compiler for mixed signal asics esa-estec gstp - analog...

52
ESA-ESTEC GSTP - Analog Silicon Compiler for Mixed Signal ASICs Irradiation of CSA-PSA & Design of a CMOS High-Speed 8-bit 100MS/S ADC core

Upload: others

Post on 09-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

ESA-ESTEC GSTP - Analog SiliconCompiler for Mixed Signal ASICs

Irradiation of CSA-PSA&

Design of a CMOS High-Speed 8-bit100MS/S ADC core

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 2

Outline! Irradiation of CSA-PSA chip [designed and fabricated in ASTP4

project]" Objectives" Measurement setup" Measurements" Conclusions

! Design High-Speed 100MS/s 8-bit ADC" Objectives" Design methodology" Architectural level design" Device level design" Layout" Measurements" Conclusions

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 3

Irradiation CSA-PSA: objectives! Perform an initial evaluation of the total dose hardness of

the commercial 0.7µm CMOS process from MIETEC" radiation tolerance evaluation of standard CMOS technology

! Total dose testing on CSA-PSA chip :" designed and fabricated in ASTP4 project “VLSI Design Tools-

Module generation for analog silicon compilation” with theESTEC division of the ESA (Contract 9890/92/NL/GS).

! Workpackage" WP1200

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 4

CSA-PSA: block-diagram

tr

C

fR

1 diff.

HV

Q

E=hv

-

Rbias

out-

n integr.

Rpz

ττCdif

0

0

Charge Sensitive Amplifier Semi-Gaussian pulse shaper

detector

τ0

f

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 5

CSA-PSA: micro photograph

CSA PSA

Integrator

Pole-zero

canceling

Differentiator

Rf

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 6

CSA-PSA: measurement setup! Compliant with AD3! Five samples were exposed to 50 krad! Two of them were afterwards exposed to 100 krad! Measurements:

" for good comparison additional noise and linearity measurementswere done before irradiating the samples

" for each sample 11 inputs were applied: varying from 5, 10, 20,30, 40, 50, 60, 70, 80, 90, 100fC

" for each input signal a histogram, comprising 30.000 samples,was measured

" linearity and noise were calculated from histograms

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 7

CSA-PSA: measurement results

0.5output voltage [V]

1000

500

00 1 1.5 2 0.5

output voltage [V]

1000

500

00 1 1.5 2 0.5

output voltage [V]

1000

500

00 1 1.5 2

0.5output voltage [V]

1000

500

00 1 1.5 2 0.5

output voltage [V]

1000

500

00 1 1.5 2 0.5

output voltage [V]

1000

500

00 1 1.5 2

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 8

CSA-PSA: measurement results cont’d

! gain:18mV/fC! peaking time: 1.14

µs! noise: 899 e-RMS! linearity < 0.5 %97 98 99 100 101 102 103

time [ sec]

Ou

tpu

t vo

ltag

e C

SA

-PS

A [

V]

-0.5

0

0.5

1.0

1.5

2.0

2.5

τp

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 9

CSA-PSA: measurement results cont’d

Input Charge [fC]

00

10

1.0

20

0.2

30

1.2

40

0.4

50

1.4

60

0.6

70

1.6

80

0.8

90

1.8

100

2.0

Ou

tpu

t vo

ltag

e [V

] Before irradiation

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 10

CSA-PSA: measurement results cont’d

0 10

1.0

20

0.2

30

1.2

40

0.4

50

1.4

60

0.6

70

1.6

80

0.8

90

0

100

ou

tpu

t vo

ltag

e

[V]

Input Charge [fC]

-0.2

After 50 krad

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 11

CSA-PSA: measurement results cont’d! After exposure to 50 krad

" a slight decrease in conversion gain: from 18mV/fC to 16mV/fC" the peaking time decreases slightly from 1.14 to 1.17µs" the noise level shows little change

! Conclusion 50 krad irradiation" all chips survived the irradiation testing of 50 krad quite good" only a slight decrease in performance is noticed" good recovery after 24 hours" full recovery after 168 hours.

