chemical petrochemical industry - ficcificci.in/spdocument/20247/knowledge-paper-inside.pdf · now...

139
Knowledge & Strategy Partners IIT - Delhi EIL Knowledge & Strategy Paper on Technology Upgradation in April 2013 New Delhi CHEMICAL PETROCHEMICAL INDUSTRY &

Upload: others

Post on 22-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Knowledge & Strategy Partners

    IIT - Delhi EIL

    Knowledge & Strategy Paper on Technology Upgradation in

    April 2013New Delhi

    CHEMICAL PETROCHEMICAL INDUSTRY

    &

    For further details please contact...

    Mr P. S. SinghHead-Chemicals Division, FICCI

    Federation House, 1 Tansen Marg, New Delhi-110001

    Tel: +91-11-2331 6540 (Dir)

    EPBX: +91-11-23738760-70 (Extn 395)

    Fax: +91-11-2332 0714/2372 1504

    Email: [email protected]

    Ms Charu SmitaAssistant Director-Chemicals Division, FICCI

    Federation House, 1 Tansen Marg, New Delhi-110001

    Tel: +91-112335 7350 (Dir)

    EPBX: +91-1123738760-70 (Extn 474)

    Fax: +91-112332 0714/2372 1504

    Email: [email protected]

    R.P. LuthraDirector Administration

    Indian Institute of Chemical Engineers (Northern Regional Center)C-27, Qutab Institutional Area, New Delhi-110016

    Tel. .: 011-26532060, 26533539, E-Mail : [email protected] : www.iichenrc.org

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    01

    Coal Gasification

    Dr. Siddhartha Mukherjee, Director - TechnologyAir Liquide Global E&C Solutions India Private Limited

    Introduction

    History

    Chemical Reactions

    The term gasification covers the conversion of any carbonaceous fuel to a gaseous product

    with a usable heating value. The process includes pyrolysis, partial oxidation and

    hydrogenation but excludes combustion because the product flue gas has no residual

    heating value. The dominant technology is partial oxidation which produces a synthesis

    gas consisting of hydrogen and carbon monoxide in varying ratios.

    The process of producing energy using the gasification method has been in use for more

    than 180 years. The most important gaseous fuel used in the early nineteenth century was

    town gas. This was produced by two processes namely pyrolysis of coal which produces a

    gas with a relatively high heating value, and the water gas process, in which coke is

    converted into a mixture of hydrogen and carbon monoxide to produce a medium Btu gas.

    The coke oven and the water gas reactors were operated at pressures less than 2 bar. This

    resulted in voluminous equipment.

    The fully continuous gasification process was developed only after Carl von Linde

    commercialised the cryogenic separation of air. Gasification processes using oxygen were

    now developed for the production of synthesis gas. Following this, some important

    gasification processes were developed viz. the Winkler fluid-bed process (1926), the Lurgi

    moving bed process (1931) and the Koppers-Totzek entrained flow process (1940s).

    The chemistry of gasification is extremely complex. The most important reactions relevant

    to the gasification process are similar to those of gas reforming. The processes of

    gasification and reforming therefore have a lot in common. Both take place at relatively

    high temperatures (approximately 1000 oC or more), which is a result of the heat of

    exothermic combustion (oxidation) reactions driving the endothermic reduction

    reactions. The basic gasification reactions are the following:

    Oxidation:

    C + ½ O CO ∆H = -111 kJ/mol (1)2CO + ½ O →CO H = -283 kJ/mol2H + ½ O →H O ∆H = -242 kJ/mol (3)2 2 2

    ∆ (2)2

  • Knowledge & Strategy Partners

    IIT - Delhi EIL

    Knowledge & Strategy Paper on Technology Upgradation in

    April 2013New Delhi

    CHEMICAL PETROCHEMICAL INDUSTRY

    &

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    The Indian chemical industry, an integral component of the Indian

    economy has key linkages with several other industries such as

    automotive, consumer durables, engineering, food processing etc and

    produces & supplies more than 80000 products. With Asia's

    increasing contribution to the global chemical industry, India

    emerges as one of the focus destinations for chemical companies

    worldwide.

    Challenges to the Indian industry include growing competition from

    other countries, sustainability of the business & perception issues of

    the sector. In order to be competitive in the international market, the

    chemical industry has to promote sustainable development by

    investing in technologies that are water/energy/feedstock efficient,

    protect the environment & stimulate growth while balancing

    economic needs & financial constraints.

    I am delighted that FICCI, jointly with the Department of Chemicals &

    Petrochemicals, Government of India & Indian Institute of Chemical

    Engineers (IIChE) is organising a Seminar on "Technology

    Upgradation in the Chemicals and Petrochemicals industry" at New

    Delhi on April 15-16, 2013.

    I am confident the Seminar will achieve its objectives and wish it every

    success.

    Sd/-

    Naina Lal KidwaiPresidentFICCI

    Message Message

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    The Indian chemical industry, an integral component of the Indian

    economy has key linkages with several other industries such as

    automotive, consumer durables, engineering, food processing etc and

    produces & supplies more than 80000 products. With Asia's

    increasing contribution to the global chemical industry, India

    emerges as one of the focus destinations for chemical companies

    worldwide.

    Challenges to the Indian industry include growing competition from

    other countries, sustainability of the business & perception issues of

    the sector. In order to be competitive in the international market, the

    chemical industry has to promote sustainable development by

    investing in technologies that are water/energy/feedstock efficient,

    protect the environment & stimulate growth while balancing

    economic needs & financial constraints.

    I am delighted that FICCI, jointly with the Department of Chemicals &

    Petrochemicals, Government of India & Indian Institute of Chemical

    Engineers (IIChE) is organising a Seminar on "Technology

    Upgradation in the Chemicals and Petrochemicals industry" at New

    Delhi on April 15-16, 2013.

    I am confident the Seminar will achieve its objectives and wish it every

    success.

    Sd/-

    Naina Lal KidwaiPresidentFICCI

    Message Message

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    stnetnoC foT ea lb

    1. Coal Gasification- Dr Siddhartha Mukherjee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01Director Technology, Air Liquide Global E&C Solutions India Pvt. Ltd.

