comparison of two adaptive identification hemods for iio)(itoriffi and diagnosis of an

Upload: faramarzsamani

Post on 02-Jun-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Comparison of Two Adaptive Identification Hemods for Iio)(Itoriffi and Diagnosis of An

    1/3

    m 4

    CWARISON OF TWO ADAPTIVE DENTIFICATION

    HEMO S

    FOR IIO)(ITORIffi ND D I A G N O S I S OF

    N

    EXPERIMENTALNUCLEAR REACTOR

    6. Zwingelstein

    C m is s a r ia t Ene rg ie Atomique

    C.E.N. S A C L A Y

    Serv ice Des App l i ca t i on s Ind us t r i e l l es

    BP N o 2 91190 6 i f Sur Yvet te

    France

    Abstract

    This paper deals

    wh

    t h e c m p a r i s o n o f two

    adaptive methods based upon se ns i t iv i ty eq ua tio ns

    fo r use i n the surv e i l lanc e and d iagnosis o f an

    experimentalnuclear eactor.

    The sur vei l lan ce and diagn osis are obtained

    by a real- t ime comparison o f referenceparameters

    and the act ua l parametersgivenby headaptive

    a lgo r i t tm .

    descent nethod Resu l tsob ta inedwi th h i sa lgo -

    rithm

    usingexperimentaldata from a reactor are

    g iven us ing two d i f f e r e n t c r i t e r i a .

    The f i r s t a l g o r i t h u ses an o n - li ne , s te e pe s t

    The second algor i Ura uses both s e n s i t i v i t y

    equations and a re cu rs iv e eas t squares method.

    An example i s given using heexperimental model

    o f h e same reac to r .B o tha lgo r i thmdescr ibed

    i n t h i s paper are ea si l y implementab le on a

    mini

    computer and ar e no t se ns i t i ve o a pr io r i know-

    le dg e o f t h e . s t a t i s t i c a 1 p r o p e r t i e s o f t h e n oi se .

    These a lgo r i t hm a re a l so su i ta b le o r he su r -

    ve i l la nc e o f non l in ear processes.

    1 . In t roduc t i on

    The m onitor ing and diagn osis of a nucl ear

    power p lan t a re ve ry mpo r tan t too l s to use i

    a c h i e v i n g n c r e a s e d r e l i a b i l i t y .

    adap ta t i ve den t i f i ca t i on a lgo r i thm may he lp the

    nuc lea r p lan t ope ra to rs o de tec t and iden t i f y a

    m a lf u nc t io n i n t h e e a c to r . The p r i n c i p l e o f

    t h i smo nit or i ng system i s shown

    i n

    Fig. 1. A

    math ematic al, model where parameters have phy sic al

    meanings i s implementedon a min i computer and i s

    fed by the same i npu ts as the nuc lea r p lan t .

    The adapt ive a l go r i thmo d i f i es he param-

    eters i n order o min imize he nstantaneous errOP

    o f a un c t i on a l o f he e r ro r be tween the reac to r

    and model outputs.

    I f

    a malfunction o cc ur s i n t h e p l a n t , t h e

    su rve i l l ance i s ach ieved by check ing he e r ro r

    value. The diagnos is i s provided by theadap t i ve

    algor i thm which wi detenninewhichparameter has

    s h i f t e d from i t s nominal va lue.

    Th is work i s an a t tempt t o demonstrate how an

    P .

    Blanc

    C m i s s a r i a t E ne rg ie A t mi qu e

    C.E.N. S A C L A Y

    Servi ce Des App l i ca t i o ns nd us t r i e l l es

    BP

    NO2 91190

    Gif

    Sur Yvette

    France

    Since measurements i n nuc lea r p lan ts a re

    a lways no isy, a l l t h e parametersobtained by the

    adapt ivea lgor i thmsarea lsono isy.For hese

    reasons, i t s necessary t o use decis ion h eory

    i n o r de r t o g i v e h e a p p r o p ri a t e m a l f u n c t io n

    a1 anns.

    averyaccuratephysical Rodel, an acc ura te refe r-

    ence parameter s e t and ada pt i ve a lg or i thm which

    are ndependent o f a p r io r i knowledge and imple-

    rnentableon a mini cosputer.

