creating comfortable climatic cities - hogeschool rotterdam · 2015-08-18 · opportunities and...

36
Creating Comfortable Climatic Cities Comfort and Climate as Instruments for Healthy Interior, Architectural & Urban (Re)Design Inaugural Lecture Duzan Doepel

Upload: others

Post on 05-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

Creating Comfortable Climatic CitiesComfort and Climate as Instruments for Healthy Interior, Architectural & Urban (Re)Design

Inaugural Lecture

Duzan Doepel

Page 2: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

CreatingComfortable

ClimaticCities

ComfortandClimateasInstrumentsfor HealthyInterior,Architectural&Urban(Re)Design

Page 3: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

5 CreatingComfortableClimaticCities

Contents

Summary

01. ANewCollectiveAgenda

02. ContemporarySustainabilityIssues andOpportunities

03. IncentivesforChange

04. ToolsforIntegralSustainability

05. ResearchAgenda

06. LivingLabApproach

07. Conclusion

References

Page

7

9

15

29

33

47

57

63

64

Page 4: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

Colophon

ISBN:9789051798005

1stedition,2012

©2012DuzanDoepel

ThisbookispublishedbyRotterdamUniversityPressofRotterdamUniversityofAppliedSciences

RotterdamUniversityP.O.Box250353001HARotterdamTheNetherlands

Thisbookmaynotbereproducedbyprint,photoprint,microfilmoranyothermeans,withoutwrittenpermissionfromtheauthorandthepublisher.

Everyreasonableefforthasbeenmadetotracecopyrightholdersofmaterialreproducedinthisbook,butifanyhavebeeninadvertentlyoverlookedthepublisherswouldbegladtohearfromthem.

CreatingComfortable ClimaticCities ComfortandClimateasInstrumentsfor HealthyInterior,Architectural&Urban(Re)Design

DuzanDoepel RDMSustainableSolutions,ProfessorofSustainableArchitecture&Urban(Re)Design

InauguralLectureSustainableArchitecture&Urban(Re)Design2ndofOctober2012RDM-CampusRotterdam

RotterdamUniversityPress

Page 5: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

76 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Summary

Sustainable design has finally entered the mainstream of the architectural serviceindustry. For some, this can be attributed to a sincere paradigm shift and acceptance ofourresponsibilitytorethinkthemannerinwhichwetreadtheearth.Forothers,this‘Greenrevolution’ signifies new business that can be capitalised in a time of economic crisis.Whateverthemotive,itisclearthattheindustryneedstodevelopnewtoolsandwaysofworkingtoachieve‘more’with‘less’.

Resourceefficiency,energyandclimatearethemaindriversthatwillshapethedevelopmentof localand regional sustainability strategies.Asocialecologicalapproach todesign isaprerequisitefortranslatingthesestrategiesintosustainable,liveableandattractivecities.This means taking a transdisciplinary approach and re-evaluating contextual parameterssuch as microclimate, energy, materials, water and waste flows. By combining existingmethodologiesandtools,itispossibletolinkformandperformancetocomfort,allowingonetoderivethemostappropriatearchitecturalorurbanresponseinaspecificcontext.Climateandcomfortarebroughtintoalignment,formingvaluabledesigninstrumentsthatlinktherealmsofarchitecture,engineeringandbuilding.

Page 6: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

98 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

01. ANewCollectiveAgenda

‘Sustainability is a societal journey, brought about

by acquiring new awareness and perceptions, by

generating new solutions, activating new behavioural

patterns and, hence, cultural change.’–EzioManzini(1997)

Thereisnoescapingit.Greeniseverywhere.EverythingfromsupermarketproductstobuildingsclaimtobeGreen. Itwouldseemthatafteranepochof individualism,Green has become a new collective agenda (Maas et al., 2010). We may claim that acommonagendahasemergedandsustainabilityhasbecomemainstream,butitwouldbejumpingtheguntoclaimthattheparadigmofmassconsumptionhasshifted.Atrueparadigmshiftisinextricablylinkedwithbehaviouralchangeonamassivescale;thisisclearlynotyetthecase.Historyhasshownthatagooddoseofmoralconcernfortheecologicalandsocialconditionsonourplanetisnotenoughtochangemassbehaviour.IttooktheMiddleEastoilcrisisintheearly1970stomobilisecollectivethinkingaboutthestateoftheplanet,biodiversityandotherenvironmentalissues.Althoughthedesignactiviststhatemergedfromthisperiodlaidthefoundationsforthesustainabilityagendaoftoday,theirimpactatthetimewaslimited.Asoilpricesdropped, so too did the perceived collective need to act. But two global concernshavesinceemergedthatmakethismomentintimedifferentfromtheearly1970s.Thedoublewhammyofpeakoilandclimatechangehas levelledtheplayingfield,creatingtheeconomicandsocialconditionsforrealchange(Faud-Luke,2009).Eveniftheconditionsforaparadigmshifthaveemerged,thecurrentmarketisnotyetadeptat tackling these challenges. Innovation in all fields of life is needed to make thistransitiontoanewGreenreality.

Sustainability is thepre-eminentchallengeof the21st century,although it remainsa contentious concept. In view of this, Janis Birkeland (2008) prefers to talk about‘positive’ rather than ‘sustainable’ development in the context of urban planninganddesign:

‘Positive development refers to physical development

that achieves net positive impacts during its life

cycle over pre-development conditions by increasing

economic, social and ecological capital.’

Page 7: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

1110 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

This definition specifies the direction of development and how it should affecteconomic,socialandecologicalcapital.Designcanhaveapositiveimpactonthesecapitals and over the past three decades has already evolved on a small scaletowards meeting the sustainability challenge (Faud-Luke, 2009). It is not surprisingthat most sustainable architectural proposals focus on the physical, spatial andecologicalaspectsofdesign.ForthisreasonthemajorityofGreenarchitecturecanbepositionedontheeco-efficiencyaxisofsustainability(see Figure 1).Butarchitectureandurbandesigncanhavemore impact than this.Achieving the rightbalanceorsymbioticsolutionforeachsituationdemandsabroadersustainabilitybasetodesignand a transdisciplinary approach to problem solving that draws on other, morecomplexaspectsofthesustainabilitytoolkit:systemsthinking,networktheoryandlifecycleanalysis.‘IntegralSustainability’goesbeyondthemerelyphysicalaspectsofsustainability.Itinvolvesbringingtogetherasmanyaspectsofsustainability,onasystemslevel,withinaspatialandtemporalcontext(BosschaertandGladek,2010).

Figure 1.Eco-design,sustainabledesign,designingforsustainability–thesustainabilityprism(Faud-Luke,2009)

[DoepelStrijkers,2012]

Thethreeelements–theecological,theeconomicandthesocial–areusedinVenndiagramstorepresent

eco-designandsustainabledesign,withtheireco-efficiencyandtriplebottomline(TBL)agendas–people,

planetandprofit.TheAgenda21frameworkforactionthatemergedfromthe1992EarthSummitinRio

deJaneiroaddedimportantconsiderationstothesustainabilitydebate:participation,opengovernment

andtheroleofinstitutions.Theinstitutionalelementintroducedafurtherlevelofcomplexityandgave

risetothesustainabilityprism,whichlinksthesocial,ecological,economicandinstitutionaldimensions.

Thesustainabilityprismisamoreholisticframeworkforbalancingthedifferentdimensionsandrevealing

opportunitiesandthreats(Faud-Luke,2009).

Thisintegrateddefinitionandapproachtodesignhasnotyetfullyfounditswayintothemainstreamofdesigneducationandpractice. In theworstcase, sustainabilityin architecture is no more than a superficial layer of Green, camouflaging poorarchitectural design (Maas et al., 2010). What started on the drawing boards of smartmarketing companies has found its way into architecture. ‘Greenwashing’, as it isderogatorilycalled, isomnipresent incontemporaryarchitecturaldesignproposalsall over the world. This process continually repeats itself. As Stephen Bayley soeloquentlyputit,thebiggestsourceofinspirationforarchitectsareotherarchitects.

‘Where do architects and designers get their ideas?

The answer, of course, is mainly from other architects

and designers, so is it mere casuistry to distinguish

between tradition and plagiarism?’–StephenBayley(1989)

ImagesofsuperficialGreendesigninglossymagazinesinspirecopycatbehaviour.Theproblemisdeeplyrooted.Ourconsumeristsocietyattributesmeaningtoartefactsin termsof ‘style’andtheassociatedstatus thatbrings.Thishasalwaysbeenthecase.EventhesocialagendaoftheearlyModernistmovementwaslostasitbecamecommodifiedbytheInternationalStyleatthebeginningofthepreviouscentury.This‘internationalstyle’wassoonappropriatedbytransnationalcorporations,whichuseditasaflagshiptoshowcasetheirmodernaspirations(Faud-Luke,2009).Inthedecadesthat followed, glass, steel and concrete structures sprung up all over the world,irrespective of the local climate and culture. Architects and mechanical engineersbecamedependentoninstallationstomanagetheindoorclimateoftheirbuildingsand create comfortable conditions for their users. In a world where cheap fossilenergywasabundantandtheparadigmofmassconsumptionwasdominant,therewasno imperativeor incentive toactotherwise.This trend tookoffexponentiallytowards the end of the last century. The telecommunications revolution fuelledglobalisationandthecurrentcultureofregionalcompetitivenessandcitybranding.Urban developments became inextricably linked to the ‘image buildings’ spawnedbythisurbanmarketing. ‘Form’and ‘image’prevailedover ‘sense’and ‘sensibility’.Neverbeforeinthehistoryofmankindhastheschismbetweenarchitecturalformandgeniuslocibeensohuge.

Thefirstgroupofpeoplethatneedtochangetheirbehaviouraredesignersthemselves.Given the copycat culture, it is imperative that they produce good examples ofintegrateddesignwithpositivesocial,economicandecologicaleffectsasmodelsfor

SUSTAINABILITY AGENDA’S

SOURCE: FAUD-LUKE, 2009

economical viability

environmental design

ecologically efficient design

ecological stability

ecological stability

social equity

ECO-EFFICIENCY AGENDA

economicviability

TRIPLE BOTTOM LINE AGENDA

access

eco-

effic

iency sharing

ecologicalstability

caring

dem

o-cr

acy

justice

institutionalpolicy & strategy

social equity

economicviability

DESIGNING FOR SUSTAINABILITY (D/S)

SUSTAINABLE DESIGN

eco-

effic

iency

ecologicalstability

economicviability

access social equity

sharing

ECO-DESIGN

eco-

effic

iency

ecologicalstability

economicviability

Page 8: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

1312 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

change. Most examples of Green architecture focus on the eco-efficiency aspectsofsustainability.Fewmanagetoblendsocioculturalorsocioeconomicsustainabilitywitheco-efficiencyandapowerfuldesignaesthetic.AfineexampleofthelatteristheJean-MarieTjibaouCulturalCentrebyRenzoPiano(Faud-Luke,2009)(see Image 1).

Image 1.

Jean-MarieTjibaouCulturalCentreinNouméa,NewCaledonia.{RenzoPiano,1998}[wikipedia.org]

Located on the narrow Tinu Peninsula, the Jean-Marie Tjibaou Cultural Centre celebrates the vernacular

Kanak culture of New Caledonia, amidst much political controversy over the independent status sought

by the Kanaks from French colonial rule. The vernacular Kanak building traditions, use of materials

and optimisation of the microclimate inspired Piano to create an integrally sustainable building in a

contemporary idiom. The formal curved axial layout, 250 metres long on the top of the ridge, contains

ten largeconicalcasesorpavilions (allofdifferentdimensions)patternedon the traditionalKanakGrand

Hutdesign.

Thearchitecturalserviceindustryisindireneedoftoolsandstrategiesforintegraldesign to accelerate the process of change and assimilation. Innovation andexperimentationarenecessarytoachievethis,butgiventhecurrenteconomiccrisisit isunrealistic toexpect this tocomesolely from themarket.Themosteffectiveapproach foracceleration is tobring research,educationandpractice together inconcretepilotprojectstotestanddemonstrateinnovativedesignanddevelopmentstrategies,andtomeasuretheireffectsonuserbehaviourandsocial,economicandenvironmentalcapital.

Page 9: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

1514 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

02. ContemporarySustainability IssuesandOpportunities

Todevelopstrategiesfor‘positivedevelopment’weneedabroadunderstandingofthekeyissuesthatwillcontinuetoshapethelandscapeofdesign.Ourglobalenvironment,thehumanconditionandthenaturalworldareundergoingextensivechangesatanastoundingrate.Tryingtobalancetheearth’sabilitytoprovidebiologicalsustenancewithagrowinghumanpopulation,andtosimultaneouslynurturea ‘better life’ forhumans, is a truly daunting task. This task is made immeasurably more difficultagainstthebackgroundofclimatechange(Faud-Luke,2009).