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 12

CSA-PSA: measurement results cont’d

0 10 20 30 40 50 60 70 80 90 100

Input Charge [fC]

1.0

0.2

1.2

0.4

0.6

0.8

0

-0.2

ou

tpu

t vo

ltag

e

[V] After 100 krad

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 13

CSA-PSA: measurement results cont’d! After exposure to 100 krad

" a further decrease in performance" the conversion gain dropped by a factor of two" the peaking time increased from 1.14µs to 1.20µs" the noise level increased slightly After 24 hours annealing little

recovery was seen, after 168 hours of annealing both sampleshad fully recovered from the irradiation

! Conclusion 100 krad irradiation" both samples survived irradiation" little recovery after 24 hours annealing" full recovery after 168 hours of annealing

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 14

CSA-PSA: conclusions! the Alcatel Microelectronics CMOS 0.7µm technology

shows good radiation tolerance! deep submicron CMOS technologies can be a viable

alternative to expensive radiation hard technology:" gate all around

! the sample set was too small to draw finalizingconclusions, but same message was heard on RadTolmeeting

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 15

CSA-PSA: conclusions cont’d! RadTol 49 meeting

" gate allround techniques for analog as well as digital libraries" promising results were presented at the RadTol meeting#plain CMOS is a true candidate for future space applications.

! Publications originating from this work" J. Vandenbussche, F. Leyn, G. Van der Plas, G. Gielen, "Total

Dose Testing of a Standad CMOS Particle Detector Front-End forSpace Applications", RadTol meeting R49, Geneve, October 281998.

" J. Vandenbussche, F. Leyn, G. Van der Plas, G. Gielen, and W.Sansen, "A Fully Integrated Low-Power CMOS Paritcle DetectorFront-End for Space Applications", IEEE Transactions onNuclear Science, Vol. 45, pp. 2262-2272, August 1998.

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 16

Outline! Irradiation of CSA-PSA chip

" Objectives" Measurement setup" Measurements" Conclusions

! Design High-Speed 100MS/s 8-bit ADC" Objectives" Design methodology" Architectural level design" Device level design" Layout" Measurements" Conclusions

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 17

Objectives! Address how state-of-the-art design can be enhanced

using AMGIE functionality" topologies change as technological boundaries move on" what about design re-use?" how to speed up the design, what tasks can be automated?

! Demonstrator design:" 8-bit ADC at 60-100MS/s is a typical component in receiver

front-ends" design of high-speed ADC core for high-speed base station

application (GPS, video decoding, TV decoding, satellitedecoding, WLAN, …)

! Workpackages:" WP 2120, WP 2200, WP 2300, WP 2400, WP 2500

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 18

Design Methodology

Sizing Architectural level

? ?

?

?

?

Floorplanning

Layout Assembly & Verification

Synthesis:

Analog Digital

DESIGN PHASE

Sizing Device Level

Layout Device Level

Layout Module Level

Standard cell Place & route

- Matlab- Hspice

- Virtuoso

- Virtuoso- Mondriaan- C++

- Virtuoso

- Synopsis

- Cell Ensemble- Avant! P&R

! symbolic analysisfor sizing level

! no analog tools formodule level" MONDRIAAN

Tool" bus generator" equal delay

routing

! assemblymanually

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 19

Architectural Level: overview topologies

4

6

8

10

12

14

16

18

1K 10K 100K 1M 10M 100M 1G 10G

CMOSBipolar

GaAs

sigma-delta

multi-steppipelined

flash

fs [Hz]

bits

8-bit 100MS/s

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 20

Architectural Level: overview cont’d! Possible candidates for 8-bit 100MS/s ADC:

" pipelined architecture$ low power$ sampling speed shifts to higher frequencies as technology

scales down$no publications on such high-speed ‘working’ designs

" flash:$ consumes a lot of power$ intrinsically the fastest architecture with its full parallel

implementation$8-bit 80MS/s CMOS flash ADC has been published

#Only the flash architectures are capable of obtaining thetargeted specifications in the 0.35 µm CMOS technology

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 21

Architectural Level: Flash ADC! Problems classical flash ADC

" large power consumption (2N comparators)$ solution: folding

" large input capacitance, resulting in bandwidth limitations forinput signal frequencies$ solution: interpolation

