corpe ieee peac 2018 no reprint without...

49
CORPE Design for Reliability in Power Electronic Systems Frede Blaabjerg Villum Investigator Email: [email protected] Center of Reliable Power Electronics (CORPE) Department of Energy Technology Aalborg University, Denmark IEEE PEAC 2018 No Reprint Without Authorization

Upload: others

Post on 11-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

CORPE

Design for Reliability in Power Electronic Systems

Frede Blaabjerg Villum Investigator

Email: [email protected] of Reliable Power Electronics (CORPE)

Department of Energy TechnologyAalborg University, Denmark

IEEE PEAC 2018 No Reprint Without Authorization

Page 2: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

1 Towards Reliable Power ElectronicsBeyond Efficiency and Power Density

2IEEE PEAC 2018 No Reprint Without Authorization

Page 3: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Power ElectronicsReinvent the way electrical energy processed

Electricity generation…

Electricity consumption…

InterfacesIntegration to electric gridPower transmissionPower distributionPower conversionPower control

Power Electronics enable efficient conversion and flexible control of electrical energy

3IEEE PEAC 2018 No Reprint Without Authorization

Page 4: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► 100+ Years of Power Electronics

4

Reliability becomes one of the key application-oriented challengesIEEE PEAC 2018 No Reprint Without Authorization

Page 5: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Performance Factors of Power Electronics

CheaperLighterSmallerCoolermore Reliablemore Versatile…

CostPower densityEfficiencyReliabilityControl Input & output…

5

25% size, 17% weight

IEEE PEAC 2018 No Reprint Without Authorization

Page 6: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18 6

► Increasing Use of Power ElectronicsExample 1 – Towards Power Electronics Based Energy System

IEEE PEAC 2018 No Reprint Without Authorization

Page 7: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Increasing Use of Power Electronics

7

Important issuesReliability/security of supply Efficiency, cost, volume, protectionControl active and reactive powerRide-through operation and monitoringPower electronics enabling technology

Example 2 – Electrical Energy Generation from Renewable Sources (1000 GW in 2018 !)

An Example of Full-Scale Power Converter

IEEE PEAC 2018 No Reprint Without Authorization

Page 8: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Field Experience Examples 1/25 Years of Field Experience of a 3.5 MW PV Plant

Data source: Moore, L. M. and H. N. Post, "Five years of operating experience at a large, utility-scale photovoltaic generating plant," Progress in Photovoltaics: Research and Applications 16(3): 249-259, 2008

Unscheduled maintenance events by subsystem. Unscheduled maintenance costs by subsystem.(ACD: AC Disconnects, DAS: Data Acquisition Systems)

8IEEE PEAC 2018 No Reprint Without Authorization

Page 9: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Field Experience Examples 2/2350 onshore wind turbines in varying length of time (35,000 downtime events)

Contribution of subsystems and assemblies to the overall failure rate of wind turbines.

Contribution of subsystems and assemblies to the overall downtime of wind turbines.

Data source: Reliawind, Report on Wind Turbine Reliability Profiles – Field Data Reliability Analysis, 2011.

9IEEE PEAC 2018 No Reprint Without Authorization

Page 10: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► The Reliability Challenges in Industry

10

Customer expectations

Replacement if failure Years of warranty

Low risk of failure Request for

maintenance

Peace of mind Predictive

maintenance

Reliability target Affordable returns (%) Low return rates ppm return rates

R&D approach Reliability test Avoid catastrophes

Robustness tests Improve weakest

components

Design for reliability Balance with field load

R&D key tools Product operating tests Testing at the limits

Understanding failure mechanisms, field load, root cause, …

Multi-domain simulation …

Past Present Future

Product + Service (new business)Data + Physics of Failure

IEEE PEAC 2018 No Reprint Without Authorization

Page 11: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Lifetime Targets in Power Electronics Applications

Applications Typical design target of Lifetime

Aircraft 20-25 years (100,000 hours flight operation)Automotive 15 years (10,000 operating hours, 300, 000 km)Industry motor drives 5-20 years (40,000 hours in at full load)Railway 20-30 years (73,000 – 110,000 hours)Wind turbines 20-25 years (120,000 hours)Photovoltaic plants 30 years (90,000 to 130,000 hours)

11IEEE PEAC 2018 No Reprint Without Authorization

Page 12: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Changing Mindset and Reliability Culture

12

Reduce costs by improving reliability upfront

Source: DfR Solutions, Designing reliability in electronics, CORPE Workshop, 2012.