ClimatechangeIn2006,AlGorecapturedtheimaginationoftheworldwithhisepicdocumentaryAnInconvenientTruth.Thebasisofhisdiscourserevolvesaroundthefactthatmostgovernments do not include the true costs of climate change in their models ofeconomicdevelopment.Atthesametime,SirNicholasStern(2006)publishedareportfortheUKgovernmentpredictingthatifwetakeimmediateaction,itwilltake1–2%ofglobalGDPtoaverttheworstconsequencesofclimatechange,comparedwith15–20%ifwedonothing.Althoughdesignactivistshadbeenvoicingtheseconcernsforatleastthirtyyears,GoreandSternfinallycapturedtheattentionofleadersallovertheworld(Faud-Luke,2009).

In the very same year, the KNMI (Royal Netherlands Meteorological Institute)predictedthepossibleeffectsofclimatechangefortheNetherlandsusingsimulationmodelsandclimatescenarios. In themostpessimisticscenario, theeffectsonthelow-lyingdeltacitieswillbe immense.Theamountofwatercitieswillhavetodealwith, in the form of rising sea level, increased precipitation and freshwater fromthemountainsinborderingcountries,willincreaseradically.Besidestheeffectsonurbanwater, the regionwill beaffectedbyanaverage increase in temperatureof2ºCby2050andupto3ºCthiscentury,resultinginasimilarclimatetomoderndayLyoninthesouthofFrance(vandenDobbelsteenetal.,2011)(see Image 2, 3 and 4).TheKNMIexpectsmoreclimaticvariation:wintersareexpectedtobemilderandwetterduetoincreasingwesterlywinds,whilesummersareexpectedtobecomehotteranddryerduetoincreasingeasterlywinds.Theeffectofthelatterwillbethatciteswilldryoutevenmore,makingseasonalbufferingmoreimportantinthefuture.In2007,theUN’sIntergovernmentalPanelonClimateChange(IPCC)predictedaglobaltemperatureriseof6.4ºCby2100.Theeffectsofclimatechangewillundoubtedlyimpactheavilyonurbantransformationinthe21stcentury.

Inthesummerof2011,arecordhightemperaturedifferenceof+7ºCwasmeasuredbetween the inner city of Rotterdam and the surrounding countryside. Thisphenomenon,knownastheheat islandeffect, iscausedbythermalaccumulation,heat emitted by vehicles, buildings and industry, and insufficient urban green.Factors that influence this are the absorption and retention of heat by the urban

Image 2.

HeatstressintheDutchpolder[Anninga-GPD,2008]

Image 4.

FloodingoftheWestersingel,Rotterdam,2009[DCMREnvironmentalProtectionAgency,2009]

Image 3.

HotsummerdayinthecityofRotterdam

[JB_NL,2012]

Page 10: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

1716 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

mass (hard surfaces, stone-like materials, asphalt, bitumen), the quality of thebuildings (compactness and insulation values), the movement of air (urban axes,streetpatterns), andevaporativecooling fromsurfacewaterandurbangreen (van

denDobbelsteenetal.,2011).MostoftheexistinghousingstockintheNetherlandsisnotdesignedtocopewithlongperiodsofextremeheat.AlthoughhottersummerscanbeseenasablessinginatemperateclimateliketheNetherlands,researchbyHuynenetal.in2001showsaclearcorrelationbetweenthenumberofmortalitiesandasmalltemperatureriseofafewdegrees (see Figure 2).Whenplacedinthisperspective,thesocialbenefitsof improvingtheenergyperformanceof theexistingbuildingstockcouldoutweightheenvironmentalones.

Figure 2.

Temperatureandmortalityrates(Huynenetal.,2001)[DoepelStrijkers,2012]

Climateandcomfort–OpportunitiesfordesignAnincreaseofafewdegreesintemperaturewillhaveahugeimpactontheexistingbuilding stock. The cooling demand will rise exponentially, and so too the cost ofkeeping the indoor climate comfortable. Most buildings are mechanically cooled,relying on electricity that is a lot more expensive than the use of residual heat.However,ifthetemperatureincreasesmoderately,theuseofpassivecoolingintheNetherlandswillbecomemuchmorefeasible.Theformofabuilding,thedesignofthe envelope, the use of materials and the internal configuration all influence thesolaraccumulationandpotentialfornaturalventilation.Andtheuseofvegetationandharddrysurfacescanraiseorreducethehumidityoftheairbeforeitpassivelyentersthebuilding.Climaticparameterscaninformthearchitecturallanguageofa

building,inextricablylinkingittothemicroclimateofitsimmediatesurroundings.ThechangingclimatethereforecreatesopportunitiesforrediscoveringbioclimaticdesigninaEuropeansetting.

‘Designers need to think in terms of a spectrum of

comfort in designing the reduced-impact buildings of

the future.’–TerriMeyerBoake(2008)

Most buildings are designed to ensure fully mechanised comfort, even in climateswherepassivesolarheatingcaneasilybeutilised.AccordingtoMeyerBroake(2008),today’sarchitectsandmechanicalengineersdonotworkwithinazone,buttoa‘finitepointofexpectedcomfortfor100%mechanicalheatingandcooling’.

Figure3,takenfromtheOlgyaybrothers’book,DesigningwithClimate,illustratestherangeoftemperatureandhumidityinwhichpeoplefeelcomfortable(OlgyayandOlgyay,

1963).Asopposedtodesigningforafixedtemperature,theOlgyaystookthenaturaltemperatureswingsoftheenvironmentaswellasthehumancapacitytoadjusttosmallfluctuations in temperatureandhumidity intoaccount.Theydefinedpassivestrategies,aimedatexpandingthezoneofhumancomfortwhilereducingtheneedformechanicalheatingandcooling.

Figure 3.

Bioclimaticchart;expandingthecomfortzonethroughbioclimaticdesign(OlgyayandOlgyay,1963)

[DoepelStrijkers,2012]

0.03405060708090100

30

25

20

15

10

0.025

0.02

0.015

0.01

0.005

504540353025201510

30

20

10

DBT (degree oC)

WBT (

degr

ee o C)

Abso

lute

hum

idity

(g/K

g)

Relative humidity (%)

Ventilation

Airconditioning

Radiant Cooling

Evaporative CoolingIncreasing Humidity

Comfort

Warming

Humidity Reductio

n

Effect and Capability for Applying Bioclimatic Strategies

-15 -10 -5 0 5 10 15 20 25

0.7

0.9

1.1

1.3

SOURCE: HUYEN ET AL, 2001

TEMPERATURE AND MORTALITY RATES

Page 11: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

1918 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

The Olgyays’ work demonstrates that one must design differently for differentclimaticregions.Thismayseemobvious,butofficebuildingsorhouseslookprettymuchthesameintemperateandtropicalclimatesaroundtheworld.Itislogicalthatifyouneedheatformuchoftheyear,youwilldealwiththesundifferentlythanifyoupredominantlyneedcooling.

Designing for thezone impliesadynamicdefinitionofcomfortandacceptanceofseasonalanddiurnalfluctuations.TheworkofPhillipeRahmtakes thisasapointofdeparturefordesign.Inwhatheterms‘meteorologicalarchitecture’,convection,pressure, radiation, evaporation and conduction are tools for architecturalcomposition.Thearchitecturalformexplorestheatmosphericandpoeticpotentialof new construction techniques for ventilation, heating, dual-flow air renewal andinsulation(Rahm,2009;Rahm,2010).Thisapproachtodesignembracesclimatechangeasanopportunitytocreatebuildingsthatareinharmonywiththeenvironmentandtakeoptimaladvantageoftheirspecificmicroclimate(see Image 5 and Figure 4).

Image 5.

Convectiveapartments,Hamburg.{PhilippeRahmArchitects,2010}[PhilippeRahmArchitects,2010]

Thedesignofthiscondominiumbuildingisbasedonthenaturallawthatmakeswarmairriseandcoldair

fall.Veryoften,arealdifference intemperaturecanbemeasuredbetweenthefloorofanapartmentand

theceiling,sometimesupto10°C.Dependingonourphysicalactivitiesandthethicknessofourclothing,the

temperaturedoesnothavetobethesameineveryroomoftheapartment.Ifweareprotectedbyablanketin

bed,thetemperatureofthebedroomcouldbereducedto16°C.Inthekitchen,ifwearedressedandphysically

active,wecouldhaveatemperatureof18°C.Thelivingroomisoften20°Cbecausewearedressedwithout

moving,motionlessonthesofa.Thebathroomisthewarmestspaceintheapartmentbecausehereweare

naked.Keepingtheseprecisetemperaturesinthesespecificareascouldsavealotofenergybyreducingthe

temperaturetoourexactneeds.Relatedtothesephysicalandbehaviouralthermalfigures,Rahmproposes

shapingtheapartmentintodifferentdepthsandheights:thespacewherewesleepwillbelowerwhilethe

bathroomwillbehigher.Theapartmentwouldbecomeathermallandscapewithdifferenttemperatures,in

whichtheinhabitantcouldwanderaroundasifinanaturallandscape,lookingforspecificthermalqualities

relatedtotheseasonorthemomentoftheday.Bydeformingthehorizontalslabsofthefloors,roomsor

spacesarecreatedwithdifferentheightsanddifferenttemperatures.Thedeformationoftheslabsalsogives

thebuildingitsoutwardappearance(Rahm,2009;Rahm,2010).

Figure 4.

Functionsrelatedtothermalzones.[PhilippeRahmArchitects,2010]

PeakoilThebiggestsocialproblem isnotclimatechange,but thedepletionofourenergyreserves,asocialeconomicproblemratherthanatechnicalone(Tillieetal.,2009).TheNetherlandsisaddictedtofossilfuels:96%oftheenergyweuseisderivedfromnon-renewablesourcesmakingusoneoftheleastsustainablenationsintheEuropeanUnion(DaniëlsandKruitwagen,2010).Thiscanofcoursebeattributedtotheabundanceofnaturalgasandtheinvestmentsmadeinfossilfuelinfrastructureoverthelasthalf-century.Butnothinglastsforever.AccordingtoresearchbyECNandNPL(Daniëlsand

Kruitwagen,2010),ournaturalgasreserveswillbedepletedwithinthenexttwenty-fivetothirtyyears.Peakoil,thepointatwhichwehaveconsumedmorethan50%oftheworld’sreserves,wasreachedinSeptember2008(see Figure 5).Atonepoint,thepriceofoilrosetotheunprecedentedlevelofalmost140dollarsperbarrelandexpertsexpectedittodouble.Althoughpricesdroppedrelativelyquickly, it isclearthatasoilbecomesincreasinglyscarce,priceswillcontinuetorise.Peakoilalsomeanspeaksyntheticplastics,asoilisthemainrawingredientforthesematerials(Faud-Luke,2009).Exactpredictionsvary,butexpertsagreethatwithinseventy-fiveyears,withinthelifetime of our children, oil and uranium will be depleted (WNA, 2012; Owen et al., 2010;

Appenzeller,2004).

There isagrowingawarenessthat importingenergyfromotherregionsshouldbeconsidered in the lightofpoliticaldependence,ecological impacts,ethicalaspectsand,ofcourse, theeconomic implications (vandenDobbelsteenetal.,2011).Peakoilandpeakplasticpresenttwoinherentchallengestomankind:makingoptimaluseofour

Page 12: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

2120 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

10 17,5 25 32,5 40 47,5 55 62,5 70 77,5 85 92,5 100 % HOUSES (calculation ref. 1950 ground based, 110m2, 3 pers)

remaining acceptable income rent & taxes per month energy costsabove acceptable residential quote gas usage per year

€ 3.000

€ 2.500

€ 2.000

€ 1.500

€ 1.000

€ 500

€ 0 05001.0001.5002.0002.5003.0003.5004.0004.5005.000

M3 g

as

300.000 TENANTS SPEND MORE THAN ACCEPTABLE NORM OF 38% OF INCOME ON ENERGY (ORANGE)850.000 TENANTS ABOVE ENERGY POVERTY THRESHOLD

RELATION ENERGY & ACCEPTABLE LIVING EXPENSES IN SOCIAL RENT 2011

SOURCE: CROON, 2012

local energy production potentials and finding alternative biobased solutions forsyntheticplastics.

Figure 5.