    1

    2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

    3 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

    4 Criteria for Assessment of Different Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02

    5 Gasification Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02

    6 Applications of Coal Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04

    7 Coal Gasification - the Indian Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07

    8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 08

    2. Latest Developments in the Fertilizer (Ammonia) Industry- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09Dr S. Nand; Mr V. K. Goyal and Mr Manish Goswami, Fertilizers Association of India

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

    1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

    2 Growth of ammonia industry in India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    3 Energy conservation efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    4 Benchmarking of Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5 Developments in ammonia technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5.1 Reforming of hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5.2 Conversion of CO to CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.3 Synthesis gas Purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.4 Ammonia synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    6 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    3. Petrochemicals- Engineers India Limited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1 Introduction To Petrochemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2 Petrochemicals from Steam Cracking of Hydrocarbons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.1 Feedstock options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.2 Directly saleable products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.3 Basic building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.4 Byproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    2.5 Block flow diagram and brief process description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    2.6 Technology suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

    Executive Summary

    The Indian chemical industry is an integral component of the Indian economy. The

    industry has key linkages with several other downstream industries such as automotive,

    construction, consumer durables, engineering, food processing etc. The industry

    produces and supplies more than 80000 products. The chemicals industry which includes,

    (as per national Industrial Classification) basic chemicals & its products, petrochemicals,

    fertilizers, paints and varnishes, gases, soaps, perfumes and toiletries is one of the most

    diversified of all industrial sectors covering thousands of commercial products. The robust

    growth of this sector is important for the national economy.

    The Indian chemicals industry generated total revenue of about USD 108 billion in 2010

    (Source: CMIE). The relevance of the chemical industry to the overall manufacturing sector

    can be gauged by the fact that 'Basic chemicals and chemical products' account for about

    14% in overall Index of Industrial Production (IIP).

    In the Chemical Sector, 100 percent Foreign Direct Investment (FDI) is permissible thru

    automatic route. Manufacture of most chemical products including organic / inorganic,

    dyestuffs and pesticides is de-licensed. With Asia's increasing contribution to the global

    chemical industry, India emerges as one of the focus destinations for chemical companies

    worldwide. There is huge unrealised potential of further growth as indicated by the

    present very low per capita consumptions in the country. The domestic demand is rapidly

    increasing, and is being fuelled by approx. 200 million Indian middle class consumers. The

    new National Manufacturing Policy has set the target of increasing the share of

    manufacturing in GDP to at least 25% by 2025 (from current 16%). These all are

    indications of the days of growth for this important sector.

    However, for that to be possible, significant investments in capacity creation, R&D, feed

    stock availability and infrastructure need to be created to enable the industry to be

    globally competitive. If that is not done, the market forces will play and it will get served

    through manufacturing done in other countries. The chemical industry in the coming

    decades has to promote sustainable development by investing in technologies that

    protects environment and stimulates growth while balancing economic needs and

    financial constraints. This Seminar gives focus to this aspect.

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    stnetnoC foT ea lb

    1. Coal Gasification- Dr Siddhartha Mukherjee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01Director Technology, Air Liquide Global E&C Solutions India Pvt. Ltd.

    1

    2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

    3 Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

    4 Criteria for Assessment of Different Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02

    5 Gasification Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02

    6 Applications of Coal Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 04

    7 Coal Gasification - the Indian Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07

    8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 08

    2. Latest Developments in the Fertilizer (Ammonia) Industry- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09Dr S. Nand; Mr V. K. Goyal and Mr Manish Goswami, Fertilizers Association of India

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

    1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

    2 Growth of ammonia industry in India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    3 Energy conservation efforts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    4 Benchmarking of Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5 Developments in ammonia technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5.1 Reforming of hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5.2 Conversion of CO to CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.3 Synthesis gas Purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.4 Ammonia synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    6 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

    3. Petrochemicals- Engineers India Limited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    1 Introduction To Petrochemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2 Petrochemicals from Steam Cracking of Hydrocarbons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.1 Feedstock options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.2 Directly saleable products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.3 Basic building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.4 Byproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    2.5 Block flow diagram and brief process description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    2.6 Technology suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

    Executive Summary

    The Indian chemical industry is an integral component of the Indian economy. The

    industry has key linkages with several other downstream industries such as automotive,

    construction, consumer durables, engineering, food processing etc. The industry

    produces and supplies more than 80000 products. The chemicals industry which includes,

    (as per national Industrial Classification) basic chemicals & its products, petrochemicals,

    fertilizers, paints and varnishes, gases, soaps, perfumes and toiletries is one of the most

    diversified of all industrial sectors covering thousands of commercial products. The robust

    growth of this sector is important for the national economy.

    The Indian chemicals industry generated total revenue of about USD 108 billion in 2010

    (Source: CMIE). The relevance of the chemical industry to the overall manufacturing sector

    can be gauged by the fact that 'Basic chemicals and chemical products' account for about

    14% in overall Index of Industrial Production (IIP).

    In the Chemical Sector, 100 percent Foreign Direct Investment (FDI) is permissible thru

    automatic route. Manufacture of most chemical products including organic / inorganic,

    dyestuffs and pesticides is de-licensed. With Asia's increasing contribution to the global

    chemical industry, India emerges as one of the focus destinations for chemical companies

    worldwide. There is huge unrealised potential of further growth as indicated by the

    present very low per capita consumptions in the country. The domestic demand is rapidly

    increasing, and is being fuelled by approx. 200 million Indian middle class consumers. The

    new National Manufacturing Policy has set the target of increasing the share of

    manufacturing in GDP to at least 25% by 2025 (from current 16%). These all are

    indications of the days of growth for this important sector.

    However, for that to be possible, significant investments in capacity creation, R&D, feed

    stock availability and infrastructure need to be created to enable the industry to be

    globally competitive. If that is not done, the market forces will play and it will get served

    through manufacturing done in other countries. The chemical industry in the coming

    decades has to promote sustainable development by investing in technologies that

    protects environment and stimulates growth while balancing economic needs and

    financial constraints. This Seminar gives focus to this aspect.

