christian laugier – e-motion team-project 1 the e-motion team-project « geometry and probability...

29
Christian LAUGIER e-Motion Team-Project 1 The The e-Motion e-Motion Team-Project Team-Project « Geometry and Probability for motion and « Geometry and Probability for motion and action » action » Inria Rhône-Alpes & Gravir laboratory (UMR 5527) Scientific leader : Christian LAUGIER

Upload: cora-wright

Post on 11-Jan-2016

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 1

The The e-Motione-Motion Team-Project Team-Project

« Geometry and Probability for motion and action »« Geometry and Probability for motion and action »

Inria Rhône-Alpes & Gravir laboratory (UMR 5527)

Scientific leader : Christian LAUGIER

Page 2: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 2

Team-Project membersTeam-Project members (year 2004)(year 2004)

• Permanent staffPermanent staff– Christian Laugier, DR2 Inria (Scientific leader)– Emmanuel Mazer, DR2 Cnrs (External collaborator currently in our start-up « Probayes »)– Pierre Bessiere, CR1 Cnrs– Thierry Fraichard, CR1 Inria– Sepanta Sekhavat, CR1 Inria (Currently in Iran for 2 years)– Olivier Aycard, MC UJF– Anne Spalanzani, MC UPMF

• Invited researchers, Postdocs, and EngineersInvited researchers, Postdocs, and Engineers– Juan-Manuel Ahuactzin– Olivier Malrait– Kamel Mekhnacha– Jorge Hermosillo– Christophe Coué

• PhD studentsPhD students– 7 theses defended in 2003: J. Diard, C. Mendoza, R. Garcia, J. Hermosillo, F. Large, C. Coué, K. Sundaraj– 8 PhD students: C. Pradalier, C. Koike, M. Amavicza, R. Lehy, F. Colas, D. Vasquez, P.Dangauthier, M. Yguel– 3 PhD students co-directed : M. Kais (rocquencourt), S. Petti (rocquencourt), B. Rebsamen (NUS)– 5 Master students : Christopher Tay, Alejandro Vargas, Ruth Lezama, Christophe Braillon, Julien Burlet

Page 3: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 3

Objectives & motivationsObjectives & motivations

• Scientific challenge :Scientific challenge : To develop new models for constructing « artificial systems » having sensing, decisional, and acting capabilities sufficiently efficient and robust for making them really operational in open (i.e. large & weakly structured) and dynamic environments

• Practical objective :Practical objective : To built operational (i.e. scalable) systems having the capability to « share our living space » in some selected application domains (e.g. transportation, personal robots …).

• Current technological context :Current technological context : (1) Continuous & fast growing of computational power; (2) Fast development of micro & nano technologies (mechatronics); (3) Increasing impact of information & telecom technologies on our everyday life (ambiant intelligence)

• Motivations & difficulties :Motivations & difficulties : Instead of promises & impressive advances in robotics in the last decade, almost no advanced robots are currently evolving around us !

=> Not reliable enough, Weak reactivity and low efficiency (real time constraints), Exhibit “cybernetic” behaviors, Quite difficult to program (with no real learning capabilities)

Page 4: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 4

A large spectrum of potential applicationsA large spectrum of potential applications

Virtual autonomous agents Virtual autonomous agents (natural interaction with humen)

Rehabilitation & Medical robotsRehabilitation & Medical robots

Future carsFuture cars(driving assistance & autonomous driving)

““Personal Robot Assistant”Personal Robot Assistant”

Main considered applications

=> Transport & logistics, Services, Rehabilitation & Medical care, Entertainment …

Page 5: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 5

Cooperation & ContractsCooperation & Contracts

• International cooperationInternational cooperationJapan (Riken), Singapore (NTU, NUS, SIMTech), USA (UCLA, Stanford, MIT), Mexico (IESTM Monterrey, UDLA Puebla), Europe (EPFL, Univ college of

London)

• Industrial cooperationIndustrial cooperationRobosoft, Renault, PSA, XL-Studio, Aesculap-BBrown, Teamlog, KelkooStartups: ITMI, Getris Images, Aleph Technologies, Aleph Med, Probayes (oct. 2003)