GlobalOilandNaturalGasLiquidsProduction(TheAssociationfortheStudyofPeakOilandGas,

C.J.Campbell,2004)[DoepelStrijkers,2012]

Energypoverty–OpportunitiesfordesignAriseinenergycostsaffectseveryone,butespeciallythepoorandpeoplelivingfarfromamenities.Intheearly1990s,Boardman(1991)usedtheterm‘fuelpoverty’inherpublicationFromColdHomestoAffordableWarmth.Morerecently,theterm‘energypoverty’hasarisentodescribethepointatwhichhouseholdsspendmoreoftheirdisposableincomeonenergythanonrent.ThisphenomenonisalreadyevidentintheNetherlands.In2011itwasestimatedthatapproximately300,000householdsinthesocialrentedsectorspendmorethattheacceptablenormof38%oftheirdisposableincome on energy. Currently, 850,000 households are above the ‘energy poverty’borderline.Translatedintopercentages,17%ofsocialsectorrentersareabovetheacceptablenormand5%spendmoremoneyonenergythanontheirmonthlyrent(Croon,2012)(see Figure 6).

Theagendaforthearchitecturalserviceindustryisclear.Amajorenergyrenovationoftheexistingstockisneeded,allnewdevelopmentsshouldbe‘energyneutral’or‘energy plus’, and local potentials for renewable energy production and reuse ofwastestreamsshouldbemaximised.

Figure 6.

Relationshipbetweenacceptablelivingcostsinthesocialrentedsector;5%ofhouseholdsspendmoreon

energybillsthanonrent(Croon,2012)[DoepelStrijkers,2012]

AccordingtoCroon(2012),ashort-termopportunityinthesocialrentedsectoristoretrofit120,000individualunitseachyear.Bylinkingtherentandenergycosts,thetotal cost to renters remains the same, while the savings from energy reductionsoverafifteen-yearperiodare investedupfront inenergyreductionmeasures.ThechallengeistoretrofitahouseinthreedaystoA++energylabelstandard,withanaverage investment of approximately €45,000. As the acceptable pre-investmentvariespertypologyandisaffectedbyaspectssuchastheageofthebuildingsandpredictedextensionoftheirlifespan,atailor-madestrategymustbedevelopedforeachusergroupandhousingtypology,andthelogisticalaspectofwhentointervenemustbedefined.Thedevelopmentofinnovativeandaffordableretrofitsolutionsisessentialifwearetocounterthissocialeconomicchallenge.

ResourcedepletionAccordingtotheWorldWideFundforNature(Lohetal.,2006),sometimeinthe1980stherateofconsumptionofglobalresourcesexceededthecapacityoftheearthtoregenerateitselfby25%.Overthepastdecadestheglobalrateofconsumptionhasincreaseddramaticallyastheworldpopulationhasgrownexponentially,especiallyinChina,IndiaandAsia.Translatedintospace,mankindisusing1.5timesthenaturalrenewableresourcesoftheplanet;ifweproceedinthismanner,by2050wewillneedtheequivalentofthreeplanetstomeetourneeds.

Besidestheunsustainablepatternsofconsumption,thereisahugediscrepancyinthedistributionandconsumptionofresources.Basedon2006datafromtheGlobalFootprintNetworkandthecorresponding2003CIAWorldFactBook,JerradPierce(2007)depictedthecurrentglobalresourceconsumptionpercountryandpercapitain a single map (see Figure 7). In a world where resources are equally shared, each

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

US-48 Europe Russia other middle eastheavy etc. deepwater polar NGL

5

0

10Billi

on b

arre

ls a

yea

r (GB

/a)

15

20

25

30

35

2004 SCENARIO

OIL AND GAS LIQUIDS

SOURCE: THE ASSOCIATION FOR THE STUDY OF PEAK OIL AND GAS, C.J. CAMPBELL, 2004

Page 13: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

2322 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Figure 8A and 8B.

Closingcitycycles–CircularCityMetabolism[DoepelStrijkers,2009]

8A. LinearCityMetabolism

8B. CirculairCityMetabolism

In2009thisprinciplewastestedinaninterestingpilotproject.TheHAKARecycleOfficeintheMerwe-VierhavensareaofRotterdamisaconceptthatillustrateshowthestrategyofclosingmaterialcyclesatthecityscalecanbetranslatedtotheinteriorofabuilding(see Image 6A, 6B, 6C and Figure 9).TheambitionwastogofurtherthanjustreducingtheCO

2footprintthroughthereuseofmaterialsbyintegratingthesocial

componentintotheproject.Ateamofex-convictsinareintegrationprogrammewereengagedtobuildtheobjects,makingtheprojectmorethanjustanexampleofhowwecanmakeaninteriorfromwaste.Itcreatesaddedvaluethroughempowermentandeducation.

inhabitant would have an eco-footprint of 1.8 global hectares (Wackernagel and Rees,

1996).Themapillustratestheimbalancebetweenrichandpoorcounties,thepoorestcountriesbeingwellbelowtheaverageandNortherncountriesliketheNetherlandswellabove4andupto12globalhectaresperinhabitant(thetoptwoaretheUnitedArabEmiratesandtheUSA).

Figure 7.

Globalresourceconsumptionpercountry,percapita[JerradPierce,2007]

Resourceefficiency–Opportunitiesfordesign

ReuseandrecyclingofmaterialsDesignersandarchitectscanplayanimportantroleinavertingresourcedepletionbyspecifyingtherightmaterialsforabuildingorproduct.Everychoiceadesignermakeswhenspecifyingmaterialshasaneffectonresourcedepletionandthehabitatofotherlivingspecies,soknowingwherematerialscomefromisanessentialdesignskill(Faud-Luke,2009).Resourceefficiencyrepresentsanenormousopportunityfortheentireservicesector.BesidesexistingstrategiessuchasCradletoCradle(McDonough

andBraungart,2002),innovativeconceptssuchasCirkelstadaspiretoconnectresourceefficiencyandacirculareconomyattheregionalscale(seehttp://www.rotterdamcirkelstad.

nl). Harvesting and reusing materials from demolition and waste streams fromproductionprocesseskeepsmaterials in the region, thereby reducingdependencyand environmental pressure elsewhere (see Figure 8A and 8B). By explicitly includingpeopleinareintegrationprocessinallphasesofthestrategy,fromdemolitiontotheproductionofnewbuildingmaterialsandconstructionitself,thisconcepthaspositiveenvironmentalandeconomiceffects,aswellassocialreturns.

Page 14: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

2524 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Figure 9.

HAKAAverage:comparisonwithatraditionalinteriorwiththesamefunctionalitybuiltusingnew

materialsandaprofessionalbuildingteam.Thedarkline(1.0)representsthefootprintofatraditional

interior.[DoepelStrijkers,2010]

Areductionofapprox.70%wasmeasuredfortheC02footprint,materialandlabourcosts.However,

constructionusingunskilledlabourtookthreetimesaslongasatraditionalinteriorwithaprofessional

buildingteam.Withintheframeworkofthistestcase,thisaspectwasdeemedacceptableasmoretime

spentontheprojectmeantmoretrainingfortheex-detainees.Forcommercialupscalingofthis

concept,thisaspectcouldbeoptimisedbyusingoffsiteprefabproductionandlinkingthiswithtechnical

secondaryeducation.

Image 7. (page 26)

Auditorium{DoepelStrijkers,2010}[RalphKämena,2010]

Image 6A, 6B and 6C.

RecycleOffice,HAKA,Merwe-Vierhavens,Rotterdam{DoepelStrijkers,2010}[RalphKämena,2010].

ThisprojectwasperformedbyDoepelStrijkersincollaborationwithVanGansewinkelandRotterdam

CityCouncil.

Image 6A.

Receptioncounter

Image 6B.

Acousticwall

Image 6C.

Platform

Page 15: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

2726 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Page 16: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

2928 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

03. IncentivesforChange EuropeandirectivesIf the current trends continue, the global population is expected to grow by 30%to around nine billion people by 2050. Given the exponential growth of countrieslikeChinaandIndia,andtheirincreasinglevelsofwelfareandconsumption,thereissincerecauseforconcern.IncreasingresourceefficiencywillbecomekeyinsecuringgrowthandjobsinEurope.TheEuropeanUnionaimstodevelopastrategytocreatea ‘circular economy’ based on a recycling society, with the aim of reducing wastegenerationandusingwasteasaresource(see Figure 10A and 10B).Byreducingrelianceonincreasinglyscarcefuelsandmaterials,boostingresourceefficiencycanimprovesecurity of raw materials supply, making the economy more resilient to futureincreasesinglobalenergyandcommodityprices(EuropeanCommission,2011).

Inordertoachievethis,newproductsandservicesneedtobedevelopedattheregionaland localscales.Newwaystoreduce inputs,minimisewaste,changeconsumptionpatternsandoptimiseproductionprocesseswillneed tobe found.Thiscannotbeachievedwithoutthedevelopmentofinnovativemanagementandbusinessmodels,andimprovedlogistics.Itisexpectedthatthiswillstimulatetechnologicalinnovation,improve productivity, reduce costs, boost employment in the Green technologysector, open up new export markets and deliver more sustainable products thatbenefitcustomers.

Intermsofenergyresources,therearetwodominantissuesatEuropeanandnationallevels:theEUisbecomingincreasinglydependentonexternalenergysources,andgreenhousegasemissionsareontherise.Energyconsumptionforbuilding-relatedservicesaccountsforapproximatelyonethirdofthetotalEUenergyconsumption.Here,thegreatestgaincanbemadebyinfluencingenergydemandandonewaytoreduceenergyconsumption isby improvingenergyefficiency.Tothisend, in2010theEUadoptedadirectivestipulatingthatallnewbuildingsmustbeenergyneutralby2020 (2050for theexistingstock).Thedirective formspartof thecommunityinitiativesonclimatechange(commitmentsundertheKyotoProtocol)andstipulatesthatthebuildingsectormustadapttofullyintegrateenergyconceptsandresourceefficiency in the design of buildings, the urban fabric and landscape (Directive2010/31/EU).

TheresultofthisEuropeandirective isthatprovincialand localauthoritiesacrossthe country have started offering major incentives to encourage Green building.AnexampleofhowfiscalincentivescancontributetoenergyefficiencyinthebuiltenvironmentaretheGreenDealsbetweengovernmentandindustry.Public-privatepartnerships are seen as the best way to generate a more sustainable economy,removingbarriersandopeningthedoorstoinnovation.Theintroductionoftheenergylabel in 2008 is another form of incentive. Homeowners must produce an energylabelwhensellingorrentingtheirhome.Theexpectationisthatthiswillstimulatetheprivatesectortoretrofittheexistingstock,withthe2050energyambitionsinmind.

BiobasedmaterialsReducing the need for resources through reuse and upcycling is the first step inresourceefficiency.Butrecyclingwillnevermeetthetotaldemandformaterialsonalargescale.Asecondstrategythatrepresentsahugeopportunityforthebuildingsectoristheuseofrenewableorbiobasedmaterials.Ifproducedonalargeenoughscale,thisrenewablesourceofmaterialshasmorefavourableenvironmentalimpactsthanmostmineralbasedoptions.Formanyarchitects,however,theuseofnaturalmaterialsisseenasalimitationthatleadstoclichéGreenbuildings(Maasetal.,2010).It is therefore imperative that diverse contemporary architectural applications ofbiobased materials are developed to stimulate the use of these environmentallyfriendlyproducts.Theiruptakecanbeacceleratedbyproducingarchitecturalworksofinternationalallurethatmakeuseofbiobasedmaterials.Iftackledatthenationalscale, theproductionofbiobasedmaterialscouldradically impact theagricultural,energyandbuildingsectors,contributingtothegrowthofaGreeneconomy.

Itisclearthatissuesrelatingtoclimatechange,energypovertyandresourcedepletionrepresenthugeopportunitiesforthebuildingsector.Tobeabletorespondtothischallenge designers need to expand their knowledge of techniques and materials.At the moment, examples of climate responsive architecture in which appropriatetechnologiesandmaterialusearebroughtintobalancewithsocioculturalinfluencesarethinontheground.IfGreenistoescapethecommercialisationofthemainstreamanddevelopintoatrulyintegralsustainableapproach,thebiggestobstacleofallisundoubtedlyeconomic.ItcanbearguedthateconomicengineeringandnewtemporalmodelsoffinancingarecurrentlymoreessentialforthetransitiontoanewGreenerathantechnicalinnovation.

Page 17: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

3130 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Figure 11A and 11B.