IEEE PEAC 2018 No Reprint Without Authorization

Page 13: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Changing Mindset and Reliability Culture

13

Example of Galaxy Note 7

96% of about 3 million Note 7 returned globally;Investigation involved 200,000 handsets, 30,000 standalone batteries, and 700 engineers; Estimated 5 billon loss

Source: http://www.consumerreports.org/smartphones/samsung-investigation-new-details-note7-battery-failures/

Bent negative electrodes caused one set of fires; Incorrect welding allowed for problems in a second batch of batteries

A negative example cost of poor reliability -Galaxy Note 7 Incident

IEEE PEAC 2018 No Reprint Without Authorization

Page 14: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

2 Scientific ChallengesPower Electronics Reliability

14IEEE PEAC 2018 No Reprint Without Authorization

Page 15: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Key Reliability Metrics

15

Reliability The probability that an item can perform a required function under given conditions for a given time interval.

Lifetime (for an individual item) The time span between initial operation and failure

(Percentile) Lifetime (for a population of items)The expected life by which a certain percentage might have failed e.g., B10 lifetime – the time when 10% of the items fail.

IEEE PEAC 2018 No Reprint Without Authorization

Page 16: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Scientific Challenges

16

Stress or strength

Freq

uenc

y of

occ

uran

ce

Load distribution L Strength distribution S

Time i

n serv

ice

Ideal case without degradation

Ideal case without degradation

Strength degradation

with time

Failure

End-of-life(with certain failure rate criterion)Failure

Extreme load

Nominal load

Understanding of load (mission profile), strength, and strength degradation

Stress-strength analysis to describe the cause of failure

■ Uncertainty in load and strength■ Time-consuming to understand degradation by testing

IEEE PEAC 2018 No Reprint Without Authorization

Page 17: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Scientific Challenges

17

Understanding of load (mission profile), strength, and strength degradation

50403020100-10

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Temp (°C)

Freq

uenc

y

62

2793

5780

8588

8000

66766766

5515

3321

520630

Temperature, Phoenix, AZ - 2007

100806040200

14000

12000

10000

8000

6000

4000

2000

0

%RH

Freq

uenc

y

2831022

14781844

2579

4412

7241

11649

12737

4840

Relative humidity, Phoenix, AZ - 2007

Severe users!

Severe environment!IEEE PEAC 2018 No Reprint Without Authorization

Page 18: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Scientific Challenges

18

Multi-components/multi-failure sources

System Level Application

Hardware Software Human Error

Power Semiconductos

PassiveComponents

OtherComponents

Transistors Diodes Magnetics Capacitors PCB Gate Drivers Fuses

f1 f2 f7 f3 f4 f5 f6

Wear-out Catastrophic

AssemblyLevel

ComponentLevel

IEEE PEAC 2018 No Reprint Without Authorization

Page 19: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Scientific Challenges

19

Multi-time scale modeling/multi-stressor modeling

System Level► Wind turbine► Photovoltaics► Motor drives► Pump drives

► Power devices► Capacitors► PCB

• System–level mission profile.• Electrical/mechanical.

Models:• Component–level mission profile.• Losses, temperature, humidity, etc.

Models:

Mission profiles / Environmental Conditions:

System Specifications:• Machine type• Converter topology• Power device• Etc.

Vdc

I

fsw

Multi – time scale modelling

T

V

RH

Component LevelReliability

Multi – stressor modelling

Component Level System - LevelReliability

RBDAnalysis

Component Reliability

System Reliabilityfn(αn,η n,t)

f2(α2,η 2,t)

f1(α1,η 1,t)

Ta

Vibration

User InputLevel 1

User InputLevel 2

Component 1

Component 2

Component n

IEEE PEAC 2018 No Reprint Without Authorization

Page 20: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► The Research Scope of Power Electronics Reliability

20

Paradigm Shift■ From components to failure mechanisms■ From constant failure rate to failure level with time■ From reliability prediction to robustness validation■ From microelectronics to also power electronics

Sour

ce: H

. Wan

g, M

. Lise

rre,

F. B

laab

jerg

, P. P

. Rim

men

, J. B

. Jac

obse

n, T.

Kvi

sgaa

rd, J

. La

ndki

ldeh

us, "

Tran

sitio

ning

to p

hysic

s-of

-failu

re a

s a re

liabi

lity

driv

er in

pow

er

elec

tron

ics,

" IEE

E Jo

urna

l of E

mer

ging

and

Sel

ecte

d To

pics

in P

ower

Ele

ctro

nics

, vol

. 2,

no.

1, p

p. 9

7-11

4, M

ar. 2

014.

