fallen die Werte “Baum“ (trotz nur 10%-iger Intensität) eher konstant zuallen erfassten Messzeitpunkten aus;Begründung: Blätterdach schirmt einfallendes Spektrum hervorragend ab

Windgeschwindigkeiten der 1415er Serie weichen am stärksten im offen Gelände “Wiese“ völlig vomStandort Baum ab;Begründung: An der Baumbasis ist Messplatz von niederen Sträuchern umgeben die sehr effizientLuftströmungen abschwächen

Bodentemperaturwerte der -2er Serie der Gruppe Wiese sind auffällig erhöht; die lässt auf einenintensiven Spektrumanteil schliessen welcher geringfügige aber doch messbare Eindringtiefe besitzt DerBodenoberflächen-Temperatur, der 1415er Serie resultiert durch die kurzfristige Sonnenstrahlung zumgegenwärtigen Messzeitpunkt.

Verdunstungswerte der 1415er bis 1515er Serie liegt im freien Gelände während bis nach derSonneneinstrahldauer sehr hoch; speziell in bodennahen Bereich dürften mehr Strahlungswärme vomEvaporimeter aufgenommen worden sein; hat eine Volumsausdehnung zur Folge, womit sich diesermassive Schwund erklären liesse.

Lufttemperatur liegt aufgrund der kurzfristigen Sonneneinstrahlung während der 1415er Serie etwas höherals in den Vergleichsmesszeiträumen.

Luftfeuchtigkeit ist in bodennahen Schichten stärker als in den höheren Messlagen;Begründung: Wasserverbrauch (Bodenfeuchtigkeit) des Grasbewuchses bei Assimilationstätigkeit

Page 59: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methoden in der Ökologie Teilprotokoll 7/8 Methoden der Kleinklimamessung10

2.3 Datensammlung (Tabelle - links Gruppe “Wiese“ - rechts Gruppe “Baum“):

*) Lufttemperatur mittels Aspirationspsychometer erfasst.**) Wasserverdunstungs-Volumen: relativänderung zum vorigen Messwert***) ?????????????

Zeit Strahlung [µmol Fotonen /(s⋅m2)]Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 280 327 441 4811415 351 444 533 6111445 1048 1214 1212 11241515 245 802 752 4721545 239 339 362 440

Zeit Wind [m/s]Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 0.07 0.11 0.18 0.071415 0.19 0.18 0.70 0.851445 0.07 0.10 0.19 0.631515 0.11 0.07 0.23 0.141545 0.03 0.22 0.55 0.76

Zeit Strahlung [µmol Fotonen /(s⋅m2)]Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 28.8 25.6 26.5 27.71415 32.0 33.3 30.3 20.71445 28.9 21.1 28.7 22.11515 27.9 27.1 24.3 14.31545 22.9 27.5 24.0 23.4

Zeit Wind [m/s]Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 0.03 0.12 0.05 0.041415 0.00 0.00 0.00 0.021445 0.03 0.05 0.18 0.241515 0.04 0.16 0.26 0.611545 0.09 0.04 0.19 0.10

Zeit Bodentemperatur [°C]Tiefe -10[cm] -5 [cm] -2 [cm] 0 [cm]

1345 15.8 17.1 18.8 21.91415 16.0 17.4 18.8 23.01445 16.0 17.6 19.1 26.41515 16.0 17.8 19.3 24.91545 16.2 17.8 19.3 21.9

Zeit Bodentemperatur [°C]Tiefe -10[cm] -5 [cm] -2 [cm] 0 [cm]

1345 15.0 16.0 17.0 20.71415 15.0 16.0 18.0 20.21445 16.0 17.0 18.0 21.01515 16.0 17.0 17.0 22.31545 16.0 17.0 17.0 20.6

Zeit Wasserverdunstung [ml]**Höhe 5 [cm] 10[cm] 50[cm]

1345 0 0 01415 0 0.1 01445 0.2 0 0.11515 0.5 0.1 0.21545 0.1 0.1 0.1

Zeit Wasserverdunstung [ml]**Höhe 5 [cm] 10[cm] 50[cm]