AdoublinginsizeinthenumberofgreenbuildingsinthelasttwoyearsintheUSA(McGraw-Hill

Construction,2011)[DoepelStrijkers,2012]

At the moment it is difficult to gauge the effect of government incentives in theNetherlands. What is clear is that the combination of the economic crisis andthe sustainability agenda is creating a ripple of change in the building industry.Stakeholders are finding each other in new coalitions and the mentality of short-termreturnsoninvestmentsisslowlygivingwaytotemporalmodelsofdevelopment.‘Social ecological urbanism’, for example, focuses on socioecological interactions,suggestinganumberof substantial reinterpretationsof the relationshipsbetweensocial, technical, economic and ecological forces in urban areas. This implies areconceptualisationoftherelationshipbetweentheurbanenvironment,natureandnaturalresources(Voorburg,2010).Translatingpotentiallong-termecologicalandsocialbenefitsintocapitalforshort-terminvestmentisakeyconceptforgeneratingequitytomake‘positive’developmentfeasible.

Itisclearthattheincentivesforchangearehavingsomeeffect.Butgiventhecurrenteconomiccrisis,thefinancial,organisationalandtechnicalinnovationsnecessaryforaccelerationcannotbeexpectedtocomesolely fromthemarket. It isessential tocontinuetobringresearchandpracticetogetherinconcretedemonstrationprojectstotestanddeveloptoolsandmethodologiesforintegralsustainability.Throughaniterativeprocessthesecanthenbeimprovedandscaledupforcommercialapplication.

SOURCE: MCGRAW-HILL CONSTRUCTION, 2011

OF LEED IN PROJECT SPECIFICATION

APPEARANCE RATE

15

30

45

60

by value of projectsby number of projects

02004 2005 2006 2007 2008 2009

5,5%

14,8%

7,9%

20,2%

10,5%

19,7%

14,2%

33,2%

20%

44,8%

25%

55,4%

Figure 10A and 10B.

Closingcitycyclestocreateacirculareconomy[DoepelStrijkers,2009]

10A. LinearCityMetabolism

10B. CirculairCityMetabolism

ItpaystobeGreenSimilarinitiativesintheUnitedStates,includingtaxcredits,grants,feewaiversandexpedited review processes, are starting to have effect. With these incentives inplace,developersandhomeownersareincreasinglyfindingitmoreaffordabletogoGreen.TheMcGraw-HillConstructionCompanyreportsthatGreenbuildinghasgrown50%inthepasttwoyears,whereasthetotalnumberofnewconstructionstartshasshrunkby26%overthesameperiod(see Figure 11A and B).IntheirGreenOutlook2011report,theyforecastthatthedollarvalueoftheGreenbuildingsectorwillgrowtoanestimated$55to$71billionin2012.Thisnumberisexpectedtonearlytripleby2015, representing as much as$145 billion in new construction activity. ResearchbytheUniversityofSanDiego,McGraw-HillConstructionandpropertymanagementfirmC.B.RichardEllisindicatesthatwhilemorebuildingownersareseekingGreencredentialsfortheirprojects,companiesarelookingatGreenbuildingmoreasaprofitcentre,notjustasanenvironmentalgooddeed.OwnersofGreenbuildingsreporta5%increase inpropertyvalue,a4%returnon investmentanda 1%rise inrentalrevenue,aswellasan8%reductioninoperatingcostscomparedwithconventionaldesigns(VanHampton,2010).

150

120

90

60

30

02005

$ 10 billion

SOURCE: MCGRAW-HILL CONSTRUCTION, 2011

$ 42 billion

$ 55 – 71 billion

$ 145 billion

2008 2010 (F) 2015 (F)

2005 – 2015

GREEN BUILDING MARKET SIZE

Figure 11A.

GreenBuildingMarketSize

Figure 11B.

AppearanceRateofLeedinProjectSpecifications

Page 18: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

3332 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

04 ToolsandMethodologiesfor IntegralSustainability

The architectural service sector is not yet adequately geared to tackling theissues relating to climate change and resource and energy efficiency. Although alot of research has been done into all these topics, the gap between science andpractice is immense.Themainstreambuildingsector isgovernedbyold-fashionedprinciplesand techniques,making itdifficult to implement innovativesolutionsonalargescale.Moreover,designersmaythemselvesprovetobethebiggestobstaclein achieving real change. Critics argue that the Green agenda limits the potentialfordesignandleadstouglybuildings.Compactvolumesandlimitationsonthesizeand positioning of openings are viewed as unwelcome design constraints, limitingcreativityandpotentials forarchitecturalexpression (Maasetal., 2010). Indeed, therearefewexamplesofaestheticallywelldesignedGreenbuildings,comparedwiththearrayofbadexampleswherethetell-taleGreenattachmentssuchassolarpanelsandwindmillsdominatetheoverallimage.ToovercomethisshallowcommodificationofGreen,itisimperativethatthepotentialsforarich,integrallysustainablelanguageareexploredandtranslatedintodesigninstrumentsforwidespreadadoptionbythedesigncommunity.

FormanyarchitectsandbuilderstheperceivedcomplexitythatGreenbringstothebuilding arena is also an obstacle. New technologies, knowledge of materials andlife cycle analysis, and the multitude of certification and validation systems, suchasLEED,Cradle toCradle,andBREEAM, introducemoreconstraints to thedesignprocess. The development of BREEAM NL by the Dutch Green Building Counciland the introduction of the Material Performance Coefficient (MPC) in 2013 willundoubtedly help to simplify the rules of engagement. Although these tools areabsolutelynecessarytoevaluateaspectsofthesustainabilityofaproject,theyarealsolimitedinthesensethattheycannotaddressthecomplexityofsustainabilityatasystemslevelandacityscale.Thesetoolstakeongreatermeaningwhenappliedwithinthecontextofbroaderissues,madepossible,forexample,bytoolssuchasSiD(SymbiosisinDevelopment).SiDisamethodologyforsolvingcomplex,multifacetedproblems using systems thinking, network theory and life cycle understanding.SiDcombinestheory,method,practiceandtools inoneholisticsystemthatallowsdifferentdisciplinestoworktogether,evaluatesustainabilityspectrum-wide,andfindsymbioticsolutionsquickly(BosschaertandGladek,2010).

SiDandabroadrangeofsimilartoolsandmethodologiesnowunderdevelopmentcan facilitate a more integral design process by helping designers to deal withmoredesignconstraintsandperformancecriteria.Besidestoolsforachievingeco-efficiency, some tools, such as BIM (Building Information Modelling), focus on theprocessofintegrateddesign.

Page 19: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

3534 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Thestrategyinvolvesthreestepsandisorganisedbyscale(fromthebuilding,cluster,districttocityscale):Step01. Reducedemand(energy,water,materialsandwaste)Step02. Reusewastestreams(waste=resource)Step03. Producesustainably(ontheappropriatescale)

Energy, water, materials and waste are seen as layers in spatial planning, eachwiththeirownlogicandeconomyofscales.REAP+offersdesignersastep-by-stepapproach,facilitatingthemappingofeachsystemanditsboundaries.Byoverlappingthedifferentlayers,designersgetagriponwherethesystemsinteract,whichhelpsthemtodeterminethespatialparameters for thedesignof thephysical interface.Anthropogenicandnaturalsystemsalsoconnectatdifferentscales,offeringpotentialsforincreasingbiodiversityandembeddingabuildingwithinitswidercontext.REAP+isanapproachthatgivesdesignersanunderstandingofthecomplexityofthedifferentphysicalurbansystemsandhowtheycouldinteracttoinformdesigndecisions.

Climateasaninstrumentfordesign

BioclimaticdesignBioclimaticdesignaimstoimprovehumanthermalcomfortbynaturalconditioning,conservingresources,andmaximisingcomfortthroughdesignadaptationstosite-specificandregionalclimaticconditions(Hyde,2008).Itischaracterisedbystrategiesto reduceoreliminate theneed fornon-renewableenergy resources (forartificialconditioning) by optimising the orientation, building form, envelope, interiorconfigurationandshadingofabuilding.

Research suggests that bioclimatic buildings use five to six times less energythan conventional buildings over their lifetime (Jones, 1998). Energy consumption inbioclimaticbuildingsisreducedprimarilybydesigningthebuildingformandenvelopetomakeuseofthelocalmicroclimate(see Image 8).Inwarmclimates,wherecoolingisneeded most of the year, 34% of energy consumption in buildings is used for airconditioning, resulting in high energy use and greenhouse gas emissions. In mostcasesthisisduetothepoordesignofthebuildingenvelope(Parlour,2000).Butbyusingparameterssuchasairtemperature,solarradiation,windandhumidityasinputstoarchitecturalandurbandesign,theclimateitselfcanbecomea‘designinstrument’.

InthecurrentDutchcontext,bioclimaticdesignprinciplesfindexpressioninconceptssuchas thepassiveandactivehouse.Asheating is theprimaryneed forhousingin the Netherlands, these strategies focus on reducing the heating demand byimplementing passive solar principles. Sun, wind and light are the main elementsutilisedinpassivedesign.Anexampleofhowpassivesolarstrategiescanimpactontheformanduseofthedwellingistheuseofwintergardensandpatiosasinterstitial(buffer)zones.These interstitialspaces lengthenthesummerseasonbycapturingspringandautumnsunlightandusingittolowertheheatingdemandofthedwelling.

BuildingInformationModelling(BIM)TheGovernmentBuildingsAgencystipulatesthatfrom1November2012,BIM(BuildingInformationModelling)mustbeusedbydesignteamsforallDBFMO(Design,Build,Finance,Maintain&Operate) tenders.Architects,buildersandengineerswillworktogetherononecentralvirtualbuildingmodel,theBIMmodel.Byexchangingtheirinformation in a structured manner using open source standards, all the partnersin the building chain will create a complete centralised digital description of thebuilding. The overall timeframe for the process remains the same, although moretime isspentoncommunicationandexchangeof informationthan inatraditionaldesignprocess.Increasedcommunicationandinteractioninanearlyphasecanleadto better solutions, and the use of BIM limits the margin of error experienced intraditionalbuildingprocessesinwhicheachpartnerhastheirownmodelanddrawingset.TheuseofBIMwillincreaseexponentiallyinthedecadestocome.Itisausefultoolasitfacilitatescommunicationandexchangeofinformationandthuspromotestransdisciplinarycollaboration.

REAP+REAP+isamethodologyorapproachforusebyarchitectsandurbandesignerstoincreaseintegralsustainabilitythroughdesign.ItisbasedontheRotterdamEnergyApproachandPlanning(REAP,Tillieetal.,2009)andiscurrentlyunderdevelopment.REAP+expands the three-step strategy for energy (van den Dobbelsteen et al., 2008) to includewater,materialsandwaste.Thestrategyinvolvesreducingresourceinputs,wasteandemissionsbyimprovingurbanprocesses(see Figure 12).Itaddressesthecomplexityoftheseurbansystems,andtakesintoaccounttheinterrelationsofresourceflows.Thefundamentalconceptisthecontinuousupgradingofanthropogenicsystemstoattainclosureofmaterial,waste,waterandenergycyclesatthebuilding,cluster,districtandcityscales.Whencombinedwithinnovativeco-creativeprocesses,thisapproachleadstomoreintegratedformsofsustainabilityinwhichenergy,water,materialsandwastesystemsaredesignedefficientlyandbroughtintobalancewithnaturalsystemsattheappropriatephysicalscaleandwithintheappropriatetimeframe.

Figure 12.

REAP+,thethree-stepstrategyforintegralsustainability,basedonREAP(Tillieetal.,2009)andthe

NewSteppedStrategy(vandenDobbelsteen,2008).[DoepelStrijkers,2009]

Page 20: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

3736 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

mainparametersthatinformthearchitecturalform.Thecomplexisconceivedasa‘wasteless’building.Waste

streamsfromthetequilamakingprocessareutilisedinsecondaryproductionchainsresultingintextilesmade

fromfibres,agavehoney,perfume,inulinforhigh-energysnacks,andbiogas.Besidesreducingconsumption

through bioclimatic design and reusing waste streams, the building makes optimal use of the local water

and solar resources. By integrating photovoltaic panels and solar collectors in the envelope, the building

canoperateindependentlyofthegrid.Apartfromtheecologicalandeconomicbenefitsfortheregion,the

complex offers habitation for nine nuns, who teach the children of the factory workers during the week.

Besidestheclassroom,alibraryandchapelintroduceasocialaspecttothecomplex,embeddingitinthelocal

cultureandsocietythatwillbenefitfromit.