IEEE PEAC 2018 No Reprint Without Authorization

Page 21: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

3 State-of-the-ArtSelected examples of power electronics reliability research

21IEEE PEAC 2018 No Reprint Without Authorization

Page 22: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Example 1 – Understanding of Component-level Degradation Through Multi-physics Simulation, Accelerated Testing, and Condition Monitoring

22IEEE PEAC 2018 No Reprint Without Authorization

Page 23: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Multiphysics Simulation

23

Simulation results are consistent with micro-sectioning analysis and four-point probing results of degraded modules

Source: Kristian Bonderup Pedersen, IGBT Module Reliability. Physics-of-Failure based Characterization and Modelling, PhDDissertation, CORPE, Aalborg University, 2015

Example – Degradation of IGBT modules based on physics-of-failure simulations

IEEE PEAC 2018 No Reprint Without Authorization

Page 24: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Better Understanding in Component Degradation

24

Examples of Power Cycling Testing on IGBT Modules

Diagram of an advanced power cycling testing system

A low-power power cycling testing setup

1700 V/1000 A

600 V/30 A

IEEE PEAC 2018 No Reprint Without Authorization

Page 25: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Better Understanding in Component Degradation

25

Example of Degradation Testing of DC Film Capacitors under Humidity Conditions

A humidity-dependent lifetime model Optical microscopy investigation of one of the degraded samples

Capacitor degradation testing setup Degradation curve of one group of testing

85°C, 55%RH3,850 hours

Sour

ce: H

. Wan

g, D

. A. N

ielse

n, a

nd F.

Bla

abje

rg, “

Degr

adat

ion

test

ing

and

failu

re a

naly

sis o

f DC

film

cap

acito

rs u

nder

hig

h hu

mid

ity co

nditi

ons,”

M

icro

elec

tron

ics R

elia

bilit

y, 20

15

IEEE PEAC 2018 No Reprint Without Authorization

Page 26: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Better Understanding in Component Degradation

26

Condition Monitoring of IGBT Modules and Capacitors

Gate Peak Current based IGBT Junction Temperature Monitoring

25°C

125°C3mV/°C

Peak detector output voltages

Gate voltage

1.0 µs/div

150 mV/div

3.3 V/div

Outcome■ Experimentally verified and

calibrated■ Gate voltage compensation

Condition Monitoring and Remaining Lifetime Prediction of Capacitors

Outcome■ An Artificial Neural Network (ANN) based method is applied for estimation of capacitance

■ Based on existing available information, pure software solution

Sour

ce: N

. Bak

er, A

n El

ectr

ical

Met

hod

for

Junc

tion

Tem

pera

ture

Mea

sure

men

t on

Pow

er

Sem

icon

duct

or S

witc

hes,

PhD

diss

erta

tion,

CO

RPE,

Aal

borg

Uni

vers

ity, 2

016

Sour

ce: H

. Sol

iman

, Con

ditio

n M

onito

ring

of C

apac

itors

for D

C-lin

k Ap

plic

atio

n in

Pow

er E

lect

roni

c Co

nver

ters

, CO

RPE,

Aal

borg

U

nive

rsity

, 201

7

IEEE PEAC 2018 No Reprint Without Authorization

Page 27: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Example 2 – Impact of Mission Profile Resolution on the Predicted Lifetime of IGBT Modules in an Modular Multi-level Converter (MMC)

27IEEE PEAC 2018 No Reprint Without Authorization

Page 28: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Modular Multi-level Converter (MMC)

28

Background

MMC-based HVDC – Basic Scheme (Source: Siemens)

IEEE PEAC 2018 No Reprint Without Authorization

Page 29: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Modular Multi-level Converter (MMC)

29

Down-scale sub-module

IEEE PEAC 2018 No Reprint Without Authorization

Page 30: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Impact of the Mission Profile Resolution

30

Lifetime prediction

Lifetime distribution

Input

Output

Wind Speed

Power Conversion Model

Loss Model

Thermal Model

Counting

Emulate instantaneous losses

Thermal Model

vw

Pw

PT1, PD1, PT2, PD2

Average losses

Lifetime Model

Monte Carlo

Tj

Modules/IGBT/DiodeElectrical behaviorThermal parameters

m ϕ f0

Temperature swings at fundamental frequency

Junc

tion

tem

pera

ture

Design iterations to select proper IGBT modules

Mission profiles

IEEE PEAC 2018 No Reprint Without Authorization

Page 31: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18 31

1 hour/data

10 minutes/data

1 second/data

Different studies adopt different resolution of the wind speed, what is the impact on the predicted lifetime?