• R&D contractsR&D contracts– Industrial : ACI « Protege », Priamm « Visteo », RNTL « Amibe », Kelkoo– National : Robea (EVbayes, Parknav), Predit (Arcos, MobiVip, Puvame)– Europe : NoE « Euron », IST-FET « Biba », IST « Cybercars », IST « Prevent»

Page 6: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 6

SScientific approachcientific approach

• Our approachOur approach To focus on « complexity » and « incompleteness » problems (scalability & real world ) We guess that this can be achieved by combining geometrical and probabilistic approaches

• Main difficultiesMain difficulties– Previous approaches on AI & Robotics have shown their limitations

=> Logics (70’s), Geometry (80’s), Random search (90’s), purely Reactive Architectures (90’s)– The real world is too complex for being fully modeled using classical tools (inparticular: incompleteness & uncertainty)

=> Additional methods are required (e.g. probabilistic programming)=> Biologic inspiration could bring some help (sensori-motors systems, internal representationsfor motions… which seems mostly based on probabilistic laws)

• Required technological breakthroughsRequired technological breakthroughs– Motion & action autonomy in a complex dynamic world

=> Incremental world modeling, time-space dimension, prediction & estimation of obstacles motions– Increased robustness & safety of navigation systems (perception & control)

=> Dealing with incompleteness & uncertainty– “Easy” programming & system adaptativity

=> Self learning capabilities & behaviors coding and mixing

Page 7: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 7

Two complementary reasoning processesTwo complementary reasoning processes

Mastering the complexity by using the right reasoning level & incremental approaches

Taking explicitly into account the hidden variables at the reasoning level

Dynamic worldDynamic world

Space & MotionSpace & MotionModelsModels

Analytical & Statistical dataSensing data

Geometric & Kinematic reconstruction,SLAM

Motion prediction

Motion planMotion plan& Navigation controls& Navigation controls

Constrained Motion PlanningDifferential Flatness,Velocity Space, ITP

IncompletnessIncompletness

UncertaintyUncertainty

Preliminary Knowledge+

Experimental Data=

Probabilistic Representation

Maximum EntropyPrinciple

ii PP log

Queries &Queries &Decision ProcessDecision Process

Bayesian Inference(NP-Hard [Cooper 90]Heuristics & Optimization)

P(AB|C)=P(A|C)P(B|AC)=P(B|C)P(A|BC)P(A|C)+P(¬A|C) = 1

Page 8: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project

Bayesian Programming (principle)Bayesian Programming (principle)D

escr

ipti

onD

escr

ipti

onQ

ues

tion

Qu

esti

on

Bay

esia

n P

rogr

amB

ayes

ian

Pro

gram

• Specification Specification => Preliminary Knowledge – Set of relevant probabilistic variables

– Parametric forms assigned to some of the terms appearing in the decomposition (gaussian, uniform …)

– Decomposition of the joint distribution (=> efficient way to compute it)

nXXX ,...,, 21

kkn RLRLLXXX |P...|P|P|...P 22121

iR

ii LRL i ,

f|P

• Identification Identification (of some of the terms of the decomposition)

=> Experimental Data P Li | Ri P Li | Ri

=>Inference (i.e. answer to the question) carried out by an “inference engine” (symbolic simplification + numerical computation)

Unknown

nXXXKnownSearch |...P1

|P 21

e.g. using ProBT software (Probayes)

Page 9: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 9

Research axesResearch axes• Multi-modal modeling of space & motionMulti-modal modeling of space & motion

– Incremental world modeling– Prediction & estimation of obstacles motions– Sensori-motors maps

Sensori-motors space(bayesian maps)Dynamic SLAM

q

q

t

0,, ii qq tqq gg ,,

• Motion planning in a dynamic worldMotion planning in a dynamic world– Iterative trajectory planning (ITP)– Instantaneous escaping trajectories (Velocity space)– States of unavoidable collisions (State-time space)

NH constraints

Space-Time constraints

Sensory data fusion(situation analysis)

Learning reactive behaviors

• Decision in an uncertain world (Bayesian inference)Decision in an uncertain world (Bayesian inference)– Bayesian programming tools– Automatic learning & Entropy maximization– Biological inspiration

