creating)ausable)power)supply)from)asolar)panel)ausable)power)supply)from)asolar)panel)...

7
Creating a Usable Power Supply from a Solar Panel An exploration in DCDC converters By Kathleen Ellis Advised by Dr. Derin Sherman Department of Physics, Cornell College November 21, 2012 Introduction Over the course of the past couple of decades solar power has become more and more attractive due to the increased awareness of environmental issues and emphasis on sustainability. However with relatively low conversion efficiencies and low power outputs solar power is impractical for many applications. For this reason it is extremely important to efficiently convert the solar output into a usable form of power. There are two major problems with using the output that comes directly from solar panels. Firstly they tend to output higher DC (Direct Current) voltage than most loads use. The panel I had to work with was rated at 18 volts 0.3 amps DC at maximum power. The most common forms of power are wall outlets and more recently charging devices via USB port. Wall outlets provide 120 volts AC (alternating current) and USB ports provide 5 volts DC. These are both very different forms than a direct current 18 volt source. No electronics that need either of the two most common power supplies are able to directly use the solar output. The second problem is the fact that the solar panel will only output its rated power on a sunny day and even then the voltage and current output of the panel is at the mercy of the clouds. I found that even small clouds can drastically affect the output of the solar panel. A fluctuating power supply is also very undesirable for any kind of electronic device that might be hooked up to the solar panel. These two problems outlined above were what I set out to solve over the course of this project. I decided on a USB (5 volt DC) power supply instead of a 120 AC power supply because of the power output of the solar panel I was working with. Since a USB port supplies 5 volts and between 0.5 and 1.5 amps depending on the type of USB port [2], the goal of this project was to create a relatively constant 5v power supply that could output between 0.5 and 1 amp. Theoretically this power supply would be used to provide free solar powered USB charging ports around campus for the Cornell community to use. This paper explores the theory behind different types of DCDC converters and how they performed in this project.

Upload: trancong

Post on 06-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Creating  a  Usable  Power  Supply  from  a  Solar  Panel  An  exploration  in  DC-­‐DC  converters  

 By  Kathleen  Ellis  Advised  by  Dr.  Derin  Sherman  Department  of  Physics,  Cornell  College  

 

November  21,  2012  

 

Introduction  

Over  the  course  of  the  past  couple  of  decades  solar  power  has  become  more  and  more  attractive  due  to  the  increased  awareness  of  environmental  issues  and  emphasis  on  sustainability.  However  with  relatively  low  conversion  efficiencies  and  low  power  outputs  solar  power  is  impractical  for  many  applications.  For  this  reason  it  is  extremely  important  to  efficiently  convert  the  solar  output  into  a  usable  form  of  power.    

There  are  two  major  problems  with  using  the  output  that  comes  directly  from  solar  panels.  Firstly  they  tend  to  output  higher  DC  (Direct  Current)  voltage  than  most  loads  use.  The  panel  I  had  to  work  with  was  rated  at  18  volts  0.3  amps  DC  at  maximum  power.  The  most  common  forms  of  power  are  wall  outlets  and  more  recently  charging  devices  via  USB  port.  Wall  outlets  provide  120  volts  AC  (alternating  current)  and  USB  ports  provide  5  volts  DC.  These  are  both  very  different  forms  than  a  direct  current  18  volt  source.  No  electronics  that  need  either  of  the  two  most  common  power  supplies  are  able  to  directly  use  the  solar  output.    

The  second  problem  is  the  fact  that  the  solar  panel  will  only  output  its  rated  power  on  a  sunny  day  and  even  then  the  voltage  and  current  output  of  the  panel  is  at  the  mercy  of  the  clouds.  I  found  that  even  small  clouds  can  drastically  affect  the  output  of  the  solar  panel.  A  fluctuating  power  supply  is  also  very  undesirable  for  any  kind  of  electronic  device  that  might  be  hooked  up  to  the  solar  panel.    