    This paper compares two adaptivea lgor i thms

    f o r use i n moni tor ing an exper imenta lnuclear

    reactor core .

    To

    be

    re l i ab l e , h i s mo n i to r i ng sys tem needs

    2 . D e s c r i p t i o no f the NuclearReactor Core

    Fig.2shorn heblockd iag ram o f he nuc lea r

    core and ind ica tes he ran sfe r un ct i on between

    r e a c t i v i t y n s e r t e d by th e c o n t r o l r o d a nd t h e

    power level .

    eauations

    The open loop i s g iven by th e k in et ic s

    dCi Bi

    = P

    -

    aici

    where P i s

    parer

    l e v e l

    p k i n e t i c s e a c t i v i t y :kmmn

    constants

    , B i ,B,P a r e

    C, i t h d el ay edneutron

    ' group

    The feedback loo p ncl uck s he feedback re a c ti v i t y

    e f fec ts due to he power l eve l and the n le t

    cool ant temperature.

    These two feedback e f fec ts are npor ta nt s ince

    they de tenn ine the nuc lea r p lan t s tab i l i t y and th e i r

    magni tudes are d i r ec t ly e la t ed o ph ys ica l param-

    e te r s o f t h e c or e.

    For hese reasons, ada ptiv e algo rith ms were

    tes ted i n o rde r to moni o r these feedback e f f ec t s .

    The mathematical models were developed and

    experim ents consis t ing o f s tep responses where

    achieved a t he p l an t . The opt imizat ion echn iques

    were used on the plan t data o obta in he ol low -

    ing models:

    436

  • 8/10/2019 Comparison of Two Adaptive Identification Hemods for Iio)(Itoriffi and Diagnosis of An

    2/3

    *

    Power Feedback Effect

    akP( t ) = a k d t ) + akp2( t )

    6kp1(t)= a1 P ( t )

    6kp2( t ) + a26kp2(t) = a3 P ( t ) (neasured)

    *Temperature Feedback E ff e c t

    akT( t )

    =

    akTl(t)

    +

    skT2( t )

    6kTO( t )

    +

    a5 bkT2(t)

    =

    a6T( t )ature (measured)

    P ( t )

    Power

    Level

    a k T l ( t ) = a 4 T ( t ) T ( t )n l e t t e n p e r -

    3. A l go r i th m and Resul ts

    The fol lowin g algo r i thm s are based upon sensi-

    t i v i t y e qu at io ns . I n o r d e r t o de mo ns tr at e t h e

    d e te n ni na ti on o f s e n s i t i v i t y c o e f f i c i e n t s , e t us

    cons ider a first o r d e r d i f f e r e n t i a l e q u a t i o n

    S+alS

    =

    a2e wi thS ( o u t p u t ) ,e n p u t

    he

    p a r t i a l d e r i v a t i v e s

    aal

    =

    - as

    sal' *a2

    -

    a re c a l l e d t h e p ar am et er s e n s i t i v i t i e s o f t h e

    f i r s t o r d e r and i f we assune t h a t a t

    t=Op O)=S O)

    = 0,

    t he approx imate sens i t i v i t y equa t i ons

    [l]

    re

    given by

    i lalaal = - S 'Jal(0) = 0

    aa2 + azoa2 e

    with

    ua2(0)

    = 0

    F i

    s t A 1 g o r i hm

    d ' t b e i n s t a n t a T u s squared e r r o r C l ( t ) = d ( t ) =

    IS

    t) - S,,, t)] between the

    neasured

    process out-

    puand th e nodeloutput.Let A r ep resen t he

    parameter ve ct or AT=[a1 .

    a 6 ( T

    denotes

    t r anspos i t i on ) .

