compositional evolution of growing terrestrial planet embryos

22
Compositional evolution of growing terrestrial planet embryos Philip J. Carter University of Bristol Zoë. M. Leinhardt Tim Elliott Michael J. Walter Sarah T. Stewart NASA/JPL-Caltech/T. Pyle (SSC) 1st April 2016 - UK Exoplanet Meeting

Upload: others

Post on 24-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Compositional evolution of growing terrestrial planet embryos

Compositional evolution of growing terrestrial planet embryosPhilip J. CarterUniversity of Bristol

Zoë. M. Leinhardt Tim Elliott Michael J. Walter Sarah T. Stewart

NASA/JPL-Caltech/T. Pyle (SSC)

1st April 2016 - UK Exoplanet Meeting

Page 2: Compositional evolution of growing terrestrial planet embryos

Introduction

Compositional evolution of growing terrestrial planet embryos Phil Carter

Data from Palme & O’neill (2003)

Bonsor et al. (2015)

Solar system measurements are a key test of planet formation models

Earth 1.0

Page 3: Compositional evolution of growing terrestrial planet embryos

Simulations• PKDGRAV - N body code (Richardson et al. 2000; Stadel 2001)

• EDACM - Empirically Derived Analytical Collision Model (Leinhardt & Stewart 2012; Leinhardt et al. 2015)

• 100 000 planetesimals, most ~200 km radius — differentiated (e.g. Kruijer et al. 2014)

• Mantle stripping law— favours accretion of core material by largest remnants (Marcus et al. 2010)

• Particle radii inflated by factor f=6 to speed up evolution(Kokubo & Ida 1996, 2002; Bonsor et al. 2015, Leinhardt et al. 2015) Run for 600 000 yr, effective time ~20 Myr — end before GI phase

• Calm disc: no giant planets (see Bonsor et al. 2015);Grand Tack: inward then outward migration of Jupiter (Walsh et al. 2011)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 4: Compositional evolution of growing terrestrial planet embryos

Mantle stripping law

Marcus et al. (2010)

GADGET SPH

Impact energy

Cor

e m

ass

fract

ion

Compositional evolution of growing terrestrial planet embryos Phil Carter

Favours accretion of core material by largest remnants

Page 5: Compositional evolution of growing terrestrial planet embryos

Core vs mantle with EDACMPerfect merging

Partial accretion

Hit and run Projectile disrupted

Erosion or supercatastrophic disruptionCompositional evolution of growing terrestrial planet embryos Phil Carter

Page 6: Compositional evolution of growing terrestrial planet embryos

Resolution limit

Collisions can produce debris,Resolved planetesimals reaccrete (see Leinhardt et al. 2015) — cycling of material through debris bins

Carter et al. (2015); Bonsor et al. (2015); Leinhardt et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 7: Compositional evolution of growing terrestrial planet embryos

Unresolved mass

Carter et al. (2015)

Collisions can produce debris,Resolved planetesimals reaccrete (see Leinhardt et al. 2015) — cycling of material through debris binsCompositional evolution of growing terrestrial planet embryos Phil Carter

Page 8: Compositional evolution of growing terrestrial planet embryos

Time

Compositional evolution of growing terrestrial planet embryos Phil Carter

Particle radii inflated by factor f=6 to speed up evolution(Kokubo & Ida 1996, 2002; Bonsor et al. 2015, Leinhardt et al. 2015)Run for 600 000 yr, effective time ~20 Myr — end before GI phase

Page 9: Compositional evolution of growing terrestrial planet embryos

The Grand TackCalm disc: no giant planets (see Bonsor et al. 2015) Grand Tack: inward then outward migration of Jupiter(Walsh et al. 2011)

Compositional evolution of growing terrestrial planet embryos Phil Carter

0 kyr

70 kyr

100 kyr

300 kyr

500 kyr

150 Myr

Page 10: Compositional evolution of growing terrestrial planet embryos

Growth of terrestrial embryosG

rand

Tac

k

Semi-major axis (AU)

Carte

r et a

l. (2

015)

Mor

e m

ovies

ava

ilabl

e on

line

Ecce

ntric

ityC

alm

dis

c

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 11: Compositional evolution of growing terrestrial planet embryos

Growth of terrestrial embryosG

rand

Tac

k

Semi-major axis (AU)

Carte

r et a

l. (2

015)

Mor

e m

ovies

ava

ilabl

e on

line

Ecce

ntric

ityC

alm

dis

c

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 12: Compositional evolution of growing terrestrial planet embryos

1.8 Myr

2.1 Myr

2.2 Myr

7.2 Myr

21.6 Myr

Grand Tack 5 / 9Calm disc

Carter et al. (2015)

Page 13: Compositional evolution of growing terrestrial planet embryos

Collisions during embryo growth

Grand Tack Calm disc

Jupiter’s migration excites the inner disc, causing many more erosive collisions

2 Myr

Carter et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 14: Compositional evolution of growing terrestrial planet embryos

Composition of terrestrial embryos

Carter et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Grand Tack Calm disc

Page 15: Compositional evolution of growing terrestrial planet embryos

Composition of terrestrial embryos

Carter et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Grand Tack Calm disc

Page 16: Compositional evolution of growing terrestrial planet embryos

Composition of terrestrial embryos

Carter et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 17: Compositional evolution of growing terrestrial planet embryos

Final core fraction

Apply these changes to chondritic meteorite compositions: form core, calculate mantle composition; apply final core fraction, calculate bulk composition.

Grand TackCalm disc

Carter et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 18: Compositional evolution of growing terrestrial planet embryos

What does this mean for the composition?

Earth(O’Neill &

Palme 2008)

Carte

r et a

l. (2

015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 19: Compositional evolution of growing terrestrial planet embryos

What does this mean for the composition?

Grand Tack or highly reduced calm disc can naturally account for the Earth’s non-chondritic Fe/Mg through collisional accretion during the intermediate stages of formation

Earth(O’Neill &

Palme 2008)

Calm disc Grand Tack

Carte

r et a

l. (2

015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 20: Compositional evolution of growing terrestrial planet embryos

Summary

• Compositional changes work both ways. Some embryos show “core enhancement” others show “mantle enhancement”.

• Collisional accretion during the growth of terrestrial embryos may do enough to explain the non-chondritic nature of the Earth. The giant impact phase may further enhance the compositional changes.

The collisions during accretion can significantly alter the chemical composition of terrestrial planet embryos, especially if excited by giant planet migration.

Carter et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter

For more PKDGRAV see posters by D Veras and S Lines

Page 21: Compositional evolution of growing terrestrial planet embryos

Compositional evolution of growing terrestrial planet embryos Phil Carter

Page 22: Compositional evolution of growing terrestrial planet embryos

MixingCarter et al. (2015)

Compositional evolution of growing terrestrial planet embryos Phil Carter