1345 0 0 01415 0 0.2 0.11445 0.1 0.15 0.151515 0.1 0.1 0.21545 0.2 0.1 0

Zeit Temperatur [°C]*Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 21.4 20.6 22.4 21.41415 22.0 21.6 21.2 22.81445 24.0 22.2 23.0 25.01515 23.2 23.0 24.0 24.81545 21.8 23.0 23.0 24.2

Zeit Luftfeuchtigkeit [%]***Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 88 86 64 671415 81 71 77 641445 70 73 57 471515 74 67 56 451545 93 76 65 62

Zeit Temperatur [°C]*Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 21.3 20.1 21.0 22.01415 21.0 21.9 22.0 22.01445 22.4 22.4 22.4 23.01515 23.2 22.8 22.6 22.61545 22.2 22.2 22.2 22.6

Zeit Luftfeuchtigkeit [%]***Höhe 5 [cm] 10[cm] 50[cm] 200[cm]

1345 77 77 77 681415 84 69 68 681445 59 58 56 511515 62 57 57 561545 70 68 66 64

Page 60: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 8/8 Bioindicators1

Methods in Ecology(Methoden in der Ökologie)

Bioindicators

Protocol 8/8

October 10th 1997

Instructor: Dr. R. Türk

Handed in by:

Pierre Madl (Mat-#: 9521584)

Salzburg, 31ten Oktober 1997

Page 61: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 8/8 Bioindicators2

Introduction: An indicator is a species indicating the state of both natural and man-made (antropogen)environments. Such physical and chemical disturbances will result in a change in species composition of the bioticcommunity. Such community changes are useful in monitoring current states of the environment and quite helpful inenvironmental assessment. Biological material and indicator speciesused for monitoring of pollutants are many and varied, rangingfrom cells, tissues and organs to whole organisms, includingprotists, lower plants, lichens, higher plants, coelenterates,aquatic and terrestrial invertebrates, even fish, and birds.

Plant and Animal Indicators: Throughout history, differentcultures have known that the presence of certain species,especially plant species, indicated certain conditions. Thepresence, absence and condition of every plant andanimal is a measure of the conditions under which it is existing or existed previously.• Occurrence of plants like the Common Stinging Nettles (Urtica dioica) indicate high levels of N in soil.• The insect group ephemeroptera (Mayflies) which have aquatic larvae contains species that are intolerant

to eutrophication, and so have been incorporated into programs monitoring water quality.• The appearance of Rosebay Willow Herb (Chamaenerion angustifolium) indicates disturbed soil or some

kind of perturbation.• Aborigines of West Africa recognized the Gau Tree (Acacia albida) as a fertile soil instrument.• The presence of basil (Ocimum homblei) in Zimbabwe indicates high copper content in the soil.

Behavior and physiology: Some animals have been used in monitoring the quality of the environment.• Dawn chorus bird of polluted and disturbed urban areas are less likely to participate in chorus singing.• Miners have used caged canary to give biological warning signals when detecting methane gases.• The behavior and respiratory physiology of several aquatic organisms including fish have successfully

been used to monitor water quality.

Microevolution: One classical example of an indicator of the extent of pollution has been the spread of melanicforms of the Peppered moth (Biston betularia) throughout polluted areas of Britain and Europe. Particularlystriking, was the spread but then later decline of melanic forms after the Clean Air Act in Britain. Thisdecline in coincided with a period of increasing species richness of lichens on trees.

Community indicators: Populations of animals and plants occur in communities and therefore the species indicatorconcept can be extended to communities of indicator species.Different soils (serpentine, chalk, acids) all support indicator plant communities.• The characteristic flora of serpentine soils, which are low in Ca and high in Mg, is a good example of a

plant indicator community.• Acids soils, in which heathland plants reside, are the low-growing, dwarf ericoid shrubs.• Best quality water indicators were discovered in association with dominance of Alopecurus pratensis,

Agropyron pectiniforme and Stipa capillata in the former USSR.• Diatoms, are still used to monitor river and stream water quality.