Source: ABB

► Impact of the Mission Profile Resolution

IEEE PEAC 2018 No Reprint Without Authorization

Page 32: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18 32

► Impact of the Mission Profile Resolution

(STO1s is stochastic model and 1s wind speed, IEC1s means IEC power curve and 1s wind speed, IEC10minmeans IEC power curve and 10min-average wind speed, IEC1h means IEC power curve and 1h-avergewind speed, STO1sREG means stochastic model and regenerated 1s wind speed based on 10min-averagewind speed. T1, D1, T2, D2 are IGBT1, Diode1, IGBT2, Diode2 respectively. CS, BS, BW mean chip solder,baseplate solder and bond wire respectively).

>7 times difference in degradation prediction for the power modules

Long-term high resolution data (e.g., 1s/data) and dynamicmodels are necessary for degradation performance and reliabilityassessment of electrical components.

Power modules

IEEE PEAC 2018 No Reprint Without Authorization

Page 33: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Example 3 – Two-Terminal Active Capacitors

33IEEE PEAC 2018 No Reprint Without Authorization

Page 34: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Concept of a Two-terminal Active Capacitor

Active Capacitor§ Two-terminals only§ Impedance characteristics equivalent to

passive capacitorsA B

Active switches

Passive elements

Sampling and conditioningMicro-controller

Gate driversABi

ABv

Self-power Supply

Feature No signal connection to main circuit No auxiliary power supply Only two-terminal ”A” and ”B” connected to external main circuit

Retain the same level of convenience as a conventional passive capacitor Application independent Lowest apparent power processed by the auxiliary circuit Long life-time a goal

Source: H. Wang, H. Wang and F. Blaabjerg, ¨A two-terminal active capacitor device¨IEEE PEAC 2018 No Reprint Without Authorization

Page 35: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Proof-of-Concept of a Two-terminal Active Capacitor

An implementation of the two-terminal active capacitor concept

Internal auxiliary power from MOSFET

Source: Haoran Wang and Huai Wang, “A two-terminal active capacitor,” IEEE Transactions on Power Electronics, 2017

-50

0

50

100

Mag

nitu

de (d

B)

10-1 100 101 102 103 104-180

-135

-90

Phas

e (d

eg)

Frequency (Hz)

110 µF passive capacitor (3.4 J)

1100 µF passive capacitor (34.4 J)

Active capacitor1100 µF@100Hz (5.8 J)

High pass filter with cut off frequency of 10 Hz

Impedance characteristics of active capacitor

IEEE PEAC 2018 No Reprint Without Authorization

Page 36: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Key waveforms of the system with 110uF active capacitor

Key waveforms of the system with 1100uF passive capacitor

: [100V/ div]DC linkV −

: [100V/ div]ACv: [10A/ div]ACi

: [20ms/ div]t

Ripple ratio 4.1 %

: [100V/ div]DC linkV −

: [100V/ div]ACv: [10A/ div]ACi

: [20ms/ div]t

Ripple ratio 4.8 %

Single-phase system with active capacitor

ACv

gLActive

Capacitor

A

Resistive load

ACi+ -

DC linkV −

+

-B

Experimental Results of Active Capacitor

Top side

Bottom sideC1 Self-power supply

Micro-controller

GaN based full-bridge

Low voltage DC-link capacitor in full-bridge

High frequency filter inductor

High frequency filter capacitor

IEEE PEAC 2018 No Reprint Without Authorization

Page 37: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Example 4 – Design for Reliability and Robustness (DfR2) Tool Platform

37IEEE PEAC 2018 No Reprint Without Authorization

Page 38: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► DfR2 Tool Platform Developed at CORPE, Aalborg University

38

DfR2 Tool

Circuit Simulation Software

FEM/CFD Simulation Software

Reliability Software

Environmental / Operational

Mission Profiles

System-Level Mission Profile

Modeling

System Circuit Simulation

Component Mission Profile

Modeling

Component-Level Reliability

Modeling

System-Level Reliability Modeling

Level 1 Level 2 Level 3 Level 4

Electro-Mechanical System

Power Electronics System

Application dependent Independent Independent Component dependent

Electro-Thermal Ta

RHTa_sys

RHsys

Vsys

Isys

Ta_comp

RHcomp

Vcomp

Icomp

Vcomp f1

f2

f3

f4

Design for Reliability and Robustness (DfR2) HelpSave Load

ExportBack Reset

Wind Power System

Environmental / Operating mission profiles

I.