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    3 Pathways for Production of Various Petrochemicals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.1 Petrochemicals from Ethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.2 Petrochemicals from Propylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    3.3 Petrochemicals from C4 fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    3.4 Petrochemicals from C5 fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    3.5 Petrochemicals from Aromatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    3.6 Petrochemicals from Methanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    4 Major Applications of Petrochemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    5 Technology Suppliers for Production Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    4. Breakthrough Applications of Ionic Liquids: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61A Platform Technology- Alak Bhattarcharya; Joe Kocal; Manuela Serban; UOP LLC, a Honeywell Company; Soumendra Banerjee; UOP IPL, a Honeywell Company

    1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    3 Synthesis of Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    4 General Applications of Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    5 Industrially Significant Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    6 Current Honeywell-PMT/UOP Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    7 Denitrogenation of Low sulfur Diesel: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    8 Other applications of Ionic Liquids: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    5. Scope of Fuel Cell Technology in India- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Dr. Suddhasatwa Basu, Dept. of Chemical Engineering, IIT Delhi

    1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    1.1 India - a growing economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    2. Energy Landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    2.1 Electricity Demand supply situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    3. Policy Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    4. R&d Situation In India. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    5. Markets For Fuel Cells In India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    5.1 Stationary Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    5.2 Fuel cell markets in automotive sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    6. Electrocoagulation for the Treatment of Industry Effluent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Dr. Anil K Saroha, Dept. of Chemical Engineering, IIT Delhi

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    01

    7. Strengthening of Mithi River Bridge Under N1 Taxiway at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Mumbai International AirportDr. Gopal L. Rai, CEO, R&M International Group

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    2. Strengthening of the Bridge Under Runway [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    3. Strengthening of bridge under the Taxiway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    4. Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    4. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    8. Technical Paper-Introduction to Poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Tetra Fluoroethylene ( PTFE )& Its ApplicationsKapil Malhotra, Vice President Marketing andRajeev Chauhan, Sr. General Manager- R & D, Gujarat Fluoro Chemicals Limited

    1. PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    1.2. Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    1.3. The Manufacturing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    1.4. Making the TFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    1.5. Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    2. PTFE - PRODUCT INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    2.1. Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    2.2. Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    2.3. Characteristics of PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    2.4. Classification of PTFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    2.5. Fillers for Coumpounded PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    2.6. Application of PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    9. About IIT Delhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    10. About Engineers India Limited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    11. About IIChE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    12. About FICCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    3 Pathways for Production of Various Petrochemicals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.1 Petrochemicals from Ethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    3.2 Petrochemicals from Propylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    3.3 Petrochemicals from C4 fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    3.4 Petrochemicals from C5 fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    3.5 Petrochemicals from Aromatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    3.6 Petrochemicals from Methanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    4 Major Applications of Petrochemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    5 Technology Suppliers for Production Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    6. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    4. Breakthrough Applications of Ionic Liquids: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61A Platform Technology- Alak Bhattarcharya; Joe Kocal; Manuela Serban; UOP LLC, a Honeywell Company; Soumendra Banerjee; UOP IPL, a Honeywell Company

    1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    3 Synthesis of Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    4 General Applications of Ionic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    5 Industrially Significant Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    6 Current Honeywell-PMT/UOP Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    7 Denitrogenation of Low sulfur Diesel: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    8 Other applications of Ionic Liquids: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    5. Scope of Fuel Cell Technology in India- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Dr. Suddhasatwa Basu, Dept. of Chemical Engineering, IIT Delhi

    1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    1.1 India - a growing economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    2. Energy Landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    2.1 Electricity Demand supply situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    3. Policy Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    4. R&d Situation In India. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    5. Markets For Fuel Cells In India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    5.1 Stationary Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    5.2 Fuel cell markets in automotive sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    6. Electrocoagulation for the Treatment of Industry Effluent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Dr. Anil K Saroha, Dept. of Chemical Engineering, IIT Delhi

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    01

    7. Strengthening of Mithi River Bridge Under N1 Taxiway at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Mumbai International AirportDr. Gopal L. Rai, CEO, R&M International Group

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    2. Strengthening of the Bridge Under Runway [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    3. Strengthening of bridge under the Taxiway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    4. Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    4. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    8. Technical Paper-Introduction to Poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114Tetra Fluoroethylene ( PTFE )& Its ApplicationsKapil Malhotra, Vice President Marketing andRajeev Chauhan, Sr. General Manager- R & D, Gujarat Fluoro Chemicals Limited

    1. PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    1.2. Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    1.3. The Manufacturing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    1.4. Making the TFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    1.5. Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    2. PTFE - PRODUCT INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    2.1. Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    2.2. Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    2.3. Characteristics of PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    2.4. Classification of PTFE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    2.5. Fillers for Coumpounded PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    2.6. Application of PTFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    9. About IIT Delhi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    10. About Engineers India Limited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    11. About IIChE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    12. About FICCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    01

    Coal Gasification

    Dr. Siddhartha Mukherjee, Director - TechnologyAir Liquide Global E&C Solutions India Private Limited

    Introduction

    History

    Chemical Reactions

    The term gasification covers the conversion of any carbonaceous fuel to a gaseous product

    with a usable heating value. The process includes pyrolysis, partial oxidation and

    hydrogenation but excludes combustion because the product flue gas has no residual

    heating value. The dominant technology is partial oxidation which produces a synthesis

    gas consisting of hydrogen and carbon monoxide in varying ratios.

    The process of producing energy using the gasification method has been in use for more

    than 180 years. The most important gaseous fuel used in the early nineteenth century was

    town gas. This was produced by two processes namely pyrolysis of coal which produces a

    gas with a relatively high heating value, and the water gas process, in which coke is

    converted into a mixture of hydrogen and carbon monoxide to produce a medium Btu gas.

    The coke oven and the water gas reactors were operated at pressures less than 2 bar. This

    resulted in voluminous equipment.

    The fully continuous gasification process was developed only after Carl von Linde

    commercialised the cryogenic separation of air. Gasification processes using oxygen were

    now developed for the production of synthesis gas. Following this, some important

    gasification processes were developed viz. the Winkler fluid-bed process (1926), the Lurgi

    moving bed process (1931) and the Koppers-Totzek entrained flow process (1940s).