Page 10: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 10

Autonomous navigation & Easy robot programmingAutonomous navigation & Easy robot programming

SLAMSLAM++

NH Motion planningNH Motion planning++

Reactive nReactive navigationavigation

Several functionalities (learned and downloaded) have to be combinedIncremental world modeling & localization + Motion planning + Autonomous sensor-based navigation

[Pradalier & Hermosillo 03]

Page 11: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 11

Bayesian reactive behaviorsBayesian reactive behaviors

Current work: More complex situations & Learning, Better integration with Control

=> Controlling the vehicle using a probability distribution on v e.g. reducing speed and/or modifying steering angle for avoiding a pedestrian or a car

Gaussian functionCommand fusionCommand fusion

)(411

xe

Sigmoïde f

V Area 1

Area 2

Area 8

8

181 )/()()...(

iii VDPVPDDVP

Uniform)( VP

iDiiiiii

iiiiiiii DPDVPDP

DPDVPDPVDP

)/()/()(

)/()/()()/(

where :

Joint distribution for the fusion :

Probabilistic joint distribution for area i

[Pradalier et al. 03]

Tracking a given trajectory while avoiding sensed obstacles

Page 12: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 12

Bayesian programming : some experimental resultsBayesian programming : some experimental results

Reactive trajectory tracking (Cycab) Target following (Koala)

Page 13: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 13

V-Obstacles & ITP (dynamic environment)V-Obstacles & ITP (dynamic environment)

• Instantaneous escaping trajectories (V-obstacles) => Strategies for avoiding moving obstacles• Iterative Trajectory Planning => Complete navigation strategy

Relative VelocityCone (RVC)

)(ˆ)()(

)(ˆ)()(

)(

)()(:)()(

)(

tct

ritctvo

tct

ritctvo

etc

etdtctrajectoryObstacle

lvl

lvr

tittd

v

ti

Current work: More complex geometry & dynamics, Perception, Uncertainty

V-obstacles

V-obstacles+

ITP

[Large et al. 03]

Page 14: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 14

Robust obstacles tracking Robust obstacles tracking (Bayesian Occupancy Filter approach)(Bayesian Occupancy Filter approach)

Occupiedspace

Freespace

Unobservable space

Concealed space

(“shadow” of the obstacle)

1 sensor & 1 object

2 sensors & 3 objects

z1,1 = (5.5, -4, 0, 0) z1,2 = (5.5, 1, 0, 0)z2,1 = (11, -1, 0, 0) z2,2 = (5.4, 1.1, 0,0)

P([Ec=1] | z1,1 z1,2 z2,1 z2,2 c)c = [x, y, 0, 0]

P( [Ec=1] | z c)c = [x, y, 0, 0] and z=(5,2,0,0)

Occupancy grid

– Variables :• C : cell• EC : cell occupancy (EC=1 means“occupied”)

• Z1:S : observations• M1:S : association (1 for each sensor)

– Parametric form :• P(EC C) : a priori uniform• P(Z1:S | EC C) : sensor models

Pro

gram

Pro

gram

Des

crip

tion

Des

crip

tion

Qu

esti

onQ

ues

tion

• UtilizationUtilization

• SpecificationSpecification

• IdentificationIdentification => Calibration

– Decomposition :

For all c : P(Ec | Z1:S c)

S

s

s

O

iSCis

S

ssC

SSC

MCEZPMPCEP

ZMECP

1,

1

:1:1

)( )()()(

)(

Page 15: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 15

Robust obstacles tracking & avoidance Robust obstacles tracking & avoidance Experimental results with the CycabExperimental results with the Cycab

Prediction

Estimation

Bayesian Occupancy Filter (BOF)Bayesian Occupancy Filter (BOF)

Pedestrian avoidance using the BOFPedestrian avoidance using the BOF

Page 16: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 16

Automatic reconstruction of a dynamic mapAutomatic reconstruction of a dynamic map(Parkview : Multi-camera system)(Parkview : Multi-camera system)

Dynamic Map

Static components Mobile components Changing components

Fusion

[Helin 03]