Mission Profiles Component Reliability System Reliability

Component: Transistor – T1g

Level: IV

Display

Component: Transistor – T1g

Display

Sub-system: Power Module

DisplaySystem-level mission profile modeling

Power electronics circuit modeling

Component-level mission profile modeling

Component-level reliability modeling

System-level reliability modeling

Step I.

Step II.

Step III.

Step IV.

Step V.

Step VI.

Display: Voltage

Display: Temperature

Display: Static lifetime

Lifetime information(e.g. cycles to failure, confidence level, etc.)

Lifetime information(e.g. cycles to failure, confidence level, etc.)

Display: Unreliability curve

Interfaces to other softwareMain GUI panel

Modeling Framework

Design for Reliability and Robustness (DfR2)

IEEE PEAC 2018 No Reprint Without Authorization

Page 39: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► DfR2 Tool Platform Developed at CORPE, Aalborg University

39

Design for Reliability and Robustness (DfR2)

IEEE PEAC 2018 No Reprint Without Authorization

Page 40: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

► Summary

40IEEE PEAC 2018 No Reprint Without Authorization

Page 41: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

CORPE

Design for Reliabiity in Power Electronics Systems

Frede Blaabjerg

eMail: [email protected]

Presentation at PEAC’2018 – Shenzhen, November 5, 2018

Thanks to Prof. Huai Wang, Aalborg University

IEEE PEAC 2018 No Reprint Without Authorization

Page 42: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

References

42

1. M. Liserre, R. Cardenas, M. Molinas, J. Rodriguez, ”Overview of Multi-MW wind turbines and wind parks”, IEEE Trans. on IndustrialElectronics, Vol. 58, No. 4, pp. 1081-1095, April 2011.

2. REN21 - Renewables 2014 Global Status Report, June, 2014. (Available: http://www.ren21.net)3. Z. Chen, J.M. Guerrero, F. Blaabjerg, "A Review of the State of the Art of Power Electronics for Wind Turbines," IEEE Trans. on Power

Electronics, vol.24, No.8, pp.1859-1875, Aug 2009.4. F. Blaabjerg, Z. Chen, S.B. Kjaer, “Power Electronics as Efficient Interface in Dispersed Power Generation Systems”, IEEE Trans. on

Power Electronics, Vol. 19, no. 4, pp. 1184-1194, 2004.5. A.D. Hansen, F. Iov, F. Blaabjerg, L.H. Hansen, “Review of contemporary wind turbine concepts and their market penetration,” Journal of

Wind Engineering, Vol. 28, No. 3, pp. 247-263, 2004.6. M.P. Kazmierkowski, R. Krishnan, F. Blaabjerg, Control in Power Electronics-Selected problems, Academic Press, 2002. ISBN 0-12-

402772-5.7. F. Blaabjerg, M. Liserre, K. Ma, “Power Electronics Converters for Wind Turbine Systems,” IEEE Trans. on Industry Application, vol. 48,

no. 2, pp. 708-719, 2012.8. F. Blaabjerg, K. Ma, “Future on power electronics for wind turbine systems,” IEEE Journal of Emerging and Selected Topics in Power

Electronics, vol. 1, no. 3, pp. 139-152, 2013.9. H. Wang, M. Liserre, F. Blaabjerg, P. P. Rimmen, J. B. Jacobsen, T. Kvisgaard, J. Landkildehus, "Transitioning to physics-of-failure as a

reliability driver in power electronics," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 2, No. 1, pp.97-114, 2014.10. H. Wang, M. Liserre, and F. Blaabjerg, “Toward reliable power electronics - challenges, design tools and opportunities,” IEEE Industrial

Electronics Magazine, vol.7, no. 2, pp. 17-26, Jun. 2013.11. S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid connected inverters for photovoltaic modules,” IEEE Trans.

on Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sep. 2005.12. K. Ma, F. Blaabjerg, and M. Liserre, “Thermal analysis of multilevel grid side converters for 10 MW wind turbines under low voltage ride

through”, IEEE Trans. Ind. Appl., vol. 49, no. 2, pp. 909-921, Mar./Apr. 2013.13. K. Ma, M. Liserre, and F. Blaabjerg, “Reactive power influence on the thermal cycling of multi-MW wind power inverter”, IEEE Trans. on

Ind. Appl., vol. 49, no. 2, pp. 922-930, Mar./Apr. 2013.14. C. Busca, R. Teodorescu, F. Blaabjerg, S. Munk-Nielsen, L. Helle, T. Abeyasekera, and P. Rodriguez, “An overview of the reliability

prediction related aspects of high power IGBTs in wind power applications,” Journal of Microelectronics Reliability, vol. 51, no. 9-11, pp.1903-1907, 2011.