" input feedthrough" kickback noise

! Additional improvements" averaging (Bult ISSCC ) by preamplifiers" new fully differential input stage" new enhanced comparator to avoid kickback noise

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 22

Architectural Level: block diagramReference Ladder

Preamp Stage 1

Comparator

Error Correction (NAND)

RO

Mp

ull-u

pGRAY ENCODER (ROM)

Latch

clk

vin_minvin_plus

vin_min_sh

vin_plus_sh

S/H

Preamp Stage 2

b0 b1 b2 b3 b4 b5 b6 b7

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 23

Architectural Level Design

How much equivalent inputreferred offset for INL/DNL < 0.5LSB with yield of 99.9%?

! Static performance:" INL/DNL < 0.5 LSB

with yield 99.9%" Monte-Carlo

simulations"

! Dynamic performance:...

LSBoffset 7.0<σ

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 24

Architectural Level Design cont’d

2

2_1_

,2

1_

,2_

2,1_

2,

+

+

=

stpreampstpreamp

offsetcomp

stpreamp

offsetstpreamp

offsetstpreampoffsettotal

AAA

σσ

σσ

! For optimal dynamic performance:" Mismatch contribution of comparator should be negligible" Comparator can be optimized for speed

# 15),(2_1_ ≥=⋅= technologyINLfAAA stpreampstpreamppreamp

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 25

Architectural Level Design cont’d! Static performance! Dynamic

performance" Admissible phase

shift for Nyquistperformance?

" Vgs-Vt = 0.3 V" Preamplifier

Bandwith/InputFrequency = 5.

" 50dB 3rd orderdistortion (8bit)

# fp,preamp> 250MHz

°≈

≤ 1251

atanNyquistϕ

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 26

Design Methodology

Sizing Architectural level

? ?

?

?

?

Floorplanning

Layout Assembly & Verification

Synthesis:

Analog Digital

DESIGN PHASE

Sizing Device Level

Layout Device Level

Layout Module Level

Standard cell Place & route

- Matlab- Hspice

- Virtuoso

- Virtuoso- Mondriaan- C++

- Virtuoso

- Synopsis

- Cell Ensemble- Avant! P&R

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 27

Device Level Design: 1st preamp stage

1:1

1 : 21: 2 : 1 :1 1 : 21: 2 : 1 :1

1:1

m2a m2b

m1a m1b m1a m1b

m4a m4b m4c m4d

m33a m33d m33e m33hm3a m3b m3c m3d

m33a m33c m33f m33g

Vref_plus Vin_plus Vin_min Vref_min

Vbias_preamp_st1

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 28

! Constraints from architectural design"

"

"

! Additional design equation derived using ISAAC tool! Sizing script (Matlab) using ASA optimization algorithm

Device Level Design: 1st preamp stage cont’d

101_ =stpreampA

MHzf stpreampdominant 5001_, >

( )22,

21_ 7.0

43

43

LSBoffsettotalstpreamp ≤= σσ

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 29

Device Level Design: 2nd preamp stage! Constraints from architectural level

"

"

"

! Additional design equation derived using ISAAC tool! Sizing script (Matlab) using ASA optimization algorithm

22_ =stpreampA

°≈

>

1251

Arctan

5002_,

Nyquist

stpreampdominant MHzf

ϕ

( )2

2,

22_

7.04141

LSB

offsettotalstpreamp

= σσ

m1a m1b

m2

Rload_a Rload_b

Vout_plus Vout_min

Vin_plus Vin_min

Vbias_preamp_st2

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 30

Device Level Design: comparator! very fast regenerative structure! reset when clock is high

Clk_comp

Vin

_plu

s_co

mp

Vin

_min

_co

mp

Ci+2 Clk_nand

Si

COMPARATOR NAND

M2

M1a M2b

M3a M3b

M4

M5a M5b

M6a M6b

M7a

M8a

M7b

M8b M9a M9b M9c M11b

M11b

M12aM10c

M10b

M10c

vbias_comp

nr1 nr2

Ci+1

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 31

Device Level Design: digital back-end! encodes the thermometer code in Gray code! 3- input NAND gate in the ROM decoder,