Page 17: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 17

Trajectory prediction for moving obstaclesTrajectory prediction for moving obstacles

22

),(2

1

2

1)|(

kpp d

k

kp eCdP

2/1

0

2)()(1

),(

dttdtdT

ddpT

t

ipp

jpp

Learning phase : Learning phase : Clustering

kN

ii

kk td

Nt

1

)(1

)(

2/1

1

2),(1

kN

iki

kk d

N

Mean trajectory :

Standard deviation :

Prediction phase (at each time step) :Prediction phase (at each time step) :Calculating the likelihood thatCalculating the likelihood that kp Cd

Partial distance :

Likelihood estimation :

[Vasquez 04]

Page 18: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 18

Some previous results ofSome previous results ofour research teamour research team

• Interactive medical simulationInteractive medical simulation

• Autonomous navigation for Virtual Reality Autonomous navigation for Virtual Reality applicationsapplications

Page 19: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 19

Echographic simulatorEchographic simulator (c(coop. TimC & UC-Berkeley & LIRMM)[Daulignac & Laugier 00-01]

Stress-strain curves(measured)

)(

)(

linearnonbxa

xF

linearxkF

Geometric model

Measured data

+

Separating the Gall-bladderfrom the liver

[Boux & Laugier & Mendoza 01]

Cutting a flag using an haptic device[Boux & Laugier 00]

Interactive medical simulationInteractive medical simulation

Page 20: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 20

• Dynamic path planning : Dynamic path planning : Adriane’s Clew Algorithm [Ahuactzin 94]

• Reactive navigation : Reactive navigation : => => Path tracking & Obstacle avoidance [Raulo &Laugier 00] => Bayesian behaviors [Lebeltel 99, Raulo 01]

Solving : P(Solving : P(Vrot Vtrans | | px0 px1 … … lm7 veille feu … … per))

Question : P( M | S Cp_Surveil)

._P....

SurveilCp

permldmnvdnv

vtrans_cproxGdirGproxdir tourtempo1-td_t1-tach_tengobj?feuveillelm7lm0px7px0

VtransVrot

Autonomous navigation for Virtual Reality Autonomous navigation for Virtual Reality applicationsapplications

Page 21: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 21

Autonomous drivingAutonomous driving& &

Driving assistanceDriving assistance

Page 22: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 22

The « CyberCars » approachThe « CyberCars » approach Door to door, 24 hours a dayDoor to door, 24 hours a day Small (urban size), silent Small (urban size), silent User friendly interface User friendly interface Automatic manoeuvresAutomatic manoeuvres => parking, platooning

… up to fully automated

CyberCars are focusing on historical city centres

Praxitele : Real experiment in SQY (97-99)Praxitele : Real experiment in SQY (97-99)

Industrial siteTrain station

Shopping centre

Tramway Metro

TGV

Bus

Private Car

Wal

k

FarNear

Low

High

Distance

Cap

aciy

....

> 500 m

BikeRoller

CyCab dual-mode vehicleCyCab dual-mode vehicleCommercialized by Robosoft

Private tracksLocal tracks

Pedestrian zonesCalm zones

Suburban tracks

Intercity tracksFull driving automation on :

Page 23: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 23

Some CyberCars projectsSome CyberCars projects

ParkShuttle (Frog, Netherlands)ParkShuttle (Frog, Netherlands) Serpentine (Switzerland)Serpentine (Switzerland) PraxitelePraxitele ( (France)France)

European European CybercarsCybercars project (2001-05) project (2001-05) 10 industrial partners 10 industrial partners (Fiat, Yamaha, Frog …),(Fiat, Yamaha, Frog …), 7 research institutes 7 research institutes (Inria, Inrets,

Ensmp …), 12 cities involved , 12 cities involved (Rome, Rotterdam, Lausanne, Antibes …)(Rome, Rotterdam, Lausanne, Antibes …) 10 M €10 M €

E-Cab (Yamaha)E-Cab (Yamaha)CyCab (Robosoft)CyCab (Robosoft) ParkShuttle (Frog)ParkShuttle (Frog)

Serpentine (SSA)Serpentine (SSA)

Page 24: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 24

The The « Automotive »« Automotive » approach approachADAS : Advanced Driver AssistanceADAS : Advanced Driver Assistance

European Prometheus project (86-94)European Prometheus project (86-94)

R&D programR&D program ( (on-board and off-board systemson-board and off-board systems) for increasing safety & driving confort) for increasing safety & driving confort

ACCStop&Go

Stop&Go ++

Rural Drive Ass.