15. E. Koutroulis and F. Blaabjerg, “Design optimization of transformerless grid-connected PV inverters including reliability,” IEEE Trans. onPower Electronics, vol. 28, no. 1, pp. 325-335, Jan. 2013.

16. K. B. Pedersen and K. Pedersen, “Bond wire lift-off in IGBT modules due to thermo-mechanical induced stress,” in Proc. of PEDG’ 2012,pp. 519 - 526, 2012.

IEEE PEAC 2018 No Reprint Without Authorization

Page 43: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

References

43

17. S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran and P. Tavner, “Condition monitoring for device reliability in power electronic converters: areview,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2734-2752, Nov., 2010.

18. M. Pecht and J. Gu, “Physics-of-failure-based prognostics for electronic products,” Trans. of the Institute of Measurement and Control ,vol. 31, no. 3-4, pp. 309-322, Mar./Apr., 2009.

19. Moore, L. M. and H. N. Post, “Five years of operating experience at a large, utility-scale photovoltaic generating plant,” Progress inPhotovoltaics: Research and Applications 16(3): 249-259, 2008.

20. Reliawind, Report on Wind Turbine Reliability Profiles – Field Data Reliability Analysis, 2011.21. D. L. Blackburn, “Temperature measurements of semiconductor devices - a review,” in Proc. IEEE Semiconductor Thermal Measurement

and Management Symposium, pp. 70-80, 2004.22. A. Bryant, S. Yang, P. Mawby, D. Xiang, Li Ran, P. Tavner, P. Palmer, "Investigation Into IGBT dV/dt During Turn-Off and Its Temperature

Dependence", IEEE Trans. Power Electron., vol.26, no.10, pp.3019-3031, Oct. 2011.23. Z. Xu, D. Jiang, M. Li, P. Ning, F.F. Wang, Z. Liang, "Development of Si IGBT Phase-Leg Modules for Operation at 200 °C in Hybrid

Electric Vehicle Applications", IEEE Trans. Power Electron., vol.28, no.12, pp.5557-5567, Dec. 2013.24. H. Chen, V. Pickert, D. J. Atkinson, and L. S. Pritchard, “On-line monitoring of the MOSFET device junction temperature by computation of

the threshold voltage,” in Proc. 3rd IET Int. Conf. Power Electron. Mach. Drives, Dublin, Ireland, Apr. 4–6, 2006, pp. 440–444.25. D. Barlini, M. Ciappa, M. Mermet-Guyennet, and W. Fichtner, “Measurement of the transient junction temperature in MOSFET devices

under operating conditions,” Microelectron. Reliabil., vol. 47, pp. 1707–1712, 2007.26. A. Isidori, F. M. Rossi, F. Blaabjerg, and K. Ma, "Thermal loading and reliability of 10 MW multilevel wind power converter at different wind

roughness classes", IEEE Trans. on Industry Applications, vol. 50, no. 1, pp. 484-494, 2014.27. K. B. Pedersen, D. Benning, P. K. Kristensen, V.Popok, and K. Pedersen, "Interface structure and strength of ultrasonically wedge bonded

heavy aluminium wires in Si-based power modules," Journal of Materials Science: Materials in Electronics, Apr 2014.28. K. Ma, A. S. Bahman, S. M. Beczkowski, F. Blaabjerg, “Complete Loss and Thermal Model of Power Semiconductors Including Device

Rating Information,” IEEE Trans. on Power Electronics, Vol. 30, No. 5, pp. 2556-2569, May 2015.29. K. Ma, W. Chen, M. Liserre, F. Blaabjerg, “Power Controllability of Three-phase Converter with Unbalanced AC Source”, IEEE Trans. on

Power Electronics, Vol. 30, No. 3, pp. 1591-1604, Mar 2014.30. K. Ma, M. Liserre, F. Blaabjerg, T. Kerekes, “Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in

Wind Power Converter,” IEEE Trans. on Power Electronics, Vol. 30, No. 2, pp. 590-602, 2015.31. U. M. Choi, K. B. Lee, F. Blaabjerg, "Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems," IEEE

Transactions on Industry Applications, vol. 50, no. 1, pp. 495-508, 2014.32. Y. Yang, Huai Wang, Frede Blaabjerg, and Tamas Kerekes, “A hybrid power control concept for PV inverters with reduced thermal

loading,” IEEE Trans. Power Electron., Vol.29, No. 12, pp.6271-6275, 2014.