These  two  problems  outlined  above  were  what  I  set  out  to  solve  over  the  course  of  this  project.  I  decided  on  a  USB  (5  volt  DC)  power  supply  instead  of  a  120  AC  power  supply  because  of  the  power  output  of  the  solar  panel  I  was  working  with.  Since  a  USB  port  supplies  5  volts  and  between  0.5  and  1.5  amps  depending  on  the  type  of  USB  port  [2],  the  goal  of  this  project  was  to  create  a  relatively  constant  5v  power  supply  that  could  output  between  0.5  and  1  amp.  Theoretically  this  power  supply  would  be  used  to  provide  free  solar  powered  USB  charging  ports  around  campus  for  the  Cornell  community  to  use.  This  paper  explores  the  theory  behind  different  types  of  DC-­‐DC  converters  and  how  they  performed  in  this  project.  

 

 

Theory  

DC-­‐DC  Conversion  

In  order  to  change  the  voltage  that  the  solar  panel  is  putting  out  to  5  volts  it  is  necessary  to  temporarily  store  energy  somewhere  in  order  to  release  it  to  the  load  at  a  different  voltage.  This  is  usually  done  by  storing  the  energy  in  either  an  electric  field  (using  capacitors)  or  a  magnetic  field  (using  inductors)  but  can  also  be  done  using  a  transformer  (also  uses  a  magnetic  field)  if  you  convert  the  DC  voltage  into  AC  before  raising  or  lowering  the  voltage.  In  the  case  of  solar  panels  we  are  only  interested  in  converting  the  voltage  down  to  5  volts  because  when  the  solar  panel  is  outputting  less  than  5  volts  it  does  not  output  enough  power  to  provide  over  0.5  amps.    In  this  section  the  theory  and  circuit  diagrams  of  different  DC-­‐DC  converters  are  discussed  as  well  as  the  feasibility  in  application  to  solar  panels.    

Transformer  

A  transformer  is  really  an  AC  to  AC  converter  that  can  be  used  for  DC  by  converting  the  DC  power  into  AC  and  then  the  AC  back  into  DC.  The  advantage  of  the  transformer  converter  is  that  the  ratio  of  the  input  voltage  to  the  output  voltage  can  be  chosen  by  changing  the  ratio  of  the  number  of  turns  on  the  primary  winding  to  the  number  of  turns  on  the  secondary  winding  as  is  illustrated  by  the  equation:  

 !!!!=!!!!

 

The  transformer  converter  is  ideal  for  applications  where  the  input  needs  to  be  electrically  isolated  from  the  output  of  the  circuit  because  the  input  and  output  are  only  connected  via  a  magnetic  field.  The  fact  that  there  is  no  electrical  contact  is  necessary  for  some  applications.  [3]  

However  for  the  purpose  of  this  project  the  transformer  is  not  the  the  most  promising  converter  because  it  would  waste  power  converting  to  AC  and  back.    

Linear  Voltage  Converter  

Linear  Voltage  converters  are  the  simplest  of  voltage  converters.  They  convert  the  extra  voltage  into  heat  via  resistor.  As  you  can  see  in  Figure  2  they  are  simple  devices.  They  use  a  comparator  and  a  reference  voltage  to  control  a  switch  to  keep  the  output  steady  at  the  desired  voltage.  A  simple  voltage  regulator  circuit  from  M.  Wens  and  M.  Steyaert’s  book  is  shown  in  Figure  2.  [4]    

Figure  1:  Circuit  Diagram  showing  DC  to  AC  conversion  AC  to  AC  and  then  rectification  back  to  DC  

The  Linear  Voltage  Converter  is  useful  in  applications  where  you  are  worried  about  space  because  inductors  and  capacitors  are  more  bulky  than  resistors.  However  the  goal  of  this  project  is  efficiency  not  space.  Wasting  the  precious  solar  energy  into  heat  it  is  not  a  very  efficient  way  to  convert  voltage.  In  the  case  of  this  project,  it  does  not  align  with  our  goals.  

