compressible flow - tme085 - lecture 2nian/courses/compflow/notes/tme085_l02.pdf · compressible...

32
Compressible Flow - TME085 Lecture 2 Niklas Andersson Chalmers University of Technology Department of Mechanics and Maritime Sciences Division of Fluid Mechanics Gothenburg, Sweden [email protected]

Upload: others

Post on 28-Jul-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Compressible Flow - TME085

Lecture 2

Niklas Andersson

Chalmers University of Technology

Department of Mechanics and Maritime Sciences

Division of Fluid Mechanics

Gothenburg, Sweden

[email protected]

Page 2: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Overview

Compressible flow

Basic

Concepts

Com-

pressibility

flow

regimes

speed of

sound

Thermo-

dynamics

thermally

perfect

gas

calorically

perfect

gas

entropy1:st and

2:nd law

High tem-

perature

effects

molecular

motioninternal

energy

Boltzmann

distribution

equilibrium

gas

CFDSpatial

dis-

cretization

Numerical

schemes

Time

integration

Shock

handling

Boundary

conditions

PDE:s

traveling

waves

method

of char-

acteristics

finite

non-linear

waves

acoustic

waves

shock

reflection

moving

shocks

governing

equationsCrocco’s

equation

entropy

equation

substantial

derivativenoncon-

servation

form

conser-

vation

form

Conservation

laws

integral form

Quasi

1D Flowdiffusers

nozzles

governing

equations

2D Flow

shock

expansion

theory

expansion

fansshock

reflection

oblique

shocks

1D Flow

friction

heat

addition

normal

shocks

isentropic

flow

governing

equationsenergy

mo-

mentumcontinuity

Page 3: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Chapter 2

Integral Forms of the

Conservation Equations for

Inviscid Flows

Niklas Andersson - Chalmers 3 / 32

Page 4: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Overview

Compressible flow

Basic

Concepts

Com-

pressibility

flow

regimes

speed of

sound

Thermo-

dynamics

thermally

perfect

gas

calorically

perfect

gas

entropy1:st and

2:nd law

High tem-

perature

effects

molecular

motioninternal

energy

Boltzmann

distribution

equilibrium

gas

CFDSpatial

dis-

cretization

Numerical

schemes

Time

integration

Shock

handling

Boundary

conditions

PDE:s

traveling

waves

method

of char-

acteristics

finite

non-linear

waves

acoustic

waves

shock

reflection

moving

shocks

governing

equationsCrocco’s

equation

entropy

equation

substantial

derivativenoncon-

servation

form

conser-

vation

form

Conservation

laws

integral form

Quasi

1D Flowdiffusers

nozzles

governing

equations

2D Flow

shock

expansion

theory

expansion

fansshock

reflection

oblique

shocks

1D Flow

friction

heat

addition

normal

shocks

isentropic

flow

governing

equationsenergy

mo-

mentumcontinuity

Niklas Andersson - Chalmers 4 / 32

Page 5: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Addressed Learning Outcomes

4 Present at least two different formulations of the governing

equations for compressible flows and explain what basic

conservation principles they are based on

5 Explain how thermodynamic relations enter into the flow

equations

7 Explain why entropy is important for flow discontinuities

equations, equations and more equations

Niklas Andersson - Chalmers 5 / 32

Page 6: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example

Niklas Andersson - Chalmers 6 / 32

Page 7: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Chapter 1.5

Aerodynamic Forces

Niklas Andersson - Chalmers 7 / 32

Page 8: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Aerodynamic Forces

n

Ω

∂Ω

Ω region occupied by body

∂Ω surface of body

n outward facing unit normal vector

Niklas Andersson - Chalmers 8 / 32

Page 9: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Aerodynamic Forces

Overall forces on the body du to the flow

F =

(−pn + τ · n)dS

where p is static pressure and τ is a stress tensor

Niklas Andersson - Chalmers 9 / 32

Page 10: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Aerodynamic Forces

Drag is the component of F which is parallel with the freestream

direction:

D = Dp + Df

where Dp is drag due to pressure and Df is drag due to friction

Lift is the component of F which is normal to the free stream

direction:

L = Lp + Lf

(Lf is usually negligible)

Niklas Andersson - Chalmers 10 / 32

Page 11: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Aerodynamic Forces

Inviscid flow around slender body (attached flow)

I subsonic flow: D = 0I transonic or supersonic flow: D > 0

Explanation: Wave drag

M∞ < 1 M∞ > 1

Niklas Andersson - Chalmers 11 / 32

Page 12: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Aerodynamic Forces

I Wave drag is an inviscid phenomena, connected to the

formation of compression shocks and entropy increase

I Viscous effects are present in all Mach regimes

I At transonic and supersonic conditions a particularphenomena named ”shock/boundary-layer interaction” mayappear

I shocks trigger flow separationI usually leads to unsteady flow

Niklas Andersson - Chalmers 12 / 32

Page 13: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example

Niklas Andersson - Chalmers 13 / 32

Page 14: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Integral Forms of the Conservation Equations

Conservation principles:

I conservation of mass

I conservation of momentum (Newton’s second law)

I conservation of energy (first law of thermodynamics)

Niklas Andersson - Chalmers 14 / 32

Page 15: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Integral Forms of the Conservation Equations

The control volume approach:

Ω

∂Ω

n

Notation:

Ω: fixed control volume

∂Ω: boundary of Ω

n: outward facing unit normal vector

v: fluid velocity

v = |v|

Niklas Andersson - Chalmers 15 / 32

Page 16: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Chapter 2.3

Continuity Equation

Niklas Andersson - Chalmers 16 / 32

Page 17: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Continuity Equation

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸+

∂Ω

ρv · ndS︸ ︷︷ ︸ = 0

rate of change of

total mass in Ωnet mass flow out

from Ω

Note: notation in the text book n · dS = dS

Niklas Andersson - Chalmers 17 / 32

Page 18: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Chapter 2.4

Momentum Equation

Niklas Andersson - Chalmers 18 / 32

Page 19: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Momentum Equation

Conservation of momentum:

d

dt

y

Ω

ρvdV︸ ︷︷ ︸+

∂Ω

[ρ(v · n)v + pn]dS︸ ︷︷ ︸ =y

Ω

ρfdV︸ ︷︷ ︸rate of change of total

momentum in Ω

net momentum flow out from

Ω plus surface force on ∂Ωdue to pressure

rate of momentum

generation due to

forces inside Ω

Note: friction forces due to viscosity are not included here. To account for these forces, the term −(τ · n) must beadded to the surface integral term.