IEEE PEAC 2018 No Reprint Without Authorization

Page 44: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

References

44

33. M. Liserre, F. Blaabjerg, and S. Hansen, “Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier,” IEEE Trans. Ind.Appl., vol. 41, no. 5, pp. 1281–1291, Sep. 2005.

34. L. Wei and R.A. Lukaszewski, “Optimization of the Main Inductor in a LCL Filter for Three Phase Active Rectifier”, 42nd IAS AnnualMeeting. Conference Record of the 2007 IEEE Industry Applications Conference, 2007, vol., no., pp.1816,1822, 23-27 Sept. 2007

35. J. Muhlethaler, M. Schweizer, R. Blattmann, J. W. Kolar, and A. Ecklebe, “Optimal Design of LCL Harmonic Filters for Three-Phase PFCRectifiers,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3114–3125, Jul. 2013.

36. IEEE Application Guide for IEEE Std 1547™, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems(2008)

37. “Generating plants connected to the medium voltage network - Guideline for generating plants connection to and parallel operation withthe medium voltage network”, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. Reinhardtstraße 32, 10117 Berlin (2008)

38. VDE-AR-N 4105: Generators connected to the low-voltage distribution network - Technical requirements for the connection to and paralleloperation with low-voltage distribution network (2010)

39. R. D. Middlebrook, “Design Techniques for Preventing Input-Filter Oscillations in Switched-Mode Regulators,” Proc. Power Convers.Conf., 1978, pp. A3.1–A3.16.

40. Beres, R.N.; Xiongfei Wang; Blaabjerg, F.; Bak, C.L.; Liserre, M., "New optimal design method for trap damping sections in grid-connectedLCL filters," Energy Conversion Congress and Exposition (ECCE), 2014 IEEE , vol., no., pp.3620,3627, 14-18 Sept. 2014.

41. X. Wang, Y. W. Li, F. Blaabjerg, and P. C. Loh, “Virtual-impedance-based control for voltage-source and current-source converters," IEEETransactions on Power Electronics (Early Access Article, DOI: 10.1109/TPEL.2014.2382565).

42. X. Wang, F. Blaabjerg, and P. C. Loh, “Virtual RC damping of LCL-filtered voltage source converters with extended selective harmoniccompensation,” IEEE Transactions on Power Electronics (Early Access Article, DOI: 10.1109/TPEL.2014.2361853).

43. X. Wang, F. Blaabjerg, and P. C. Loh, “Grid-current-feedback active damping for LCL resonance in grid-connected voltage sourceconverters,” IEEE Transactions on Power Electronics (Early Access Article, DOI: 10.1109/TPEL.2015.2411851).

44. Y. Yang, H. Wang, and F. Blaabjerg, "Reduced junction temperature control during low-voltage ride-through for single-phase photovoltaicinverters,“ IET Power Electronics, pp. 1-10, 2014.

45. D. Zhou, F. Blaabjerg, M. Lau, and M. Tonnes, "Thermal cycling overview of multi-megawatt two-level wind power converter at full gridcode operation", IEEJ Journal of Industry Applications, vol.2, no.4 pp.173–182, 2013.

46. K. B. Pedersen, P. K. Kristensen, V. Popok, and K. Pedersen, "Micro-sectioning approach for quality and reliability assessment of wirebonding interfaces in IGBT modules", Microelectronics Reliability, Vol. 53, no. 9-11, pp. 1422–1426, Sep 2013.

47. K. Ma, F. Blaabjerg "Thermal optimized modulation method of three-level NPC inverter for 10 MW wind turbines under low voltage ridethrough", IET Journal on Power Electronics, vol. 5, no. 6, pp. 920-927, Jul 2012.

48. R. Wu, F. Blaabjerg, H. Wang, and M. Liserre, "Overview of catastrophic failures of freewheeling diodes in power electronic circuits",Microelectronics Reliability, Vol. 53, no. 9–11, Pages 1788–1792, Sep 2013.