" additional error correction is done," avoid bubbles in the output" avoid metastability

! standard cell synthesis doesn’t meet high-speed specs" ‘manual’ design" Maple scripts for sizing" eldo for transistor level simulations

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 32

Layout generation! Layout-driven design: sized schematic alone does not

constitute an operational converter" analog and digital power supplies have been separated" around the perimeter of the chip 1 nF of decoupling capacitance

has been integrated to provide stable power supplies

! Layout preamplifier stages" layout of the preamplifiers was done manually" devices were generated using LAYLA" placement and routing was done manually" MONDRIAAN for regular arrays/connections" additional 500 pF of decoupling capacitance internally" guard rings to reduce substrate (digital) noise coupling

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 33

Layout generation cont’d

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 34

Layout generation cont’d! Comparator

" layout manually" placement & routing using Mondriaan for regular

arrays/connections

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 35

Layout generation cont’d! ROM decoder

" ROM cell manually" ROM array generated using the MONDRIAAN tool

! A buffered binary clock tree" clock tree generated using MONDRIAAN" the design and layout of the clock buffer was done manually

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 36

Layout generation cont’d

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 37

Layout: micro photograph

1st stage preamplifier

2nd stage preamplifier Gray decoder

S/H

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 38

Characterization High-speed ADC! Functional testing

" static measurements (INL/DNL)" dynamic Measurements (SFDR/SNDR)" datasheet

! Irradiation testing" budget reallocated for

redesign

! Dedicated test PCBwas developed

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 39

Characterization: static measurements! Full speed

measurement" fclk = 100 MS/s" fin = 3 kHz" calculate histogram" after unwrapping

INL/DNL can becalculated

! With defaultbiasing ADCshows missingcodes

! After tuning:DNL < 1.6 LSB

0 50 100 150 200 250-1.5

-1

-0.5

0

0.5

1

1.5

2

code []

DN

L [L

SB

]

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 40

Characterization: static measurements cont’d

0 50 100 150 200 250-3

-2

-1

0

1

2

code []

INL

[LS

B]

! After tuning:INL < 2.7 LSB

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 41

Characterization: dynamic measurements

! After tuning! fclk= 100MS/s! fin = 6 kHz

SFDR = 46 dBSNDR = 38 dB

-80

-60

-40

-20

0

20

40

Am

plit

ud

e [d

B]

10-4 10-3 10-2 10-1 100

frequency/fclk [ ]

SFDR

SNDR

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 42

Characterization: dynamic measurements cont’d

! After tuning! fclk= 100MS/s! fin = 5 MHz

SFDR = 42 dBSNDR = 29 dB

-80

-60

-40

-20

0

20

40

Am

plit

ud

e [d

B]

10-4 10-3 10-2 10-1 100

frequency/fclk []

SFDR

SNDR

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 43

Characterization: datasheetSpecification Target value First Design input capacitance < 100 pF 3 pF input range > 0.5 V ptp 1.3 V ptp latency not specified 1 clock cycle INL/DNL < ½ LSB 2.7/1.6 LSB SFDR > 45 dB 46 dB @ fin=6 kHz

42 dB @ fin=5 MHz SNDR > 40 dB 38 dB @ fin=6 kHz

29 dB @ fin=5 MHz ENOB 6.5 bits @ 30 MHz NM parallel output ok ok digital output:

• logic family • data format

CMOS levels Gray Code

CMOS levels Gray Code

Conversion rate 1 code/clock cycle 1 code/clock cycle Update rate 60 MS/s 100 MS/s Drive Capability - 10 pF@100MS/s

5 pF @200MS/s radiation tolerance 50 krad NM

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 44

Measurement analysis! High-speed ADC is working at 100 MS/s! Slightly out of spec! INL measurements show missing codes

105 110 115 120 125 130 135 140 145-1.5

-1

-0.5

0

0.5

1

1.5

code []

DN

L [L

SB

]