Note: the body force, f , is force per unit mass.

Niklas Andersson - Chalmers 19 / 32

Page 20: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Chapter 2.5

Energy Equation

Niklas Andersson - Chalmers 20 / 32

Page 21: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Energy Equation

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸+

∂Ω

[ρeo(v · n) + pv · n]dS︸ ︷︷ ︸ =y

Ω

ρf · vdV︸ ︷︷ ︸rate of change of total

internal energy in Ω

net flow of total internal energy

out from Ω plus work due to

surface pressure on ∂Ω

work due to forces

inside Ω

where

ρeo = ρ

(e+

1

2v · v

)= ρ

(e+

1

2v2)

is the total internal energy

Niklas Andersson - Chalmers 21 / 32

Page 22: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Energy Equation

The surface integral term may be rewritten as follows:

∂Ω

(e+

1

2v2)(v · n) + pv · n

]dS

∂Ω

(e+

p

ρ+

1

2v2)(v · n)

]dS

∂Ω

(h+

1

2v2)(v · n)

]dS

Niklas Andersson - Chalmers 22 / 32

Page 23: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Energy Equation

Introducing total enthalpy

ho = h+1

2v2

we get

d

dt

y

Ω

ρeodV +

∂Ω

[ρhov · n]dS =y

Ω

ρf · vdV

Niklas Andersson - Chalmers 23 / 32

Page 24: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Energy Equation

Note 1: to include friction work on ∂Ω, the energy equation isextended as

d

dt

y

Ω

ρeodV +

∂Ω

[ρhov · n−(τ · n) · v]dS =y

Ω

ρf · vdV

Note 2: to include heat transfer on ∂Ω, the energy equation isfurther extended

d

dt

y

Ω

ρeodV +

∂Ω

[ρhov · n−(τ · n) · v+q · n]dS =y

Ω

ρf·vdV

where q is the heat flux vector

Niklas Andersson - Chalmers 24 / 32

Page 25: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Energy Equation

Note 3: the force f inside Ω may be a distributed body force field

Examples:

I gravityI Coriolis and centrifugal acceleration terms in a rotating frame

of reference

Niklas Andersson - Chalmers 25 / 32

Page 26: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Energy Equation

Note 4: there may be objects inside Ω which we choose to

represent as sources of momentum and energy.

For example, there may be a solid object inside Ω which acts on

the fluid with a force F and performs work W on the fluid

Momentum equation:

d

dt

y

Ω

ρvdV +

∂Ω

[ρ(v · n)v + pn]dS =y

Ω

ρfdV + F

Energy equation:

d

dt

y

Ω

ρeodV +

∂Ω

[ρhov · n]dS =y

Ω

ρf · vdV + W

Niklas Andersson - Chalmers 26 / 32

Page 27: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example

Niklas Andersson - Chalmers 27 / 32

Page 28: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Integral Equations - Applications

How can we use control volume formulations of conservation

laws?

I Let Ω → 0: In the limit of vanishing volume the control volumeformulations give the Partial Differential Equations (PDE:s) for

mass, momentum and energy conservation (see Chapter 6)

I Apply in a ”smart” way ⇒ Analysis tool for many practical

problems involving compressible flow (see Chapter 2,

Section 2.8)

Niklas Andersson - Chalmers 28 / 32

Page 29: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Integral Equations - Applications

Example: Steady-state adiabatic inviscid flow

C3

C4

C2

C1

control volume where the sur-

faces C1 and C2 are normal to

the flow and C3 and C4 are par-

allel to the stream lines

Niklas Andersson - Chalmers 29 / 32

Page 30: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Integral Equations - Applications

Conservation of mass:

d

dt

y

Ω

ρdV︸ ︷︷ ︸+

∂Ω

ρv · ndS︸ ︷︷ ︸ = 0

= 0 −ρ1v1A1 + ρ2v2A2

Conservation of energy:

d

dt

y

Ω

ρeodV︸ ︷︷ ︸+

∂Ω

[ρhov · n]dS︸ ︷︷ ︸ = 0

= 0 −ρ1ho1 v1A1 + ρ2ho2 v2A2

Niklas Andersson - Chalmers 30 / 32

Page 31: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Integral Equations - Applications

Conservation of mass:

ρ1v1A1 = ρ2v2A2

Conservation of energy:

ρ1ho1v1A1 = ρ2ho2v2A2

ho1 = ho2

Total enthalpy ho is conserved along streamlines in steady-state

adiabatic inviscid flow

Niklas Andersson - Chalmers 31 / 32

Page 32: Compressible Flow - TME085 - Lecture 2nian/courses/compflow/notes/TME085_L02.pdf · Compressible Flow - TME085 - Lecture 2 Author: Niklas Andersson Created Date: 3/21/2019 1:23:28

Roadmap - Integral Relations

Aerodynamic forces Governing equations

(integral form)

Continuity equation

Momentum equation

Energy equation

Control volume example

Niklas Andersson - Chalmers 32 / 32