Indicators of pollution: It has long been known that heavy metals and organochlorides penetrate ecosystems, as aresult, some organisms will accumulate pollutants in varying amounts.In polluted parts of the River Thames, the mollusk Anodonta spp. Has been found to have twenty times thelevel of cadmium compared to the same species from the River Test.Although bioaccumulation occurs in a wide variety of taxonomic groups, it does not necessarily follow thatthe source of pollution is near those organisms in which the pollutants have accumulated.• The discovery of DDE (variant of DDT) in bodies of Penguins in the Antarctic, thousands of miles from

any use of agrochemicals.• Detector species occurring naturally in the area of interest and which may show a measurable response to

environmental change, e.g. changes in behavior, mortality, age-class structure, etc.• Exploiter species whose presence indicates the probability of disturbance or pollution. They are often

abundant in polluted areas because of lack of competition from eliminated species.• Accumulator organisms that take up and accumulate chemicals in measurable quantities.• Biossay organisms are selected for use as a laboratory reagent to detect the presence and/or concentration

of pollutants, or to rank pollutants in order of toxicity.

Monitor Organism

active passivemonitoring monitoring

reaction accumulationindicators indicators

Page 62: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 8/8 Bioindicators3

Such organisms used as detector and exploiter types should have the following characteristics:1. Narrow tolerance to environmental variables (stenothermal, stenohaline) instead of high tolerance

(erythermal, euryhaline).2. Easy to sample.3. Accumulation of pollutants should occur without killing the organism.4. Sedentary or limited dispersal like: plants, common chronic symptoms: premature senescence and

bronzing or chlorosis due to disease of insects, environmental stress, drought, etc.5. Long-lived so that different age-classes can be sampled; e.g.: lichens and mosses are very sensitive to air-

borne pollutants and in the case of lichens have the potential to flourish for centuries (under favorableconditions).

In the case of lichens, pollutants such as SO2 affects the algae component of the lichen and thus the symbioticrelationship between algae and fungus breaks down. Lichens have long been used as a bioindicator for morethan 100 years. Lichens are also detector, exploiter and accumulator, these characteristics make them a goodindicator of air pollution. Monitoring air pollutants by lichen mapping itself because lichens are also sensitiveto HF, HCl, NOX, O3, and pAN (known to be detrimental). Lichens can be used as a biological materialinstead of physical and chemical apparatus for air pollution measurements.Many lichens are widespread and can be used over wide areas. Epiphytic lichens should be investigated onone or a limited number of similar tree species which are not influenced by microenvironmental conditions.Mapping of lichens requires a high degree of experience. It should be done in periodic time intervals andshould cover a great diversity of species. Interpretations and results should be done by lichenologists.In alpine valleys the lichen growth on mountain maple trees (Acer pseudoplatanus, Alnus incana) are usefulindicators of SO2 pollution.Even though lichen mapping is a valuable tool in estimating air quality, it should be supplemented by the useof lichen transplants and determination of sulfur and chlorophyll content of the lichen thalli.

Mosses on tree barks are valuable indicators of pollution of heavy metals. Since mosses lack epidermis andcuticle, they accumulate metals in a passive way by acting as ion exchangers. These bioaccumulation isenforced by the fact that mosses do not have organs for the take up of nutrients from the substrate.

Trees selected for the pollution mapping should have the following properties:a) Tree should be free standing, (except for extensive agricultural use, because the herbicides and

pesticides use can influence lichens cover and falsifies mapping results).b) The bark of road side trees are usually exposed of exhausted pollutants and dust caused by traffic.c) The buffer capacity of the tree bark play an important role in lichen distribution. Tree with an acidic

bark are unsuitable for studies, because the buffer capacity is very low. Although, many ecologistsmade use of tree bark as a bioindicator of environment acidity.

d) Some species are not suitable for mapping since they support a rich lichen flora, such as Aesculushipocastanum and Fraxinus excelsior.

e) The particular different water capacities of tree barks and of rain tracks (runoff) have to be consideredin micro-environmental influence;

f) The percentage cover of Lecanora conizaeoides is a valuable indicator of pollution levels, because inhighly polluted areas this species only occurs in the bark crevices; whereas in less highly pollutedareas tally occur on bark ridges.

g) Since the layer structure of mosses produce organic matter; therefore, accumulate metals in a passiveway by ion exchangers.