    The f i r s t a l go r i t t n n tends t o m in im ize f o r each

    The gradient

    9

    s g i ven by

    m

    i

    -1

    a6

    Thisvector , &; i s o b ta in e d by i n t e g r a t i o n o f h e

    sen s i t i v i ty eq uat ion s assuming tha t between two

    sampling ins tan ts he parametervalues are cons tant.

    The adap t ive a lgor i thm

    w s

    t h e o l l o w i n g

    4kH) L ( k ) + ATK (AT sampl ingime)

    ( K p o s i t i v eo n s t a n t ) .

    Fig. 3ashows the ad ap t ion of one parameter f o r a

    s im u la t ed 10% chang e i n a l l o f t h e p ar am ete r i n

    the model obtained by fitti t h e e s tdata (K=1

    was u s e d i n h i s c a l c u l a t i o y . n o r d e r o

    damp os c i l l a t i o ns n he adap t i on , he o l low ing

    c r i t e r i o n was chosen:

    Second A1 g o r i

    tho

    be

    th

    process

    ou tpu t , h ( A . t ) be

    t h e

    m

    utput.

    I f

    ALA,

    then

    SP(A,t):S&t) + ( -a cT[A,t]

    To desc r ibe he second algor i thm, l e t Sp(A,t)

    The vector

    (4-3

    s ob ta ined by so l v i ng an

    Us ing the r ecur s l ye eas t square a l go r i t hm

    overdetermined l inear system.

    t h e s ti m a te o f

    A-AJ

    when (k) measurements

    a r e a v ai la b le i s given by

    Thea1

    r i t h

    s

    no

    s e n s i t i v e

    t o

    t h e n i t i a l v a lu e

    o f P ( 0 Y a n d h i s a l g o r i t h m s s t i l l e f f i c i e n t even

    F ig.4 epresen ts he same parameter, but

    wh

    a

    change o f -20 on a l l t h e parameters and us ing

    simulated nputs.

    It seems

    th at he response of

    t h i s a l g o r i t h m i s f a s t e r t h a n t h e p r e v i o u s one.

    p r o p e r t i e s i s a v a i la b l e,

    i t

    s p o s s i b l e o i n d

    t h e s t a t i s t i c a l p r o p e r t i e s o f h e e s t i m a t e s n

    order t o improve the dec i s i on r u l e .

    Concl us

    i

    ns

    equa t i onsareuse fu l oo l s o r he surve i l l ance

    and the d iagnos is o f nuc lear p lants .

    l edge o f no i s e p ro per t i es and a re no t sens i t i ve

    t o a choice o f parameters.

    f o r r e a l t i m e a n a l y s is . o n a d n i c oa pu te r w i t h

    small m r y 4-8k words).

    =k0.5A and never d iverged dur ing severa l tes ts .

    Moreover, i f a p r i o r i kn ow le dge o f n o i s e

    These two a l g o r l t h r r b a s e d upon s e n s i t i v i t y

    N e i t h e r a l g o r i t h m

    requi res

    a pr ior i know-

    M oreover, t he se a t g o r i m a re s pl et ne n ta b le

    5. References

    1.Eykhoff, System Id e n t i f i ca t i o n , Wi ley, 1974.

    2. P. C. Young. "ADDlYinq Parameter Es tim at ion

    t o Dynami i-Sys tem,"ControlEngineer ing,

    Novenber 1969.

    - -

    Fig. 3bshows the ad ap tion o f t h e same parameter

    us ing he C c r i t e r i o n . Then a lgo r it hmsare ens i -

    t i v e t o K c2oice and even diverge i f the gain, K,

    i s to ohigh.

  • 8/10/2019 Comparison of Two Adaptive Identification Hemods for Iio)(Itoriffi and Diagnosis of An

    3/3

    -

    inputs

    PROCESS

    I&

    1

    I

    MODEL

    I

    ADAPTIVE

    I

    --

    ALWRITHM r

    f ig

    1

    P

    1

    80 00 160 00 zGo.oo s)

    f ig

    4

    fig

    2