ParametricdesignThedevelopmentsinCAD(ComputerAidedDesign)overthelastdecadeshavebeendrivenprimarilybytheengineering industry.CADpackagescanbecombinedwithBPS(BuildingPerformanceSimulation)software,makingitpossibletomeasurejustabout anything from material use and structural strength to comfort and energyperformanceaspects suchasdaylightpenetration, thermal temperature,humidityandair circulation.But thearchitectural service industry is slow toadapt. InsteadofusingCADtohelpdealwiththeincreaseindesignconstraintsintroducedbythenewGreenagenda,mostarchitectsuseit inthetraditionalsense,asanelectronicdrawingboard.

Parametric design offers a valuable tool for designers to help them deal with theadditional constraints imposedbysustainability issues suchas resourceefficiencyanddynamiccomfort.Byconstrainingthedesignpotentialsthroughcomputationalparametricframeworks,aparametricmethodologyenablesthedesignertoexploreawiderrangeofsolutionsmoresystematically.Theseallowthedesignertocomparedifferentoptionsandformavirtualspatialframeworkforthefinaldesign(Gane,2004).

Warm air collected in these spaces in the summer can be used to induce naturalventilation (Vollaard, 2012). A good example, soon to be realised is CHIBB (ConceptHouse IBB),an initiativeby theresearchchair forSustainableBuilding,startedbythe minor sustainable building technology of the Rotterdam University under theleadershipofassociateprofessorArjanKarssenberg.TheCHIBB-conceptstrivesforan optimal form and orientation for maximum benefit of the sun, light and air. Itmakesuseofagreenhousetocreateaninterstitialbufferzonewithintegratedgreenforclimateregulationandoptimalventilation.Theformandfunctionsareoptimallypositionedtoreducetransmissionlosses.ThepassiveheatingandcoolingprinciplesdemonstratedinCHIBBareexemplaryandwillneedtobeadoptedonalargerscaleastemperaturesriseinthecomingdecades.

But in a temperate climate like the Netherlands, passive design strategies alonewill not suffice. Hybrid active and passive systems will be necessary to maintaincomfortableindoorclimatesthroughouttheyear.Activesystemsvaryincomplexityfromtraditionalinstallationsandshadingdevicestomoreinnovativesolutionssuchas CABS (Climate Adaptive Building Shells). These envelopes or facade elementssave energy by adapting to prevailing weather conditions, and support comfortlevels by immediately responding to the occupants’ wishes. CABS have to resolveconflictsandtrade-offsbetweenenergyconsumptionandthermalandvisualcomfortrequirements (Loonen, 2010). The challenge for designers lies in the integration oftechnicalinstallationsintheoveralldesign,allowingforthereplacementofelementsas these become more efficient in time through technological innovations. Forexample, the design integration of photovoltaic panels, solar collectors and windturbinesforonsiteenergyproductionwillbecomemorepertinentinthefutureastheenergyandresourcedirectivestakeeffect.

Itwillbecomeincreasinglynecessaryforthebroaderindustrytoadoptbioclimaticdesignprinciples ifwearetomeetthe ‘energyneutral’ormoreambitious ‘energyplus’challengeona largescale.Althougha lotofresearch intobioclimaticdesignhasbeendoneinwarmcountries,thetemperateNorth-WesternEuropeancountieslag behind. Of course, exceptions exist, such as the inspirational work being doneat theAA inLondonand, closer tohome, in researchdepartmentsatuniversitiessuchas theClimaticDesignresearchheadedbyvandenDobbelsteenatTUDelft.More insights are needed into the potentials for an architectural language if themainstreamarchitecturalserviceindustryistoadoptthisapproach.Moreconcretedemonstrationprojectsareneededtoturntheconsiderabletheoreticalresearchintomorepracticalapplications.

Image 8.

MacuilTochtli:bioclimaticdesignofatequilafactoryintheJaliscoregionofMexico[DoepelStrijkers,2010]

Basedonthetraditionalhaciendatypology, theMacuilTochtliprojectcombinestheuseof localmaterials

andvernacularbuildingmethods.Thebuildingissculptedfromtheinsideout,basedonthemovementofthe

sun.Daylight,passivecoolingandthevisualandphysicalconnectionstothesurroundinglandscapearethe

Page 21: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

3938 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Page 22: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

4140 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

TheOriginsofBioclimaticDesign

Bioclimatic design theory evolved in the

1950sintheworkoftheHungarianbroth-

ersVictorandAladarOlgyaywhopublished

thebookDesignwithClimate:AnApproach

toBioclimaticRegionalismin1963.TheUS

based duo used their architectural prac-

tice to research concepts and techniques

for alternative forms of climate control

and energy reduction. By looking at ver-

nacular architectures in extreme climates

aroundtheglobe,theycollectedideasthat

couldbeintegratedintoamodernidiomin

a Western context. In Design with Nature,

theirmost influentialpublication, theOlg-

yaysarguedforaproactiveapproachtode-

signingwithclimate.Theregionalbuilding

typologies, building traditions and use of

materials they studied demonstrated that

withathoroughknowledgeoflocalclimate

and regional specificity, smarter buildings

could be designed that make use of pas-

sive natural systems integrated into the

architectural form of buildings. Their mo-

tiveswereethicalandideological,perhaps

thereasonwhytheirworkwasneverreally

pickedupbythemainstreamarchitectural

serviceindustry(Vollaard,2012).

Image 10.

LehmanHall,BarnardCollege,MorningsideHeights,

NYC {O’Connor and Kilham, 1959}. This building

housesBarnardCollege’sWollmanLibraryandwas

designed by O’Connor and Kilham, with assistance

onthefacadescreenfromVictorandAladarOlgyay.

TheworkoftheOlgyaysremainedmarginal

and was not integrated into educational

institutions until Otto Koeningsberger,

who had been active in climatic building

inAfrica,AsiaandthePacificinthe1950s,

establishedtheDepartmentofTropicalAr-

chitecture in the AA in London a decade

later. It was not until the 1980s that the

MalaysianbornKenYeang,whostudiedat

theAA,pickedupthethreadofbioclimatic

design.Inhisearlywork,predominantlyin

Asia,Yeangexploredbioclimaticoffice ty-

pologiesthatdemonstratearegionalistap-

proachinwhichthearchitecturalaesthetic

and significance is derived from the spe-

cificcontextinaspecifictime(Vollaard,2012).

Stillpractisingtoday,Yeanghasstartedto

capture themindsofa smallgroupofar-

chitectsattractedtotheideathatregional,

microclimaticandculturalparameterscan

informanarchitecturethatmakessensein

thelightofcurrentsustainabilityconcerns.

Image 11.

SpireEdgeEcoOfficeComplex,Manesar,India

{Hamzah&YeangSdn.Bhd,2008}[Hamzah&

YeangSdn.Bhd,2008]

Designed and developed by the renowned firms of

Ken Yeang, Sanjay Prakash & Associates, Abaxial

ArchitectsandSKDasAssociatedArchitects,Spire

Edge is an active intelligent building system that

strivestoimitatetheprocessesofnaturetoachiev-

ing maximum efficiency and minimum wastage.

Based on a philosophy and a process called ‘Main-

stream Green’, it aspires to combine commercial

marketimperativesandpracticeswithenvironmen-

tal sustainability. It successfully addresses current

needsand futureaspirationswithin the framework

ofavailableandscarceresources.Itgoesbeyondthe

simplisticactofconservationintotherealmofgen-

erating a responsive and responsible architecture.

SpireEdge isenvisionedtobearadical,unconven-

tionaland,most importantly,sustainableprototype

thatwillserveasapointofreferenceforfuturein-

frastructuredevelopmentsinIndia.

Image 9. (page 38)

MacuilTochtli:bioclimaticdesignofatequilafactoryintheJaliscoregionofMexico[DoepelStrijkers,2010]

Page 23: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

4342 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

ofoccupancyand internal airfloware someof theaspects that canbe simulated.In so doing, designers can gauge the effect of spatial decisions on performanceandcomfort,therebyintegratingsustainabilityconstraintsintotheiterativedesignprocess(see Figure 13 and Image 12A, 12B, 12C).

Figure 13.

Testingtheperformanceofalouvredesignfornaturaldaylightpenetrationon21Septemberat14:00

forthebioclimaticofficebuildingbyDoepelStrijkers(see also Image 12A, 12B and 12C)[WouterBeck,

Ascendilex,2012]

This parametric approach to design will prove to be a valuable tool for tacklingthe contemporary sustainability issues relating to resource efficiency and climateadaptation. Defining the appropriate parameters with climate and comfort as thedominant criteria can generate a diverse architectural language for regionallyappropriate designs. Meaningful steps towards comfortable climatic cities canbe made by combining the possibilities of parametric design and BPS (BuildingPerformanceSimulation).

Moreconstraints(climate,resourceefficiency,energyefficiencyandcomfort)leadtomoresustainablebuildings,butincreasethecomplexitythatdesignersneedtohandle.Tohelpthemdealwiththis,designerscanturntomethodologiesandapproacheslikeREAP+andtoolssuchasBIM,parametricdesignandBPS.Theconceptofregionalbioclimaticdesignintroducesconstraintsthatcaninformthearchitecturallanguageofbuildings,embeddingtheminthelocalcontextandmicroclimate.ThenextstepistobringthesetogetherintheformofParametricBioclimaticDesign.

‘A parametric representation of a design is one where

selected values within the design model are variable,

usually in terms of a dimensional variation. But any

attribute like colour, scale, and orientation could be

varied, through a parameter. To design parametrically

means to design a parametric system that sets

up a design space which can be explored through

variations of the parameters.’ –AxelKilian(2004)

Anydesignprocessreliesonmultipleconstraints.Beforeproceedingtodesign,anarchitecttranslatesthespecificationsanddesignbriefintosetsofrules.Thesecaneitheroperateindependentlyorsemi-independently,bedrivenbytheaestheticurge,follow some performance criteria, or in the case of a poor rule-maker, ignore alltogethertheconstraintsthatwouldrefinethedesignresults(Gane,2004).

ParametersParametersarethemainbuildingblocksofanydesignandcandefineasystemanddetermineor limit itsperformance.Theyarecriticalfortheoperationofrulesandmakevariationspossible.Twomaintypesofparameterscanbedistinguished:explicitandimplicitparameters. Implicitparametersareabstractoropento interpretationand mostly affect aspects relating to form. Designing with implicit parameters islessconstrainedand leadstomoredifferentiation in theemergingresults.Explicitparameters, on the other hand, result in designs of a completely different nature,becauseofthewaytheparametersaffectthe implementationofrules.Theclarityand predictability of the variations in the resulting spatial framework make themmore appropriate for use in the design of buildings and urban configurations.Geometricparametershaveanimpactontheformofthebuildingandhowitrelatestoitsphysicalsurroundings.Thesemaybeasetofdimensionalparameters,suchasthelength,widthandheightdefiningthebuildingvolume.Itisalsopossibletodefinetherelationshipbetweenthebuildinganditscontext,forexamplethedistancetothepavementortootherbuildings,sightlines,shadowsorcirculationpaths(Gane,2004).

Awiderangeofprograms,suchasGrasshopper,Maya,CATIA,SolidWorks,InventorandRevit,arecurrentlyavailableforparametricdesign.TheseprogramscanbeusedincombinationwithBPS(BuildingPerformanceSimulation)softwaresuchasTRISCO,ANSYS,BINKandEcotect,making itpossible tovisualiseandsimulateabuilding’sperformancewithin thecontextof itsenvironment.Energyuse, carbonemissions,heatingandcooling loads,daylight infiltration, solar radiation, the thermaleffects

Page 24: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

4544 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Image 12A, 12B and 12C.

BioclimaticdesignofanofficebuildingintheNetherlandsusingdaylight,thermalaccumulationandpassive

coolingasthemainparameters{DoepelStrijkers,2010}

Thecompacttriangularvolumewithacentralatriumcreatesthreefacadeconditions.Thedesignofthesun

screeningperfacadeisoptimisedtoallowdaylighttopenetratethespace,reducethermalaccumulationand

optimisevisualcomfort.Thedistanceanddepthoflouvresisinfluencedbysetbacksresultinginanirregular

facade.Thedesignaestheticisinextricablylinkedtotheinfluenceofclimaticparameters,usercomfortand

thequalityoftheinteriorspace.

Figure 14.