An other interesting organism often used to monitor air quality is Tobacco (Nicotiana tabacum), or BEL 3 asit is known for short. It is a very easy to use indicator plant for ground-level ozone. Because it is sensitive tophytotoxic constituents, it reacts to even very low concentrations of O3, and shows characteristic symptoms(spots). These spots are small white lesions on the adaxial surfaces of the leaves and are the cause ofphotochemical reactions from incompleted combustion of fossil fuels.

There are many other biological indicators which could successfully be used, not only as effective warning systemsbut also as cheap and reliable components of long-term pollution monitoring programs.

Page 63: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 8/8 Bioindicators4

Right: Active biomonitoring with exposed lichen samplesLeft: Bonitierungsskala von Blattnekrosen bei tausalzgeschädigten Linden.

1) ungeschädigt2) Chlorose des >Randes3) starke Chlorose bei Spreite (gelbfärbung des Randes)4) breite Randnekrose mit gelber Grenzzone5) grösster Teil der Spreite abgestorben

Flechenrekrosen (silberflecken) auf den Blättern des Tabaks Nicotiana tabacum. BelW3 als charakteristisches Ozon-SAchadbild. Die Nekrosen bilden sich bei jungen Blättern nur an der Blattspitze

Page 64: Census Techniques in Ecology - Uni Salzburg · Census Techniques in Ecology ... Bodenkundliches Praktikum. Blackwell Science Berlin 1995 ... agriculture, drainage and human settlement

Methods in Ecology Sub-Protocol 8/8 Bioindicators5

Practical Observations around the backyard of the University:

Paved square at the back entrance of the University building reveals that moss growth in the gaps of theblocks is very limited due to excessive pedestrian traffic. Whereas other sections not as heavilyfrequented by people show a more advanced level of succession (grass, etc.).

Marble walls of the west-side wing of the University building are covered with a grayish film. The mostconcentrated patches are found at those locations where rain water run off is heaviest. The Ca-richsubstrate provides an ideal spot for cyanobacterial growth. Heterocysts autotrophic organism can fixnitrogen from the air and chlorophyll enables them to utilize sunlight to convert CO2 to O2 for theirenergetical requirements.

Caleoplaca cytrina, a lichen found on nitrogen rich substrates; is found preferably at locations periodicallyfertilized by urination of Pincelin canine (common name: dog).

Almost every tree trunk is covered with a greenish film; the presence of Pleurococcus sp., indicates thatexcess fertilization from relocated artificially fertilized soil (soil erosion by wind) nourishes theirgrowth. This particular pattern is not found in areas lacking farming. In distinct sections of tree trunks,frequent visitors (cats) sharpen their claws, therefore minimizing recolonialization of epiphyticorganisms.

Counting epiphytic lichens: An easy procedure in which a plot is filed by pinning a self made transparent censusoverlay against the tree bark. The plastic foil is divided into squared compartments, measuring 10 x 10 [cm]each, with a total area of 0.2 x 0.5 [m2].Identification and determination of the frequencies of the species present within this area reflects speciesdiversity. If this procedure is repeated in frequent intervals of time (taking pictures), the plot technique is apowerful tool to compare past and present changes of sensitive lichen colonies.

Quercus roburHeight: 1.2 to 1.45 [m]; Remarks:Exposition: westFrequency

unitsSpecies found

Termini

Bioindicators reveals the presence of air pollutants by showing typical symptoms from the effects of other natural orantropogenic stress. BI may react either specifically to a certain pollutant or unspecifically to a mixture oftoxins.

Bioaccumulator has collected pollutants from the surrounding air in a given time reference. They are been analyzedfor the detection of those components which are not decomposed, released or translocated. These plants areaccumulators.

Biomonitor can be an indicator or accumulator: they can provide quantitative information and allow to identifychanges in pollution over the course of time. Pollutants are released by sources dispersed in the atmosphereand transmitted to a certain location where the ambient concentration is called immission.

Monitoring:Active M.: Organisms known to be sensitive (narrow tolerance) to certain pollutants are exposed intentionallyto various locations in order to monitor their reaction in periodic intervals of time.Passive M.: The presence, absence and condition of every plant and animal is a measure of the conditionsunder which it is existing or existed previously.

Reaction Indicators: An organism reacts in a visible way caused by antropogenic sources.