    The chemistry of gasification is extremely complex. The most important reactions relevant

    to the gasification process are similar to those of gas reforming. The processes of

    gasification and reforming therefore have a lot in common. Both take place at relatively

    high temperatures (approximately 1000 oC or more), which is a result of the heat of

    exothermic combustion (oxidation) reactions driving the endothermic reduction

    reactions. The basic gasification reactions are the following:

    Oxidation:

    C + ½ O CO ∆H = -111 kJ/mol (1)2CO + ½ O →CO H = -283 kJ/mol2H + ½ O →H O ∆H = -242 kJ/mol (3)2 2 2

    ∆ (2)2

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    01

    Coal Gasification

    Dr. Siddhartha Mukherjee, Director - TechnologyAir Liquide Global E&C Solutions India Private Limited

    Introduction

    History

    Chemical Reactions

    The term gasification covers the conversion of any carbonaceous fuel to a gaseous product

    with a usable heating value. The process includes pyrolysis, partial oxidation and

    hydrogenation but excludes combustion because the product flue gas has no residual

    heating value. The dominant technology is partial oxidation which produces a synthesis

    gas consisting of hydrogen and carbon monoxide in varying ratios.

    The process of producing energy using the gasification method has been in use for more

    than 180 years. The most important gaseous fuel used in the early nineteenth century was

    town gas. This was produced by two processes namely pyrolysis of coal which produces a

    gas with a relatively high heating value, and the water gas process, in which coke is

    converted into a mixture of hydrogen and carbon monoxide to produce a medium Btu gas.

    The coke oven and the water gas reactors were operated at pressures less than 2 bar. This

    resulted in voluminous equipment.

    The fully continuous gasification process was developed only after Carl von Linde

    commercialised the cryogenic separation of air. Gasification processes using oxygen were

    now developed for the production of synthesis gas. Following this, some important

    gasification processes were developed viz. the Winkler fluid-bed process (1926), the Lurgi

    moving bed process (1931) and the Koppers-Totzek entrained flow process (1940s).

    The chemistry of gasification is extremely complex. The most important reactions relevant

    to the gasification process are similar to those of gas reforming. The processes of

    gasification and reforming therefore have a lot in common. Both take place at relatively

    high temperatures (approximately 1000 oC or more), which is a result of the heat of

    exothermic combustion (oxidation) reactions driving the endothermic reduction

    reactions. The basic gasification reactions are the following:

    Oxidation:

    C + ½ O CO ∆H = -111 kJ/mol (1)2CO + ½ O →CO H = -283 kJ/mol2H + ½ O →H O ∆H = -242 kJ/mol (3)2 2 2

    ∆ (2)2

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    02

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    03

    Reduction:

    C + CO 2 CO H = 172 kJ/mol (4)2C + H O→CO + H2 ∆H = 131 kJ/mol (5)2

    Methane formation:

    C + 2 H → CH ∆H = -75 kJ/mol (6)2 4

    Water-gas shift:

    CO + H O→CO + H2 ∆H = -41 kJ/mol (7)2 2

    → ∆

    The reactions 1, 2 and 3 are essentially complete and do not need to be considered in

    determining an equilibrium synthesis gas composition. However, the gas and solid phase

    reactions 4, 5 and 6 have a role in determining the rate.

    Practically speaking, the overall reaction can be written as:

    n/2 m/2C H + O nCO + Hn m 2 2

    where,

    for gas as pure methane, m = 4, n =1

    for oil, m/n = approx. 2

    for coal, m/n = approx. 1

    Besides economics and availability, efficiency and other process performance criteria

    characterize individual gasification processes and aid in their comparison and

    assessment. Some commonly used criteria for practical purposes are defined as follows:

    Cold Gas Efficiency = (higher heating value of product gas) / (higher heating value of solid

    feedstock)

    Carbon Efficiency = 1 - (carbon in gasification residue) / (carbon in solid feedstock)

    In practice, gasification processes use a broad range of reactor types. These reactor types

    can be grouped into the following categories:

    1. Moving Bed Gasifiers

    2. Fluid Bed Gasifiers

    3. Entrained Flow Gasifiers

    Moving Bed Gasifiers : In moving bed gasifiers (sometimes called fixed-bed gasifiers) the

    gasifying medium passes through a bed of granular or lump coal. The bed of coal moves

    slowly downward under gravity as it is gasified, generally in a countercurrent blast. Such a

    Criteria for Assessment of Different Processes

    Gasification Processes

    countercurrent arrangement gives high thermal efficiencies because the outgoing ash

    heats the incoming gases, while the outgoing product gas heats the incoming solid

    feedstock. Moving bed processes operate on lump coal. The long residence time (typically

    1 hour), together with the temperature profile of the countercurrent system, gives high

    carbon efficiencies (typically 96 - 99%). Among the moving bed processes, the oxygen

    consumption for the Lurgi Fixed Bed Dry Bottom Gasifiers is very low since the operation is

    below the ash fusion temperature, and therefore no additional oxygen is required to melt

    the ash. However, pyrolysis products are present in the raw gas which report in the gas

    liquor after gas cooling. The Lurgi Fixed Bed Dry Bottom Gasifiers are therefore ideal for

    low rank coals since they operate below the ash softening point. The high ash content

    would need a very high amount of oxygen if they were to operate above the ash softening

    point.

    Fluid-Bed Gasifier : Fluid-bed gasifiers are characterized by linear velocities of gasifying

    medium sufficient to lift the solid particles. This requires smaller particle sizes, typically in

    the 0.5 - 5 mm range. Such gasifiers offer very good mixing between feed and oxidant,

    which promotes both heat and mass transfer. This ensures an even distribution of material

    in the bed and hence a certain amount of partially reacted fuel is inevitably removed with

    the ash. This places a limitation on the carbon conversion which is of the order of 90 - 95 %

    for fluid-bed gasifiers. The operation of fluid-bed gasifiers are generally restricted to

    temperatures below the ash softening point, since ash slagging will disturb the fluidization

    in the bed. Sizes of particles in the feed is critical. Material that are too fine will get

    entrained (cyclones installed downstream will only partially recapture them). The lower

    temperature operation means that this process is also suited to low-rank coals.