Buildingorientationinrelationtothesunpath[DoepelStrijkers,2010]

NORTH eastvertical plane 56° / - 124°direct sunlight on facade:(without obstacles)

Dec: --.--h - --.--h 0° - 0°March / Sept: 06.30 - 09.30h 0° - 26°June: 05.30 - 11.30h 0° - 51°

21.30 - 22.00h 6° - 0°

124°

56°

SOUTH EASTvertical plane 116° / - 64°direct sunlight on facade:(without obstacles)

Dec: 09.00 - 16.30h 0° - 15° - 0°March / Sept: 06.30 - 16.30h 0° - 40° - 20°June: 06.30 - 16.30h 8° - 62° - 48°

64°

116°

176°

WEST northvertical plane 4° / -176°direct sunlight on facade:(without obstacles)

Dec: 12.30 - 16.30h 15° - 0°March / Sept: 12.30 - 18.30h 40° - 0°June: 13.30 - 22.00h 62° - 0°

louvres

louvres

louvres

Page 25: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

4746 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

05 ResearchAgenda ParametricBioclimaticDesignonthebuildingscale

Parametric Bioclimatic Design is a concept and approach to design that utilisesexisting CAD and BPS technologies to facilitate an integral bioclimatic designprocess.Thegoal istodevelopregionallyspecific,climateresponsivedesignsthatareculturallyembeddedinthelocalcontextthroughtheappropriateuseofmaterials,state of the art technologies and building traditions. The principles of ParametricBioclimaticDesigncanbeappliedatthebuilding,districtorevencityscale,forboththefutureandtheexistingurbanfabric.

ExistingfabricThe built environment is responsible for 41% of the total energy consumption intheNetherlands(Hellinga,2010).Besidestheenergyusedforrunningabuilding,hugeamountsarelostthroughleakybuildingenvelopes,leadingtohighenergybillsanduncomfortable indoorclimates. Ifoneconsidersthat in2050,85%oftheexistingbuildingstockwillstillbeinuse,itisclearthatfromasustainabilitypointofview,thechallengeandopportunitiesforthebuildingindustryliehere.

‘Europe’s buildings are leaking big time.

Money, energy and emissions are literally flowing

out of the windows and cracks as we speak.’ –ConnieHedegaard,EuropeanCommissionerforClimateAction(2011)

Whenviewed in the lightof thealreadyexisting issueof ‘energypoverty’and theexpectedriseintemperatureduetoclimatechange,itisimperativethatsmartretrofitsolutions are developed to reduce energyand resource consumption and improveusercomfortintheexistingbuildingstock.Theresearchwillfocusonachievingthisbyusingpassiveheatingandcoolingstrategiestoadaptthebuildingenvelopeandinteriorconfiguration,basedonthenotionofdynamiccomfort.

FuturefabricAlthoughtheexistingfabricpresentsthebiggestchallenge,allnewbuildingsmustbeenergyneutralorevenenergyplusby2020.Withinthenexteightyears,techniquesfor sustainable design and financial and organisational models must be furtherdevelopedandadoptedbythebuildingindustry.

Page 26: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

4948 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Themainresearchthemesaresummarisedinthefollowingtable:

Researchfields

ParametricBioclimaticDesignPrinciples

BioclimaticDesignPrinciples

ClimateScenarios

ParametricDesignPrinciplesandsoftware

tools

Typology,function,scaleandPBD

Materialuseandenergyperformance

Energyperformanceandcomfort

Expertsagreethatintermsofsustainablechange,morecanbegainedataclusteranddistrictscalethanatthescaleoftheindividualbuilding.Duetotheeconomyofscale,thepotentialsforenergyexchangeincreaseattheclusteranddistrictscales.Besidestheincreasedtechnicalefficiency,clustersalsopresentotherchallengesandopportunitiesforapplyingParametricBioclimaticDesignprinciples.

‘Building shells are at the interface between the

building interior and ambient climate, and therefore

fulfil a number of vital functions that dictate most of

the buildings energy consumption.’ –Loonen(2010)

ParametricBioclimaticDesigncanplayaninvaluableroleinmeetingtheseambitionsfor housing, but also for larger scale buildings such as offices and mixed-usedevelopments. The use of BPS for proof of concept, particularly for larger scalebuildings,willbecomeincreasinglyimportant.Anintegrateddesignanddevelopmentprocessistheonlywaythiscanbeachieved.

ThemainresearchtopicspertainingtoParametricBioclimaticDesignrelatetoenergyandresourceefficiency,climateadaptationandusercomfort,andcanbeappliedtobothexistingandfuturefabric:a) Energyefficiency:investigatethepotentialsforreducingenergyconsumption,

primarily through the formandbuildingenvelopebymakinguseof the localmicroclimate;optima forma– the relationshipbetweenbuilding form,energyreductionandcomfort;theuseofinterstitial(climatic)zonesandtheirimpacton the form and interior quality of buildings; architectural efficiency versusinstallationefficiency;interiorconfigurationinrelationtodynamiccomfortandenergyperformance;

b) Passivedesign:usingarangeofbiophysicalelementssuchasthermal,humidityandwatersinks;adaptivethermaldefences;useoffloraasheatsinks;phasechangematerials,heatstorageandradiantdefences;

c) Integratedpower:integrationofenergygenerationinthebuildingenvelope(Vollaard,

2012);exploringthecombinationofhybridpassiveandactivefacadesolutions;

d) Resource efficiency: the potentials for the reuse of waste and demolitionmaterialsinthebuildingindustryonaregionalscale;thepotentialsofbiobasedmaterials;designfordisassemblyandreuse;

e) Climateadaptation:adaptingtheexistingstocktotheeffectsofclimatechange,suchasincreasedcoolingdemandandwaterretention;

f) ParametricdesignandBuildingPerformanceSimulation(BPS):testingmultipledesign options by combining explicit physical constraints with performanceand comfort constraints (energy performance, daylight penetration, thermaltemperature,humidityandaircirculation);

g) DevelopmentofdesigntoolsforParametricBioclimaticDesign.

Output

Aparameter-drivendesigninstrumentthatbrings

climaticandspatialparametersintoalignmentusing

adesignruleset,withcomfort(health)asthe

primaryevaluationcriterion.

Designinstrumentsthatemployclimaticconditions

toreduceconsumptionandgenerateusercomfort

ateitherthebuildingorurbanscale.

Definingtheconsequencesofdifferent

climatescenariosonthefunctioningofcertain

bioclimaticsystems.

Rule-driveninstrumentsthatgeneratemorphology

basedonexplicitconstraintsrelatingtoformand

performance.

Typologiesofbioclimaticdesignthatareoptimised

forcertainparametersets.

Inventoryofmaterialssortedbyeffecton

energyperformanceandcomfort,resulting

inmaterialperformanceconstraintsfor

ParametricBioclimaticDesign.

Monitoringandpredictiontoolstoanalyse

dynamiccomfortbasedoncomfortzoneasopposed

totheenergyperformancecoefficient.

Page 27: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

50 CreatingComfortableClimaticCities

COLLECTIVE PARKING FACILITIES & CARFREE ZONES

PRIVATE ANDCOLLECTIVE GARDENS

SAFE PEDESTRIAN AND BICYCLE ROUTES

MORE AND IMPROVED GREEN SPACE

HIGHER DENSITY NEAR PUBLIC TRANSPORT

URBAN AGRICULTURE

DIVERSITY OF HOUSING TYPOLOGIES

Doubling the number of dwellings will reduce the total energy consumption of the inner-city. The city is more compact and heat exchange and cascading are possible between existing and new energy neutral dwellings.

ENERGY USE

WATER SQUARERainwater capture during heavy downpours reduces the pressure on the sewer system. Water is released slowly into the groundwater after the downpour.

VIEWNew urban mass takes existing views into account.

REDUCE HEAT STRESSThe increase in urban heat island effect by adding building mass is compensated for by urban greening and shadow cast by tall buildings.

SOLAR RIGHTSNew dwellings optimally orientated towards the sun with living and outdoor spaces to the south and west where possible.

NOISENew developments could include upgrading facades of existing stock to meet the new norm of 48dB.

WINDAdding volume in relation to prevailing winds and urban green can improve natural cooling of the urban fabric.

80˚

20%

PRIVACY & ACCESSSmart tailor-made infill solutions create individual access from street level and private outdoor space orientated towards the sun.

40

30

90

70

Higher floor to ceiling heights on the lower levels of the new buildings allows for deeper daylight penetration and a flexible plinth zone. Added volumes take daylight penetration of existing volumes into account.

DAYLIGHT &FLEXIBLE PLINTHS

CONTINUITY AND IDENTITY

INCREASED LEISURE SERVICES AND EMPLOYMENT

Figure 15.

Smartandbioclimaticdensity:MakingInner

City(Tillieetal.,2012)[DoepelStrijkers,2012]

Page 28: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

5352 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Figure 16.

ParametricBioclimaticDensification[Borsboom-vanBeurdenandKlok,2012]

Developmentofinstrumentsfortheassesmentsofparametricbioclimaticdesign:morphology,orientation,

texture,form,materials,urbanblue&greenandwind.

TheresearchintoParametricBioclimaticDensificationwillbedoneincollaborationwith TNO, the TU Delft, Wageningen University, Arcardis, Doepel Strijkers and theresearchchairforSustainableArchitectureandUrban(Re)Design.

Image 13. (page 54)

ImprovingUrbanGreen,MakingInnerCity(Tillieetal.,2012)[SanderLap,2012]

ParametricBioclimaticDesignattheurbanscale– InnercitydensificationInnercitydensificationwillbethemainstrategyforhousingtheexpected700,000newinhabitantsoftheNetherlandsby2037(source:CBS).Smartandbioclimatichousingtypologies need to be developed, not only to make energy neutral densificationpossible,butalsotoimprovetheexistingspatial,socialandeconomicqualityofinnercities (see Image 13).Densificationinanexistingurbanfabricisamatterofprecision.Besidescreatingtherightmixofdwellingsandamenitiestostrengthentheidentityandqualityofanexistingbiotope,theoverallcomfortinbothbuildingsandthepublicrealmcanbeimprovedbysmartandbioclimaticdesign.

To begin with, daylight, solar rights and views from existing dwellings must bepreserved. Small, precise interventions can capitalise on existing residual spacewithoutreducingthequalityforexistinginhabitants.Addingvolumeintherightplacecanevenhaveapositiveeffectonthemicroclimateofablockorstreet.Normally,moremassmeansmorethermalgains,whichcanincreaseurbanheatstress.However,lightandreflective facadescancounter thiseffectandthesmartplacementofvolumecancreatewelcomeshade, loweringcoolingdemands.Anadditionaladvantageofaddinghomesandrelatedfunctionstothecity,fromanenergyperspective,isthateachfunctionhas itsownenergyconsumptionpattern.Byaddingfunctions intherightplace,heatandcoldcanbeexchangedbetweenbuildings,deliveringimmensereductionsinenergyusefortheexistingstock.Thissmartformofenergyexchangerequiresnewcoalitionsandorganisationalinnovations,butcanpotentiallyhelpthecitytoradicallyreduceitseco-footprint.Inaddition,thesmartpositioningofvolumein relation to prevailing winds, urban green and water bodies can be a valuableinstrumentincoolingtheinnercity,makingitmorecomfortableinourincreasinglyhotanddrysummers.

Thecitycanthereforebeviewedasa‘climateinstallation’(Hagendijk,2012).Treesandgreenurban‘blankets’canbeusedtoprovideshade,streetandparkstripsactasaircanals,vegetationandsurfacewatercanactashumidifiersandcoolersforpurifyingtheair,coldurbansurfacesactasdehumidifiers,androofs,facadesandstreetsworkasurbanradiatorsforheating,or– intheformofreflectivesurfaces–forcooling.Inthisway,increasingurbandensitycouldpotentiallybeavaluableinstrumentforimprovingthemicroclimateofthecity,andthusthequalityof lifeforitsusers (see

Figure 15).

ThemainresearchtopicspertainingtoParametricBioclimaticDensificationrelatetotheecological,socialandeconomiceffectsofdensificationandcanbeidentifiedas:a) Design:optimaforma,therelationshipbetweendensification,formandurban

comfort; morphology (form and orientation to the sun and prevailing wind),textureandmaterials,urbanblueandgreennetworks.

b) Development of instruments for assessing designs at the district scale tomeasuretheimpactsonheatstress,waterretention,resourceloops,biodiversity,socioeconomicindicators,etc.;thisparametricfeedbackprocessre-informsthedesign,allowingforoptimisation.

c) Cost-benefitassessments(see Figure 16).