Codes are never excited

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 45

Measurement analysis cont’d! Malfunctioning second stage preamplifier

" common mode output 2nd stage preamp too low#input transistor of the comparator out of the saturation region#no gain in comparator#mismatch amplified instead of attenuated

! Hypothesis consolidated by:$additional (symbolic) analysis

comparator [Van der Plas ECCTD ‘98]

$ transistor level simulationwith tuned biasing

$measurements with tuned biasing:no more missing codes

m1a m1b

m2

Rload_a Rload_b

Vout_plus Vout_min

Vin_plus Vin_min

Vbias_preamp_st2

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 46

Measurement analysis: solutions! Possible solutions …

" increasing the DC current through the 2nd stage preamp$ current source diff pair no

longer in saturation!" isolating power supply 1st and

2nd stage preamp with FIB$ large setup times (days),

not routine job!$3 samples FIBed,

none were functional afterwards# Redesign?

m1a m1b

m2

Rload_a Rload_b

Vout_plus Vout_min

Vin_plus Vin_min

Vbias_preamp_st2

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 47

Measurement analysis: solutions cont’d

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 48

Redesign High-Speed ADC! New topology for 2nd stage! Comparator upscaled

" 1st design runs up to 200 MS/s!" lower mismatch

! Separate power supplyfor 1st and 2nd stagepreamplifiers

1 : 1 1 : 1

m2a

m1am1b

m3b m3cm3a m3d

vin_minvin_plus

vbias_st2

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 49

Redesign High-speed ADC cont’d

1st stage preamplifier

2nd stage preamplifier Gray decoder

S/H

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 50

Redesign High-Speed ADC: datasheetSpecification Target value First Design Redesign input capacitance < 100 pF 3 pF 4.8 pF input range > 0.5 V ptp 1.3 V ptp 1.3 V ptp latency not specified 1 clock cycle 1 clock cycle INL/DNL < ½ LSB 2.7/1.6 LSB 0.3/0.6 LSB SFDR > 45 dB 46 dB @ fin=6 kHz

42 dB @ fin=5 MHz -

SNDR > 40 dB 38 dB @ fin=6 kHz 29 dB @ fin=5 MHz

-

ENOB 6.5 bits @ 30 MHz NM - parallel output ok ok ok digital output:

• logic family • data format

CMOS levels Gray Code

CMOS levels Gray Code

CMOS levels Gray Code

Conversion rate 1 code/clock cycle 1 code/clock cycle 1 code/clock cycle Update rate 60 MS/s 100 MS/s 100 MS/s Drive Capability - 10 pF@100MS/s

5 pF @200MS/s 10 pF@100MS/s 5 pF @200MS/s

radiation tolerance 50 krad NM -

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 51

Conclusions! Results

" high-speed 100MS/s 8-bit ADCcore (packaged/naked die)

" test PCB delivered

! ADC core was used as externalpart in WLAN prototype [IMEC]

! Publications

Final presentation – ESA-ESTEC 7/3/2001 Jan Vandenbussche 52

Publications! G. Van der Plas, J. Vandenbussche, G. Gielen and W. Sansen, "Mondriaan: a

Tool for Automated Layout Synthesis of Array-type Analog Blocks", Proc. on theIEEE 1998 Custom Integrated Circuits Conference, pp. 485-488, California, May1998.

! J. Vandenbussche, G. Van der Plas, W. Verhaegen and G. Gielen, "StatisticalBehavioral Modeling of A/D Converters", IEEE/VIUF International Workshop onBehavioral Modeling and Simulation, Florida, October 1998.

! G. Van der Plas, W. Daems, E. Lauwers, J. Vandenbussche, W. Verhaegen, G.Gielen, W. Sansen, "Symbolic Analysis of CMOS Regenerative Comparators",European Conference on Circuit Theory and Design, pp. 86-89, Italy, August1999.

! G. Van der Plas, J. Vandenbussche, W. Verhaegen, G. Gielen and W. Sansen,"Statistical Behavioral Modeling for A/D Converters", Proc. IEEE 1999International Conference on Electronics, Circuits and Systems, pp. 1713-1716,Cyprus, September 1999.