Urban Drive Ass.

Full DrivingAutomation

Longitudinal ControlLongitudinal Control

+ Lateral Control+ Lateral Control

Current projects: Carsense, Arcos, PreventCurrent projects: Carsense, Arcos, Prevent

Carsense (car manufacturers & suppliers)Carsense (car manufacturers & suppliers)Sensor fusion for danger estimationSensor fusion for danger estimation

French Arcos project: French Arcos project: Vehicle-Infrastructure-Driver systems for road safetyVehicle-Infrastructure-Driver systems for road safety

Page 25: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 25

Experimental vehicles at INRIA Rhône-AlpesExperimental vehicles at INRIA Rhône-Alpes

• electric vehicle with front driven and steering wheels• abilities of human or computer-driven motion• control system: VME CPU-board, transputer net• sensor : odometry, ultrasonic sensors, linear CCD camera

Ligier vehicleLigier vehicle

CycabCycab

Page 26: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Models for controlling the CycabModels for controlling the Cycab

22

2cos

BA

fLM

0 2

322

2 ''cos

uBuA

uBuAuAuBufLN

fffB

ffA

sincos'sincos

cos'cos 22

• Existence (Differential flatness) [ Sekhavat, Hermosillo, 99]

• Necessary conditions (« flat outputs »)  [Sekhavat, Rouchon, Hermosillo 01]

• Analytic determination of the « flat outputs » [Sekhavat, Hermosillo, Rouchon 01]

• Motion planning & control (trajectory tracking) [Hermosillo 03] [Hermosillo & Pradalier 04]

)(

)()(1

cos'cos

tan)(),,(:

f

AB

ufuft

ttF withframeTurning

21

1

0

0

0

0cos

sinsin

cos

uu

L

ff

f

y

x

R

R

Differential Flatness of the CycabDifferential Flatness of the Cycab

Page 27: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Decisional & Control architectureDecisional & Control architecture

continuous curvature profile + upper-boundedcurvature & curvature derivative

continuous curvature profile + upper-boundedcurvature & curvature derivative

Kinodynamic Motion Planning(Dynamic constraints ...)

q

t

Graph

Trajectory

[Fraichard 92 ]Planning CC-paths

(kinematic constraints ...)

x

y

)(tan 1 w

w

[Scheuer & Laugier 98 ]

3-layered control architecture[Laugier et al. 98 ]

Decision module

Reactive mechanism=> Control the executionof the selected skills

Real-time “Skills” => Close-loop controls & Sensor processing

Platooning [Parent & Daviet 96] Automatic Parallel Parking [Paromtchik & Laugier 96]

Lane Changing & Obstacle avoidance [Laugier et al. 98]

Page 28: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 28

« Platooning »« Platooning »

Electronic « Tow-bar »

CCD Linear camera + Infrared target(high rate & resolution)

[Parent & Daviet 96]

Page 29: Christian LAUGIER – e-Motion Team-Project 1 The e-Motion Team-Project « Geometry and Probability for motion and action » The e-Motion Team-Project « Geometry

Christian LAUGIER – e-Motion Team-Project 29

Automatic parking maneuversAutomatic parking maneuvers

Start location specification

[Paromtchik & Laugier 96]

( ) ( ),

( ) ( ),, , ,

( )

,

cos ,

,

, ,

( ) . cos ,

max

maxmax max

*

**

t k A t t T

v t v k B t t Tv k k

A t

t tt t

Tt t T t

T t t T

tT T

T T

B t t T

vv

,

0

00 0 1 1

1 0

12

05 1 4 0 t T

=> On-line motion planning using sinusoidal controls (t) and v(t)(search for control parameters T and max)

On-line local world reconstruction& Incremental motion planning