DEVELOPMENT OF INSTRUMENTS FOR ASSESMENTS OF PARAMETRIC BIOCLIMATIC DESIGN:MORPHOLOGY, ORIENTATION, TEXTURE, FORM, MATERIALS, URBAN BLUE AND GREEN, WIND

TOOLSfor assessment of design of

buildings and districts:impact on heat stress, water retention,

resource loops, biodiversity,socio-economic, indicators

optimalisation of characteristics of building and district

densification + greenification= sustainable city

DESIGN

microclimate at building scale

microclimate at district scale

costs and benefits

PARAMETRIC BIOCLIMATIC DESIGN

SOURCE: TNO, 2012

Page 29: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

5554 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Page 30: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

5756 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

06 LivingLabApproach

Based on the idea that concrete demonstration projects that include all complexaspectsof sustainabledesigncaneffectivelyacceleratechange, theRDMCampusdesignatedHeijplaatasaLivingLabin2004.TheRDMLivingLabisauser-centred,open-innovation ecosystem. The Golden Triangle of research, education and themarketarebroughttogetherininnovationteamsthatintegrateinnovationprocesseswithinpublic-private-peoplepartnerships.Theconceptisbasedonauserco-creationapproach, allowing stakeholder involvement in the assessment of both the globalperformanceofaproductorserviceanditspotentialadoptionbyusers.TheLivingLab concept is supported by the local authorities, which have embraced the ideaof a real-life space for designing, exploring, experiencing and refining sustainablesolutions.TheLivingLabnotonly functionsasapressurecooker foracceleratingchange, but the social, ecological and economic strategies that emerge can alsoinfluencelocaldecisionmakingandultimatelypoliciesforthesustainabletransitionofRotterdamasaresilientdeltacity.

ConceptHouseVillageNumerous technical solutions have been developed in the last twenty years. Theeffectivenessoftheseconceptsdependsonhowtheyareimplementedinthebuildingprocess and how future residents use them. Unlike most other products, such assmartphonesandcomputers,themostexpensiveproductweeveruse–ourhome–israrelytestedbeforeitislaunchedonthemarket.

ThepurposeofConceptHouseVillageistotestsustainablelivingconceptsinvariouskinds of prototype housing. Concept House Village will develop and test manyinnovative models for the Dutch housing market and dismantle them after a fewyears tosimulate theentire lifecycleof thebuilding.Thiswillbean internationalshowcaseofbuilding researchand innovationandaprimeexampleof sustainabledistrictdevelopment.

The construction of prototype housing is a collaborative effort by companies,researchinstitutes,publicinstitutionsand(collective)privatecontractors.Allthesepartiesareinvolvedininnovationinthebuiltenvironmentinbothnewhousingandexistingurbandevelopments.

Concept House Village is expected to develop into a building and knowledgecommunitywithinaperiodoffourtoeightyears.TheintendedresultistentotwentyprototypesofsustainablelivingintheNewVillageonHeijplaat(see Image 14).Situatedon sites made suitable for experimental housing, and given the status of a ‘freezone’,theseprototypescan,ifdesired,beconnectedtothemunicipalinfrastructureandutilities.Working together,constructioncompaniesandstudentswillhave thechancetodesign,buildandtesttheirprototypesaswellasusethemfortechnicalandbehaviouralresearch.Oncethedesignandbuildphasesarecomplete,visitorswillbeallowedintoseetheprototypesinaction.

Page 31: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

5958 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

MostretrofitprojectsintheNetherlandsfocusonreducingenergydemandthroughinsulationandmaking the installationsmoreefficient.Heating,and insomecasescooling, isalwaysachievedmechanically.BiobasedRetrofitexplores thepotentialsforreducingtheenergydemandbyadaptingtheformandinteriorconfigurationofthebuilding in relation to themicroclimate, therebyoptimising theuseofpassivesystemsandminimisingthedependencyonheavyinstallations.Energyperformance,resourceefficiency,comfort,interiorquality,logistics,upscalability,costsanduserco-creationwillbethedriversoftheresearchanddesign.Theeffectsofclimatechangewillbetakenintoaccount,resultinginaretrofitstrategythatwillbeabletodealwithincreasedcoolingdemandsinthefuture.

The design and research will focus on adapting the envelope and interior of thebuilding.Theuseofinterstitial(climate)zonesandthereconfigurationanddynamictemporaluseoftheinteriorasstrategieswillbeexploredinrelationtoenvironmentalperformance, comfort and user experience. The smart positioning and designof openings and (active) shading devices in relation to the movement of the sun,prevailing winds, vegetation, water and views will be parametrically brought intoalignment with performance and comfort aspects such as energy and materialperformance,thermal,hygrothermal,visualandacousticcomfort.

Figure 17.

BiobasedRetrofit[DoepelStrijkers,2012]

Thepotentialsofbiobasedmaterialswillbeexploredalongwiththeirenvironmentalimpactsandeffectoninteriorcomfort.TheuseofbiobasedmaterialsinretrofittinghasnotyettakenoffintheNetherlands.Manypeoplehavenegative‘eco’associationswithbiobasedmaterialsduetotheirnatural‘ecological’appearance.Asthismaybeanobstacletothelarge-scaleapplicationofrenewablematerials,itisimperativethatinnovativeexamplesthatdemonstratethediversepossibilitiesofthesematerialsaredeveloped.Besidestheenergyreductionsthatcanbeachievedthroughsmart(re)designoftheenvelope,integratedenergyproductiononlocationwillalsoformpart

Thehouseswillbeshowcasesforthelatesttechnologicalapplicationsinsustainableenergy,water,sanitationandintelligenthomes(homeautomation)onbothbuildinganddistrictlevels.Inaddition,ConceptHouseVillagewillfacilitatethedevelopmentand testing of innovations in public spaces and the surrounding infrastructure.Practical tests will take place while students and Heijplaat villagers are living inthehouses.

PracticalresearchConceptHouseVillageoffersresearchopportunitiesfor:1) Innovationsinthebuiltenvironment:innovativeprototypehousing,construction

elements, techniques and sustainable materials, new applications for publicspace,processinnovationandformsofcollaboration;

2) Sustainablebehaviourinthebuiltenvironment;3) Theeffectofthebuildingprocessoncurrentandfutureusers(residents),clients

andotherstakeholders.

Image 14.

ConceptHouseVillage,RotterdamHeijplaat[RutgerWirtz,2009]

Twoprototypehouses

BiobasedRetrofitTheBiobasedRetrofitpilotexploresthepotentialsofbioclimaticpassiveprinciplesincombinationwithsmartinnovationsforaffordableenergyneutralrenovationoftheexistinghousingstock(see Figure 17).IncollaborationwithWoonbron,HunterDouglas,Pantanova,StudioBouwhaven,ICDUBO,DGMRandDoepelStrijkers,theRotterdamAcademy of Architecture and the research chair for Sustainable Architecture andUrban(Re)DesignwillexplorethepossibilitiesforretrofittingsixsocialrentedhousesinConceptHouseVillage.

Page 32: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

6160 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Douglas,DoepelStrijkers,theRotterdamAcademyofArchitectureandtheresearchchairforSustainableArchitectureandUrban(Re)Design.TheambitionoftheActiveReUseconsortiumistoconstructanenergyplushousewith onsite energy production integrated into the building envelope. The researchwillexplorethepossibilitiesfortheflexibleuseanduseradaptabilityoftheinterior.Besides theobviousperformancecriteria relating toairquality, adequate thermalclimate and appropriate visual and acoustic comfort, the research and design willexplore how occupants can control the indoor climate and how the design canencourageresponsibleenvironmentalbehaviour.

Theidentificationofprimarymaterialsfromdemolitionflowsinthecomingdecadeswill determine the use of re(up)cycled materials, and will be key in defining theappropriate construction and sustainability concepts for the development of theprototype.Theuseofre(up)cycledmaterials, intheformofnewbuildingelementsdesignedwithdisassemblyandfuturereuseinmind,lowerstheenvironmentalimpactofthebuilding,reducingtheneedforresourcesfromelsewhere.

Oneofthecharacteristicsofbothactiveandpassivehousesinnortherncountriesistheuseoflargewindowareastoallowdeepdaylightpenetration.Thishasapositiveeffectontheinteriorqualityandvisualrelationshipstotheexterior.AccordingtotoHaaseetal. (2010),however,manypassivehouseshaveproblemswithoverheatingduring summer. Even in Norway the very well insulated buildings suffer fromoverheating during the period from March to October. This is natural if you buildwithlargeglassareasanddonotprovidesufficientsunscreeningandnaturalcrossventilationforcomfortduringsummer.TheActiveReUseconsortiumwillthereforeexplorethepotentialsforbothpassiveheatingandcoolingthoughthesmartdesignofthearchitecturalform,interiorconfigurationandbuildingenvelope.

Figure 18.

ActiveReUseHouse[DoepelStrijkers,2012]

oftheresearch.Asphotovoltaic(pv)panelsbecomecheaper,andefficiencycontinuestorise,theirwidespreaduseintheexitingurbanfabricwillincreasinglybecomeanaesthetic issue. Inmostcases,pvpanelsaresimplypastedontoexistingroofsanddonotaddtothevisualqualityoftheexistingstructure.Theintegrationofpvandsolarcollectorsinthedesignoftheenvelopewillthereforebeanimportantaspectoftheresearch.

Theresearchwillresultinaspecificdesignproposalforthestructureinquestion,butalso inacatalogueofgenericParametricBioclimaticDesignsolutionsformultipleorientations for this typology. The design research will continually be tested foreconomicfeasibilityandpotentialforupscaling.

ActiveReUseHouseTheimplementationofbioclimaticdesignprinciplesisaprerequisiteforachievingthelowenergybuildingsofthefuture.Inrecentyears,thelessonslearntfrompassivehousedesignhavebeenincorporatedintoanewconcept,theactivehouse.Theactivehouseprinciplesadoptsomeofthepassivehouseexperiencesandtakethemevenfurthertoaccountfortheindoorclimateandhealthoftheinhabitants(seehttp://www.

activehouse.info).

Theessentialcomponentsofthevisionareenergy,indoorclimateandenvironment.An active house integrates thedemandsof comfort, climate, energy, environmentandecologyintoanattractivewhole,resultinginincreasedarchitecturalqualityandhuman health and wellbeing. The design of the interior and the manner in whichenduserscan interactwith thespacesandsystemsof thedwellingaddtohumanenjoymentandsupportenvironmentallyresponsivefamilylife.

The Active ReUse House combines the principles of the active house with aninnovativestrategyforclosingmaterialcyclesdevelopedbyCirkelstad(see Figure 18).Cirkelstadaspirestocloseregionalmaterialcyclestotacklethechallengeofresourcescarcity.Thegoal is torealiseacirculareconomywithpositivesocial returns.TheActiveReUseHouseconsortiumwilltakethissocialaspectasapointofdeparturefor the development of the dwelling, drawing on new models of developmentthat involve people in a reintegration processes, such as ex-detainees, or schoolleaverswithoutadiploma.Learningmodulesrelatingtoeachstageofthebuildingprocess– fromdemolition to theproductionofnewbuildingelements fromre(up)cycled materials, to the construction of a building and final disassembly in thefuture – provide a means to empower a large disadvantaged group and integratethemintothemarket.TheActiveReUseHousewillbeanenergyplusdwellingbuiltsolely fromrecycledandrecyclablematerials thatcanbescaledupto thedistrictlevel. This will result in a prototype in concept House Village to test the conceptinpractice.

Consortium partners such as the Rotterdam Municipality, Van Gansewinkel andCirklestadwillplayanimportantroleintheresearchintomaterialflows.AdditionalpartnersincludeWoonbronandBAM,StudioBouwhaven,DWA,SBR,DGMR,Hunter

Page 33: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

6362 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

07 Conclusion

Greenhasclearlyenteredthemainstreamofthearchitecturalservice industry.Toensurethat itdoesnot justbecomecommodifiedbyourconsumeristsociety, it isessentialthattheprinciplesofintegralsustainabilityarewidelyadopted.Moreover,turning the challenges of climate change, energy and resource efficiency intomeaningfuldesignconstraintsrequiresasystemsapproach.This,however,increasesthecomplexitythatdesignershavetodealwith.Furtherdevelopmentoftoolsandmethodologies is needed to enable the entire building sector to assimilate theseprinciplesofintegralsustainabilityintopractice,andtoevaluatetheeffectsoftheirdesigndecisionsbeforeconstruction.

ParametricBioclimaticDesignisadesignapproachthatfusestheconceptsofclimateresponsivedesign,resourceefficiencyandcomfortatthebuildingandurbanscales.Itcombinesarangeofexistingmethodologiesandtoolsfortheelaborationofdesignconstraints to incorporate a broad range of sustainability issues into the designprocess.Thiswillenabledesignteamstoexploremoredesignoptionswithinavirtualspatial framework. The insights gained into the relationship between the designof buildings and the configuration of urban clusters, as well as their performancein terms of efficiency and comfort, will enable them to make more informeddesigndecisions.