    Entrained Flow Gasifier : In entrained-flow gasifiers, solid particles are carried or

    entrained by the reacting gases. Thus, solids and gases move in the same direction with

    approximately the same velocity. To achieve this, the particles must be smaller than in

    other systems (typically less than 500 microns). The retention time in these processes is

    only a few seconds. This, together with high gasification temperatures (typically 1200 -

    1900 oC) allows gasification rates high enough to ensure acceptable carbon conversion

    during the short solids residence time in the gasifier. At such high temperatures, operation

    is therefore in the slagging range. The high temperatures however create a high demand

    for oxygen. Coals with high ash content would therefore call for oxygen demand to levels

    that would make alternative processes have an economic advantage.

    Refer table 1 for a comparative data on the three different types of gasifiers.

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    02

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    03

    Reduction:

    C + CO 2 CO H = 172 kJ/mol (4)2C + H O→CO + H2 ∆H = 131 kJ/mol (5)2

    Methane formation:

    C + 2 H → CH ∆H = -75 kJ/mol (6)2 4

    Water-gas shift:

    CO + H O→CO + H2 ∆H = -41 kJ/mol (7)2 2

    → ∆

    The reactions 1, 2 and 3 are essentially complete and do not need to be considered in

    determining an equilibrium synthesis gas composition. However, the gas and solid phase

    reactions 4, 5 and 6 have a role in determining the rate.

    Practically speaking, the overall reaction can be written as:

    n/2 m/2C H + O nCO + Hn m 2 2

    where,

    for gas as pure methane, m = 4, n =1

    for oil, m/n = approx. 2

    for coal, m/n = approx. 1

    Besides economics and availability, efficiency and other process performance criteria

    characterize individual gasification processes and aid in their comparison and

    assessment. Some commonly used criteria for practical purposes are defined as follows:

    Cold Gas Efficiency = (higher heating value of product gas) / (higher heating value of solid

    feedstock)

    Carbon Efficiency = 1 - (carbon in gasification residue) / (carbon in solid feedstock)

    In practice, gasification processes use a broad range of reactor types. These reactor types

    can be grouped into the following categories:

    1. Moving Bed Gasifiers

    2. Fluid Bed Gasifiers

    3. Entrained Flow Gasifiers

    Moving Bed Gasifiers : In moving bed gasifiers (sometimes called fixed-bed gasifiers) the

    gasifying medium passes through a bed of granular or lump coal. The bed of coal moves

    slowly downward under gravity as it is gasified, generally in a countercurrent blast. Such a

    Criteria for Assessment of Different Processes

    Gasification Processes

    countercurrent arrangement gives high thermal efficiencies because the outgoing ash

    heats the incoming gases, while the outgoing product gas heats the incoming solid

    feedstock. Moving bed processes operate on lump coal. The long residence time (typically

    1 hour), together with the temperature profile of the countercurrent system, gives high

    carbon efficiencies (typically 96 - 99%). Among the moving bed processes, the oxygen

    consumption for the Lurgi Fixed Bed Dry Bottom Gasifiers is very low since the operation is

    below the ash fusion temperature, and therefore no additional oxygen is required to melt

    the ash. However, pyrolysis products are present in the raw gas which report in the gas

    liquor after gas cooling. The Lurgi Fixed Bed Dry Bottom Gasifiers are therefore ideal for

    low rank coals since they operate below the ash softening point. The high ash content

    would need a very high amount of oxygen if they were to operate above the ash softening

    point.

    Fluid-Bed Gasifier : Fluid-bed gasifiers are characterized by linear velocities of gasifying

    medium sufficient to lift the solid particles. This requires smaller particle sizes, typically in

    the 0.5 - 5 mm range. Such gasifiers offer very good mixing between feed and oxidant,

    which promotes both heat and mass transfer. This ensures an even distribution of material

    in the bed and hence a certain amount of partially reacted fuel is inevitably removed with

    the ash. This places a limitation on the carbon conversion which is of the order of 90 - 95 %

    for fluid-bed gasifiers. The operation of fluid-bed gasifiers are generally restricted to

    temperatures below the ash softening point, since ash slagging will disturb the fluidization

    in the bed. Sizes of particles in the feed is critical. Material that are too fine will get

    entrained (cyclones installed downstream will only partially recapture them). The lower

    temperature operation means that this process is also suited to low-rank coals.

    Entrained Flow Gasifier : In entrained-flow gasifiers, solid particles are carried or

    entrained by the reacting gases. Thus, solids and gases move in the same direction with

    approximately the same velocity. To achieve this, the particles must be smaller than in

    other systems (typically less than 500 microns). The retention time in these processes is

    only a few seconds. This, together with high gasification temperatures (typically 1200 -

    1900 oC) allows gasification rates high enough to ensure acceptable carbon conversion

    during the short solids residence time in the gasifier. At such high temperatures, operation

    is therefore in the slagging range. The high temperatures however create a high demand

    for oxygen. Coals with high ash content would therefore call for oxygen demand to levels

    that would make alternative processes have an economic advantage.

    Refer table 1 for a comparative data on the three different types of gasifiers.

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    05

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    04

    Applications of Coal Gasification

    Coal gasification can be used to generate a wide variety of products. The raw synthesis gas

    from the gasifier is treated in an acid gas removal unit (AGR) to remove the acid

    components from gasification viz. hydrogen sulphide (H2S) and carbon oxysulphide (COS)

    and also carbon dioxide (CO2).

    The treated synthesis gas from acid gas removal unit as mixture of carbon monoxide and

    hydrogen can be directly used in a gas turbine to generate power. The synthesis gas can

    also be used in a direct reduction (DRI) furnace to produce steel. Depending on the type of

    gasification process used, a CO Shift unit may or may not be needed to adjust the synthesis

    gas composition to meet the required stoichoimetric proportion (figure 1).

    The synthesis gas can be methanated to produce a methane rich gas by the reactions :

    CO + 3 H CH + H O 2 2

    CO + 4 H ? CH + 2 H O2 2 4 2

    The product gas called substitute natural gas and can be used as a fuel (figure 1).