IEEE PEAC 2018 No Reprint Without Authorization

Page 45: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

References

45

48. F. Blaabjerg and K. Ma, "Wind Energy Systems," in Proceedings of the IEEE, vol. 105, no. 11, pp. 2116-2131, Nov. 2017.doi: 10.1109/JPROC.2017.2695485Open Access : URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7927779&isnumber=8074545

49. F. Blaabjerg, Y. Yang, D. Yang and X. Wang, "Distributed Power-Generation Systems and Protection," in Proceedings of the IEEE,vol. 105, no. 7, pp. 1311-1331, July 2017. doi: 10.1109/JPROC.2017.2696878

Open Access : URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7926394&isnumber=7951054

IEEE PEAC 2018 No Reprint Without Authorization

Page 46: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

References (Harmonic Stability)1. X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: concept, modeling, and analysis,” IEEE Trans. Smart Grid, Early Access, 2018. 2. X. Wang, F. Blaabjerg, and W. Wu, “Modeling and analysis of harmonic stability in ac power-electronics-based power system,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6421-6432, Dec. 2014.3. X. Wang, L. Harnefors, and F. Blaabjerg, “Unified impedance model of grid-connected voltage-source converters," IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1775-1787, Feb. 2018.4. X. Wang, F. Blaabjerg, and P. C. Loh, “Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL filters,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8922-8935, Nov. 2017. 5. Y. Wang, X. Wang, F. Blaabjerg, and Z. Chen, "Small-signal stability analysis of inverter-fed power systems using component connection method," IEEE Trans. Smart Grid, Early Access, 2018.6. M. Lu, X. Wang, P. C. Loh, and F. Blaabjerg, “Resonance interaction of multi-parallel grid-connected inverters with LCL filter,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 894-899, Feb. 2017.7. J. Kwon, X. Wang, F. Blaabjerg, C. L. Bak, A. R. Wood and N. R. Watson, “Harmonic instability analysis of single-phase grid connected converter using harmonic state space (HSS) modeling method”, IEEE

Trans. Ind. Appl.,, Vol. 52, No. 5, pp. 4188 – 4200. Sept./Oct. 2016.8. L. Harnefors, X. Wang, A. G. Yepes, and F. Blaabjerg, “Passivity-based stability assessment of grid-connected VSCs – an overview,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 1, pp. 116-125, Mar.

2016.9. L. Harnefors, “Modeling of three-phase dynamic systems using complex transfer functions and transfer matrices,” IEEE Trans. Ind. Electron. vol. 54, no. 4, pp. 2239-2248, Aug. 2007.10. L. Harnefors, L. Zhang, and M. Bongiorno, “Frequency-domain passivity-based current controller design,” IET Power Electron., vol. 1, no. 4, pp. 455-465, Dec. 2008.11. J. Kwon, X. Wang, F. Blaabjerg, C. L. Bak, A. R. Wood, and N. Watson, “Linearized modeling methods of ac-dc converters for an accurate frequency response,” IEEE J. Emerg. Sel. Topics Power Electron., vol.

5, no. 4, pp. 1526-1541, Dec. 2017. 12. R. D. Middlebrook, “Predicting modulator phase lag in pwm converter feedback loop,” Powercon 1981, pp. 1-6. 13. R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter power systems,” in Proc. IEEE PESC 1976, pp. 73-86.14. K. D. Ngo. “Low frequency characterization of PWM converters,” IEEE Trans. Power Electron., vol. PE-1, no. 4, pp. 223-230, Oct. 1986.15. X. Wang, Y. W. Li, F. Blaabjerg, and P. C. Loh, “Virtual-impedance-based control for voltage- and current-source converters,” IEEE Trans. Power Electron. vol. 30, no. 12, pp. 7019-7037,

Dec. 2015.16. X. Wang, F. Blaabjerg, Y. Pang, P. C. Loh, “A series-LC-filtered active damper with grid disturbance rejection for ac power-electronics-based power systems,” IEEE Trans. Power Electron.

vol. 30, no. 8, pp. 4037-4041, Aug. 2015.17. B. Ferreira, "Understanding the Challenges of Converter Networks and Systems: Better opportunities in the future," IEEE Power Electronics Mag., vol. 3, no. 2, pp. 46-49, Jun. 2016.18. B. Kroposki, et al., “Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power & Energy Mag. vol. 15, no. 2,

pp. 61-73, Mar./Apr. 2017.

IEEE PEAC 2018 No Reprint Without Authorization

Page 47: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Books available

IEEE PEAC 2018 No Reprint Without Authorization

Page 48: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Books available

IEEE PEAC 2018 No Reprint Without Authorization

Page 49: CORPE IEEE PEAC 2018 No Reprint Without Authorizationconfig.peac-conf.org/ckfinder/userfiles/files/P6.pdfFREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY 19

FREDE BLAABJERG, CENTER OF RELIABLE POWER ELECTRONICS, AALBORG UNIVERSITY SL IDE19-NOV-18

Books available

IEEE PEAC 2018 No Reprint Without Authorization