Moreover, the Parametric Bioclimatic Design approach gives designers anunderstanding of the possibilities for integrating not only performance but alsoexperiential values into their design aesthetic. When embedded in a local climaticandculturalcontext,andcombinedwithsmartprocessesandfinancialconstructions,thisapproachwillhelpdesignerstocontributetothepositivedevelopmentofsocial,economicandecologicalcapital.

Page 34: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

6564 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Gane,V.(2004)ParametricDesign–aParadigmShift?MScThesis,MIT,Cambridge,Massachusetts,USA.http://dspace.mit.edu/handle/1721.1/28478

Gore,A.(2006)Aninconvenienttruth:ThePlanetaryEmergingofGlobalWarmingandWhatWeCanDoAboutIt,Rodale,NewYork.ISBN13-978-1-59486-567-1

Haase,M.;Buvik,K.Dokka,T.H.andI.Andresen(2010)GuidelinesforenergyefficiencyconceptsinofficebuildingsinNorway.SINTEFBuildingandInfrastructureProjectReportno56.ISBN978-82-536-1153-2,http://www.sintef.no/home/Publications/Publication/?

pubid=SINTEF+A17293

Hagendijk,K.(2012)Destadalsenergie-installatie;Energieenruimte.Verslag9eNAi‐lezingAndyVandenDobbelsteen;JulianeKürschner;DuzanDoepel,26januari2012.http://www.gebiedsontwikkeling.nu/workspace/uploads/2012.1.26_de-stad-als-energie-

ins-1328307542.pdf

Hedegaard,C.(2011)KeynotespeechattheActiveHouseSymposiumonthe14thofApril2011inBrussels.http://www.activehouse.info/join-us/active-house-alliance/video-connie-

hedegaard

Hellinga,C.(2010)TheenergysupplyofTheNetherlandsToday(andtomorrow?){inDutch}publicationrelatedtotheKIVINIRIAconferenceSustainableuseofenergy9Dec2010,TUDelft.http://home.tudelft.nl/fileadmin/UD/MenC/Support/Internet/TU%20Website/

TU%20Delft/Images/Onderzoek/DRI_Energy/Boekje_Energievoorziening_van_Nederland_-_A4_versie.pdf

Huynen,M.,Martens,P.,Schram,D.,Weijenberg,M.andKunst,A.(2001)TheimpactofheatwavesandcoldspellsonmortalityratesintheDutchpopulation.EnvironmentalHealthPerspectives,109(5):463-470

Hyde,R.(ed.)(2008)BioclimaticHousing,innovativedesignsforwarmclimates,Earthscan,Londen.ISBN978-1-84407-284-2

IntergovernmentalPanelonclimateChange(2007)ClimateChange2007,Cambridge,CambridgeUniversityPress.www.ippc.ch

JonesD.,(1998)Architectureandtheenvironment,London,LaurenceKingPublishing.ISBN978-0879518196

Kilian,A.(2004)QuotefrominterviewwithGane,V.inMarch2004.

Loh,J.,Collen,B.,McRae,L.,Holbrook,S.,Amin,R.,Ram,M.,andBaillie,J.(2006)LivingPlanetIndex.LivingPlanetReport(ed.ByJ.Loh&S.Goldfinger),WWF,Gland,Switzerland.

Loonen,R.(2010)ClimateAdaptiveBuildingShells;canwesimulate?MScthesisTUEindhoven.http://www.bwk.tue.nl/bps/hensen/team/past/master/Loonen_2010.pdf

References

Appenzeller,T.(2004)“TheEndofCheapOil”.NationalGeographicMagazine[OnlineExtraJune2004].http://ngm.nationalgeographic.com/ngm/0406/feature5/fulltext.html

Bayley,S.(ed.)(1989)CommerceandCulture:FromPre-IndustrialArttoPost-IndustrialValue,London,PenhurstPress.ISBN0-947795-44-8

Birkeland,J.(2008)PositiveDevelopment:FromViciousCirclestoVirtuousCyclesThroughBuiltEnvironmentDesign,London,Earthscan.ISBN978-1-84407-578-2

Boardman,B.(1991)FuelPoverty:Fromcoldhomestoaffordablewarmth,London,Bellhaven.

Bosschaert,T.andGladek,E.(2010)Polydome–SustainableAgricultureSystemExceptIntegratedsustainability.http://www.except.nl

Croon,JW.(2012)Energiesprong->E=0Businesscase.PresentationCOPjune18th2012.

Daniëls,B.andKruitwagen,S.(eds)(2010)Referentieraming2010–2020,RapportageECN-E--10-004/PBL500161001assignmentofEnergieonderzoekCentrumNederlandenPlanbureauvoordeLeefomgeving.

Dobbelsteen,A.vanden(2008)655:Towardsclosedcycles–NewstrategystepsinspiredbytheCradletoCradleapproach,ProceedingsofPLEA2008–25thConferenceonPassiveandLowEnergyArchitecture,22–24October,Dublin,Ireland.http://architecture.ucd.ie/Paul/PLEA2008/content/papers/oral/plea_finalpaper_ref_655.pdf

Dobbelsteen,A.vanden,Tillie,N.,Fremouw,M.,Wisse,K.,andDoepel,D.(2011)REAP2Rotterdamseenergieaanpak&-planning2,OnderzoeksrapportTUDelft.http://repository.tudelft.

nl/view/ir/uuid%3Ad3af401f-42fd-4c5d-9c7e-9ed87f755870/

EuropeanCommission(2011)AResource-efficientEurope,FlagshipinitiativeundertheEurope2020Strategy,reportCOM(2011)21CommunicationfromthecommissiontotheEuropeanparliament,thecouncil,theEuropeaneconomicandsocialcommitteeandthecommitteeoftheregions.http://ec.europa.eu/resource-efficient-europe/pdf/resource_efficient_europe_en.pdf

EuropeanParliament(2010)Directive2002/31/EUontheenergyperformanceofbuildings.http://www.energy.eu/directives/2010-31-EU.pdf

Faud-Luke,A.(2009)DesignActivism–BeautifulStrangenessforaSustainableWorld,Earthscan,London.ISBN978-1-84407-644-4

Page 35: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

6766 CreatingComfortableClimaticCities CreatingComfortableClimaticCities

Voorburg,A.(2010)SustainableUrbanDevelopment:anethicChallenge,ContinuesChange.KnowledgeCollaboration&LearningforSustainableInnovation,ERSCP-EMSUconference,Delft,TheNetherlands,October25–29.repository.tudelft.nl/

assets/.../242_Voorburg.pdf

Wackernagel,M.andRees,W.(1996)OurEcologicalFootprint:ReducingHumanImpactontheEarth.GabriolaIsland,Canada,NewSocietyPublishers.

WNA(2012)SupplyofUranium,updatedaugust2012.http://world-nuclear.org/info/inf75.

html

AllwebsitesvisitedSept11th2012

ArchitecturalInformation

DoepelStrijkers(2010)HAKArecycleoffice,Rotterdam,TheNetherlandshttp://www.doepelstrijkers.com/#/projects/70/HAKA+RECYCLE+OFFICE/

RenzoPiano(1998)Jean-MarieTjibaouCulturalCentreinNouméa,NewCaledoniahttp://en.wikipedia.org/wiki/Jean-Marie_Tjibaou_Cultural_Centreandhttp://www.rpbw.com/

PhilippeRahm(2010)Convectiveapartments,Hamburg,Germanyhttp://www.philipperahm.com/data/projects/convectiveapartments/

T.R.HamzahandYeang(2008)SpireEdgeEcoOfficeComplex,Manesar,Indiahttp://spireedge.wordpress.comandhttp://www.trhamzahyeang.com/

O’ConnorR.andKilham(1959)TheLehmanHallfromtheBarnardCollege,NewYork,USAhttp://midcenturymundane.wordpress.com/2011/07/16/lehman-hall-barnard-college-

morningside-heights-nyc/

Maas,W.,Haikola,P.andHackauf,U.(2010)GreenDream.HowFutureCitiesOutsmartNature,NaIPublishers.ISBN978-90-5662-741-6

Manzini,E.(1997)Leapfrog–designingsustainability.Domus789(1):43-51.

McDonoughW,andBraungart,M.(2002)Cradle-to-Cradle:RemakingtheWayWeMakeThings,Northpointpress,NewYork.ISBN0-86547-587-3

MeyerBoake,T.(2008),TheLeaptoZeroCarbonandZeroEmissions;Understandinghowtogobeyondexistingsustainabledesignprotocols,JournalofGreenBuilding,3(4):64-77.

Olgyay,V.andOlgyay,A.(1963)DesignWithClimate:BioclimaticApproachtoArchitecturalRegionalism,PrincetonUniversityPress.

Owen,N.,InderwildiO.andD.King(2010).“Thestatusofconventionalworldoilreserves—Hypeorcauseforconcern?”.EnergyPolicy38(8):4743–4749.

Parlour,R.(2000)BuildingServices;AGuidetoIntegratedDesign-EngineeringforArchitects,IntegralPublishing,Pymble.ISBN0646342606

Pierce,J.(2007)2003WorldConsumptionCartogram.http://www.pthbb.org/natural/footprint/img/

cartogram.png

Rahm,P.(2009)MeteorologicalArchitecture,ArchitecturalDesign79(3)30-41.

Rahm,P.(2010)PhillipeRahm:aBuildingasaConvectiveForm,DomusJanuary19th2010.http://www.domusweb.it/en/architecture/philippe-rahm-a-building-as-a-convective-form/

Stern,N.(2006).SternReviewonTheEconomicsofClimateChange.HMTreasury,London.

Tillie,N.,Dobbelsteen,A.vanden,Doepel,D.,Jager,W.de,Joubert,M.andMayenburg,D.(2009)TowardsCO

2NeutralUrbanPlanning–IntroducingtheRotterdamEnergyApproach

&Planning(REAP)JournalofGreenBuilding,4(3):103–112.

Tillie,N.;Aarts,M.;Marijnissen,M.;Stenhuijs,L.;Borsboom,J.;Rietveld,E.;Doepel,D.;Visschers,J.andS.Lap(2012)Rotterdam–Peoplemaketheinnercity;Densification+Greenification=SustainableCity.Issuedontheoccasionofthe5thInternationalArchitectureBiennaleRotterdam,April–August2012.

VanHampton,T.(2010)GreenBuildingthrivesinshakyeconomy,EngineeringNews-Record11/24/10.http://enr.construction.com/

Vollaard,P.(2012)EeuwigLente,detypologievanhettussenklimaat,in:Vink,J.,Vollaard,P.,Heuvel,D.vanden,Gameren,P.enAndel,F.van,DASH:Hetecohuis,typologieënvanruimte,bouwenenwonen/TheEcohouse,typologiesofspace,buildingandliving,NaI-uitgeverij.ISBN978-90-5662-853-6

Page 36: Creating Comfortable Climatic Cities - Hogeschool Rotterdam · 2015-08-18 · opportunities and threats (Faud-Luke, 2009). This integrated definitionand approach to design has not

After decades of being deemed the idealistic hobby of a niche group of fanatics, Green has finally entered the mainstream of the architectural service industry. However, most architects and urban planners are not yet adequately equipped to translate the challenges of climate change and resource and energy depletion into integrated sustainable solutions.

Parametric Bioclimatic Design is an approach that fuses the concepts of climate responsive design, resource efficiency and comfort at the interior, building and urban scales. It combines a range of existing methodologies and tools for elaborating design constraints to incorporate a broad range of sustainability issues into the design process. Climate and comfort are brou-ght into alignment, forming valuable design instruments that link the realms of architecture, engineering and building. The aim is to develop regionally specific, climate responsive designs that are socially and culturally embed-ded in the local context through the appropriate use of materials, state-of-the-art technologies and building traditions. When combined with smart processes and financial constructions, this approach will help designers to contribute to the positive development of social, economic and ecological capital. The research chair for Sustainable Architecture and Urban (Re)Design at Rotterdam University of Applied Science is headed by Professor Duzan Doepel. Trained in South Africa and the Netherlands, Doepel draws on third world design and development strategies to inform the local sustainability discourse. His practice, DOEPEL STRIJKERS, strives to bridge the gap be-tween research and design through the realisation of integrated sustainable interior and architectural projects and the development of urban strategies.

Creating Comfortable Climatic CitiesComfort and Climate as Instruments for Healthy Interior, Architectural & Urban (Re)Design

ISBN 978 90 5179 800 5