    → 4

    Table 1 : Data of Different Types of Gasifiers Figure 1 : Production of Syngas for DRI and SNG for Fuel

    Description Fixed Bed Fluidized Bed Entrained Flow

    Type Fixed Bed Fluidized Bed Entrained flow

    Combustion type Grate fired combustors Fluidized bed Pulverized coal

    combustors combustors

    Feed State Solids only Solids only Solids or liquids

    Feed Size 5-50 mm 0.5-5 mm < 500 microns

    Fuel Retention Time 15-60 minutes 5-50 seconds 1-10 seconds

    Oxidant Air-or oxygen-blown Air-or oxygen-blown Almost always

    oxygen-blown

    Gasifier Outlet 400- 600°C 900 -1100°C 1200 -1900°C

    Temperature

    Ash Conditions Slagging/non-slagging Non-slagging Always slagging

    H2/CO Ratio 1.7-2.3 0.9 0.4-0.5

    kg O2 / kg daf 0.3-0.5 0.5-0.7 0.9-1.1

    CH4, raw gas 9-16 mol% 2-3 mol% < 0.1 mol%

    Carbon Conversion 96-99 % 90-95 % > 99.5 %

    Cold Gas Efficiency 85-90 % 60-80 % 77-82 %TMLicensors Lurgi FBDB , BGL SES / U-Gas, HTW, KBR GE Energy, Shell,

    Prenflo

    If ammonia synthesis gas is the desired product, then the synthesis gas after CO Shift and

    AGR is washed by liquid nitrogen. The product hydrogen after AGR still contains

    contaminants such as oxygen, argon, carbon monoxide and methane. These are washed by

    liquid nitrogen. The product of the liquid nitrogen wash is purified hydrogen along with

    nitrogen. Additional nitrogen is added to adjust the hydrogen - nitrogen ratio to that

    required for ammonia synthesis (figure 2).

    Figure 2 : Production of Ammonia Syngas

    CoalPreparation

    Elemental Sulfur

    CO2

    N2

    Ammonia Syngas

    Ash

    Acid GasRemoval

    Nitrogen WashUnit

    CO ShiftGasificationHP Steam

    Air SeparationUnit

    Sulfur RecoveryUnit

    If hydrogen is the desired product, then the raw from the gasifier is first shifted whereby

    the carbon monoxide is first converted to carbon dioxide and hydrogen. The carbon

    dioxide is removed in the AGR. The product hydrogen from the AGR is treated in the

    pressure swing adsorption (PSA) to produce hydrogen of the desired purity (figure 3).

    CO2

    SNG

    Syngas for DRI

    N2

    Elemental Sulfur

    Acid GasRemoval

    Methanation

    CO Shift(depending on raw gas

    composition)

    Ash

    HP Steam

    CoalPreparation

    Gasification

    Air SeparationUnit

    Sulfur RecoveryUnit

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    05

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    04

    Applications of Coal Gasification

    Coal gasification can be used to generate a wide variety of products. The raw synthesis gas

    from the gasifier is treated in an acid gas removal unit (AGR) to remove the acid

    components from gasification viz. hydrogen sulphide (H2S) and carbon oxysulphide (COS)

    and also carbon dioxide (CO2).

    The treated synthesis gas from acid gas removal unit as mixture of carbon monoxide and

    hydrogen can be directly used in a gas turbine to generate power. The synthesis gas can

    also be used in a direct reduction (DRI) furnace to produce steel. Depending on the type of

    gasification process used, a CO Shift unit may or may not be needed to adjust the synthesis

    gas composition to meet the required stoichoimetric proportion (figure 1).

    The synthesis gas can be methanated to produce a methane rich gas by the reactions :

    CO + 3 H CH + H O 2 2

    CO + 4 H ? CH + 2 H O2 2 4 2

    The product gas called substitute natural gas and can be used as a fuel (figure 1).

    → 4

    Table 1 : Data of Different Types of Gasifiers Figure 1 : Production of Syngas for DRI and SNG for Fuel

    Description Fixed Bed Fluidized Bed Entrained Flow

    Type Fixed Bed Fluidized Bed Entrained flow

    Combustion type Grate fired combustors Fluidized bed Pulverized coal

    combustors combustors

    Feed State Solids only Solids only Solids or liquids

    Feed Size 5-50 mm 0.5-5 mm < 500 microns

    Fuel Retention Time 15-60 minutes 5-50 seconds 1-10 seconds

    Oxidant Air-or oxygen-blown Air-or oxygen-blown Almost always

    oxygen-blown

    Gasifier Outlet 400- 600°C 900 -1100°C 1200 -1900°C

    Temperature

    Ash Conditions Slagging/non-slagging Non-slagging Always slagging

    H2/CO Ratio 1.7-2.3 0.9 0.4-0.5

    kg O2 / kg daf 0.3-0.5 0.5-0.7 0.9-1.1

    CH4, raw gas 9-16 mol% 2-3 mol% < 0.1 mol%

    Carbon Conversion 96-99 % 90-95 % > 99.5 %

    Cold Gas Efficiency 85-90 % 60-80 % 77-82 %TMLicensors Lurgi FBDB , BGL SES / U-Gas, HTW, KBR GE Energy, Shell,

    Prenflo

    If ammonia synthesis gas is the desired product, then the synthesis gas after CO Shift and

    AGR is washed by liquid nitrogen. The product hydrogen after AGR still contains

    contaminants such as oxygen, argon, carbon monoxide and methane. These are washed by

    liquid nitrogen. The product of the liquid nitrogen wash is purified hydrogen along with

    nitrogen. Additional nitrogen is added to adjust the hydrogen - nitrogen ratio to that

    required for ammonia synthesis (figure 2).

    Figure 2 : Production of Ammonia Syngas

    CoalPreparation

    Elemental Sulfur

    CO2

    N2

    Ammonia Syngas

    Ash

    Acid GasRemoval

    Nitrogen WashUnit

    CO ShiftGasificationHP Steam

    Air SeparationUnit

    Sulfur RecoveryUnit

    If hydrogen is the desired product, then the raw from the gasifier is first shifted whereby

    the carbon monoxide is first converted to carbon dioxide and hydrogen. The carbon

    dioxide is removed in the AGR. The product hydrogen from the AGR is treated in the

    pressure swing adsorption (PSA) to produce hydrogen of the desired purity (figure 3).

    CO2

    SNG

    Syngas for DRI

    N2

    Elemental Sulfur

    Acid GasRemoval

    Methanation

    CO Shift(depending on raw gas

    composition)

    Ash

    HP Steam

    CoalPreparation

    Gasification

    Air SeparationUnit

    Sulfur RecoveryUnit

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    06

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    07

    If both hydrogen and carbon monoxide are required as products, the synthesis gas is

    routed to a CO Cold box where the carbon monoxide and hydrogen are separated. The

    carbon monoxide is taken as a product. The impure hydrogen is purified in a PSA to the

    desired level (figure 4). Coal Gasification - the Indian Perspective

    Indian coals have the advantage of relatively low sulphur content. The problem however

    lies in the extremely high ash content, which could be as high as 40% or more. This high

    ash content with a high melting point (typically above 1200 oC) presents great difficulties

    to all slagging processes. Any gasifier operating in the slagging mode will consume more

    oxygen because of the heat required to keep the slag molten. In most coals, this drawback is

    outweighed by the advantage of high temperature operation such as elimination of all

    volatiles in the gas. Thus, modern process developments have taken the high temperature

    route. The high ash content of Indian coals however, makes the modern high temperature

    processes extremely expensive in terms of oxygen demand.

    India has the world's third largest reserves of coal and the fuel is primarily used for the

    production of steel and power. Gasification of coal rather than combustion, provides an

    alternative solution to meet the energy demands of countries having surplus resources of

    domestic coal. Coal gasification is a commercially proven technology and with substantial

    technical advancements, it is now enjoying a considerable attention. This is because of the

    development of new applications such as gas-to-liquids projects based on Fischer-Tropsch

    technology, Methanol Synthesis, Substitute Natural gas etc. Further, the prospects of

    increased efficiency and environmental friendly emissions including CO2 capture through

    the use of Integrated Gasification Combined-Cycle (IGCC) in the power industry, favour the

    deployment of such a process. The portfolio of Lurgi technologies provides solutions for

    developing complete Coal to Liquid processes worldwide. As a member of the Air Liquide

    Group since 2007, Lurgi technologies are a worldwide reference in the fields of process

    engineering and technology licensing.

    Figure 3 : Production of Hydrogen

    Air Separation Unit

    Sulfur RecoveryUnit

    CoalPreparation

    CO2

    N2

    Hydrogen

    Elemental Sulfur

    Gasification CO ShiftAcid GasRemoval

    PressureSwing

    Adsorption

    Ash

    HP Steam

    Figure 4 : Production of Hydrogen and Carbon Monoxide

    Air Separation Unit

    Sulfur RecoveryUnit

    CoalPreparation

    Hydrogen

    CO

    Elemental Sulfur

    CO2

    N2

    CO Cold Box

    PressureSwing

    Adsorption

    CO Shift(depending on the splitrequired)

    Acid GasRemoval

    Gasification

    Ash

    HP Steam

    If methanol is the desired product, then hydrogen, carbon monoxide and carbon dioxide

    are desired in the methanol synthesis gas in a particular stoichiometric ratio. In such a

    case, a part of the raw gas is passed through a CO Shift reactor, whereby some hydrogen and

    carbon dioxide is produced. The shifted gas is then routed through the AGR to remove a

    part of the carbon dioxide to achieve the desired stiochiometric quantities (figure 5). The

    resultant synthesis gas is then sent for methanol synthesis.

    Air Separation Unit

    Acid GasRemoval

    Sulfur RecoveryUnit

    Elemental Sulfur

    CO2

    N2

    GasificationHP Steam

    Ash

    MethanolSynthesis

    CoalPreparation

    Methanol

    CO Shift(depending on raw gas

    composition)

    Figure 5 : Production of Methanol

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    06

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    07

    If both hydrogen and carbon monoxide are required as products, the synthesis gas is

    routed to a CO Cold box where the carbon monoxide and hydrogen are separated. The

    carbon monoxide is taken as a product. The impure hydrogen is purified in a PSA to the

    desired level (figure 4). Coal Gasification - the Indian Perspective

    Indian coals have the advantage of relatively low sulphur content. The problem however

    lies in the extremely high ash content, which could be as high as 40% or more. This high

    ash content with a high melting point (typically above 1200 oC) presents great difficulties

    to all slagging processes. Any gasifier operating in the slagging mode will consume more

    oxygen because of the heat required to keep the slag molten. In most coals, this drawback is

    outweighed by the advantage of high temperature operation such as elimination of all

    volatiles in the gas. Thus, modern process developments have taken the high temperature

    route. The high ash content of Indian coals however, makes the modern high temperature

    processes extremely expensive in terms of oxygen demand.

    India has the world's third largest reserves of coal and the fuel is primarily used for the

    production of steel and power. Gasification of coal rather than combustion, provides an

    alternative solution to meet the energy demands of countries having surplus resources of

    domestic coal. Coal gasification is a commercially proven technology and with substantial

    technical advancements, it is now enjoying a considerable attention. This is because of the

    development of new applications such as gas-to-liquids projects based on Fischer-Tropsch

    technology, Methanol Synthesis, Substitute Natural gas etc. Further, the prospects of

    increased efficiency and environmental friendly emissions including CO2 capture through

    the use of Integrated Gasification Combined-Cycle (IGCC) in the power industry, favour the

    deployment of such a process. The portfolio of Lurgi technologies provides solutions for

    developing complete Coal to Liquid processes worldwide. As a member of the Air Liquide

    Group since 2007, Lurgi technologies are a worldwide reference in the fields of process

    engineering and technology licensing.

    Figure 3 : Production of Hydrogen

    Air Separation Unit

    Sulfur RecoveryUnit

    CoalPreparation

    CO2

    N2

    Hydrogen

    Elemental Sulfur

    Gasification CO ShiftAcid GasRemoval

    PressureSwing

    Adsorption

    Ash

    HP Steam

    Figure 4 : Production of Hydrogen and Carbon Monoxide

    Air Separation Unit

    Sulfur RecoveryUnit

    CoalPreparation

    Hydrogen

    CO

    Elemental Sulfur

    CO2

    N2

    CO Cold Box

    PressureSwing

    Adsorption

    CO Shift(depending on the splitrequired)

    Acid GasRemoval

    Gasification

    Ash

    HP Steam

    If methanol is the desired product, then hydrogen, carbon monoxide and carbon dioxide

    are desired in the methanol synthesis gas in a particular stoichiometric ratio. In such a

    case, a part of the raw gas is passed through a CO Shift reactor, whereby some hydrogen and

    carbon dioxide is produced. The shifted gas is then routed through the AGR to remove a

    part of the carbon dioxide to achieve the desired stiochiometric quantities (figure 5). The

    resultant synthesis gas is then sent for methanol synthesis.

    Air Separation Unit

    Acid GasRemoval

    Sulfur RecoveryUnit

    Elemental Sulfur

    CO2

    N2

    GasificationHP Steam

    Ash

    MethanolSynthesis

    CoalPreparation

    Methanol

    CO Shift(depending on raw gas

    composition)

    Figure 5 : Production of Methanol

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    09

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    08

    Abbreviations

    AGR Acid Gas Removal

    DRI Direct Reduction Iron

    IGCC Integrated Gasification Combined Cycle

    PSA Pressure Swing Adsorption

    SNG Substitute Natural Gas

    Higman, C., Maarten van der, B., Gasification, Gulf Publishing Company, 2003.

    Elvers, B., Hawkins, S., Ravenscroft, M., Rounsaville, J. F., Schulz, G., Ullmann's Encyclopedia

    of Industrial Chemistry, Volume A12, 5th Edition, VCH Verlagsgesellschaft mBH, 1989.

    References

    Latest Developments in the Fertilizer (Ammonia) Industry

    Dr S Nand, V. K. Goyal and Manish GoswamiFertiliser Association of India

    For Seminar on “Technology Upgradation in Chemical Industry”

    on April 15-16, 2013, at IIChE, New Delhi

    Abstract

    1.0 Introduction

    Fertilizer industry in India has evolved progressively during the last five decades keeping

    pace with the developments in respect to technology and energy efficiency. The

    developments in building of ammonia capacity and technological upgradation in existing

    plants have been discussed in the paper. The paper also gives the performance of Indian

    ammonia industry with respect to energy efficiency. The performance of Indian plants has

    been compared with world ammonia plants. The paper has brought out various

    developments in ammonia technology in the world during last few decades. The concept

    of adiabatic pre-reformer, heat exchange reactor, auto-thermal reformer, synthesis gas

    purification, multi synthesis converters and gas turbine for power generation along with

    heat recovery for steam generation have been introduced by different technology

    suppliers. Other major developments are in material of reformer tubes, burner design,

    improved catalysts, efficient and reliable machinery/equipment, automation in process

    control, etc. It became more and more viable to construct single stream ammonia plants of

    larger capacities of 2000 tpd with lower and lower specific energy consumption. Apart

    from adopting these developments in new plants, almost all old vintage plants have been

    revamped by incorporating many of these improvements.

    Fertiliser industry in India has grown to its present size during five decades starting

    large scale production in 1950s. With the total production of about 38.6 Mt of

    fertilizer products containing 16.5 Mt of plant nutrients (N + P2 O5) in 2011-12,

    India is the third largest producer of fertilizers in the world and with consumption of

    28.12 Mt nutrients or 60 Mt of products, it is the second largest consumer of

    fertilizers in the world. Fertiliser industry in India is world class in terms of size of

    plant, technology used and efficiency levels achieved.

    Ammonia is the major building block for production of all nitrogenous fertilizers. It is

    also technology and energy intensive. India produced 13.6 Mt of ammonia in 2011-

    12. There have been challenges in improving operating factors and energy efficiency

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    09

    Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST

    RY&

    Know

    ledge P

    aper

    08

    Abbreviations

    AGR Acid Gas Removal

    DRI Direct Reduction Iron

    IGCC Integrated Gasification Combined Cycle

    PSA Pressure Swing Adsorption

    SNG Substitute Natural Gas

    Higman, C., Maarten van der, B., Gasification, Gulf Publishing Company, 2003.

    Elvers, B., Hawkins, S., Ravenscroft, M., Rounsaville, J. F., Schulz, G., Ullmann's Encyclopedia

    of Industrial Chemistry, Volume A12, 5th Edition, VCH Verlagsgesellschaft mBH, 1989.

    References

    Latest Developments in the Fertilizer (Ammonia) Industry

    Dr S Nand, V. K. Goyal and Manish GoswamiFertiliser Association of India

    For Seminar on “Technology Upgradation in Chemical Industry”

    on April 15-16, 2013, at IIChE, New Delhi

    Abstract

    1.0 Introduction

    Fertilizer industry in India has evolved progressively during the last five decades keeping

    pace with the developments in respect to technology and energy efficiency. The

    developments in building of ammonia capacity and technological upgradation in existing

    plants have been discussed in the paper. The paper also gives the performance of Indian

    ammonia industry with respect to energy efficiency. The performance of Indian plants has

    been compared with world ammonia plants. The paper has brought out various

    developments in ammonia technology in the world during last few decades. The concept

    of adiabatic pre-reformer, heat exchange reactor, auto-thermal reformer, synthesis gas

    purification, multi synthesis converters and gas turbine for power generation along with

    heat recovery for steam generation have been introduced by different technology

    suppliers. Other major developments are in material of reformer tubes, burner design,

    improved catalysts, efficient and reliable machinery/equipment, automation in process

    control, etc. It became more and more viable to construct single stream ammonia plants of

    larger capacities of 2000 tpd with lower and lower specific energy consumption. Apart

    from adopting these developments in new plants, almost all old vintage plants have been

    revamped by incorporating many of these improvements.

    Fertiliser industry in India has grown to its present size during five decades starting

    large scale production in 1950s. With the total production of about 38.6 Mt of

    fertilizer products containing 16.5 Mt of plant nutrients (N + P2 O5) in 2011-12,

    India is the third largest producer of fertilizers in the world and with consumption of

    28.12 Mt nutrients or 60 Mt of products, it is the second largest consumer of

    fertilizers in the world. Fertiliser industry in India is world class in terms of size of

    plant, technology used and efficiency levels achieved.

    Ammonia is the major building block for production of all nitrogenous fertilizers. It is

    also technology and energy intensive. India produced 13.6 Mt of ammonia in 2011-

    12. There have been challenges in improving operating factors and energy efficiency

  • Sem

    ina

    r o

    n T

    ech

    no

    log

    y U

    pg

    rad

    ati

    on

    in

    CH

    EMIC

    AL

    PET

    RO

    CH

    EMIC

    AL

    IND

    UST