Buck  Converter  

Buck  converters  use  a  combination  of  an  inductor  and  capacitor  to  store  energy  in  a  magnetic  field  and  electric  field.  A  circuit  diagram  of  a  basic  buck  converter  is  shown  in  Figure  3.  When  the  switch  is  closed  the  inductor  and  capacitor  are  charged  by  the  input  voltage,  in  this  case  a  solar  panel.  The  output  current  comes  through  the  inductor  into  the  load.  When  the  switch  is  closed  the  inductor  opposes  the  change  in  current  so  it  discharges  it's  energy  into  the  load  until  it  has  no  more  energy  stored  in  it's  magnetic  field.  If  the  switching  speed  of  the  circuit  is  low  enough  that  the  inductor  is  allowed  to  fully  discharge  the  capacitor  takes  over  in  supplying  voltage  and  current  to  the  load  until  it  is  fully  discharged.  

In  general  in  Buck  converters  the  duty  cycle  of  the  switch  signal  is  proportional  to  the  ratio  of  output  voltage  to  input  voltage  as  is  demonstrated  by  the  following  equation:  

 !!"#!!"

= !"#$  !"#$% =  !!"!

 

Where  Ton  is  the  time  the  switch  is  on  per  cycle  and  T  is  the  time  per  cycle.  Assuming  the  converter  was  perfect  and  had  no  internal  resistances  due  it's  components  the  current  and  voltage  would  be  related  by  the  following  equation  [2  Jaycar]  

!!"!!"#

=  !!"#!!"

 

The  current  draw  and  resistance  of  the  load  are  also  important  aspects  to  consider  when  designing  a  buck  converter.  If  the  duty  cycle  and  switching  frequency  are  constant  the  amount  of  ripple  in  the  output  voltage  is  determined  by  the  time  constant  of  the  RC  circuit  created  between  the  capacitor  and  load  resistance.  In  order  to  produce  a  small  amount  of  ripple  the  time  constant  should  be  very  large  compared  to  the  period  of  the  signal  frequency.  [1]  Since  the  buck  converter  does  not  waste  power  to  heat  through  a  resistor  or  creating  an  alternating  current  it  would  make  a  good  choice  for  the  purposes  of  solar  power  conversion.  

Switched  Capacitor  Converter  

Switched  Capacitor  (SW)  Converters,  also  referred  to  as  charge  pumps,  use  only  capacitors  to  step  down  or  step  up  the  voltage.  In  this  case  we  are  only  interested  in  stepping  down  the  voltage  for  reasons  discussed  earlier.  The  idea  is  to  temporarily  store  energy  in  the  electric  field  of  the  capacitors  while  the  configuration  of  the  circuit  is  switched  and  then  release  this  energy  into  the  load  in  a  different  

Figure  2:  A  simple  Linear  Series  Voltage  Converter  

configuration  creating  a  new  voltage.  In  the  use  of  switches  the  SC  converter  is  similar  to  the  Buck  converter.  One  of  the  major  differences  is  that  in  a  SC  converter  the  ratio  of  input  to  output  voltage  is  predetermined  by  the  topology  of  the  circuit,  while  in  the  Buck  converter  the  ratio  is  determined  by  the  duty  cycle  of  the  switch  control  signal.    

There  are  many  different  circuit  topologies  that  are  used  in  standard  SC  chips  and  have  been  studied  in  detail.  Many  common  topologies  can  be  found  in  this  paper  [6].  The  basic  idea  of  a  switched  capacitor  converter  is  to  create  a  network  of  capacitors  connected  by  switches.  Then  based  on  the  set  of  switches  that  is  turned  on  the  bank  of  capacitors  is  either  being  charged  by  the  input  voltage  or  discharging  at  a  different  voltage  to  the  output.  [5]  

Shown  in  Figure  4  is  a  Switched  capacitor  converter  that  halves  the  Input  voltage  by  switching  between  the  bank  of  capacitors  in  series  and  parallel.  As  you  can  tell  in  the  figure  the  ratio  between  input  and  output  voltage  is  not  easily  changeable  because  the  output  voltage  (½  input  voltage)  is  determined  by  the  way  the  capacitors  are  attached  in  the  capacitor  charging  phase  (when  the  “A”  switch  is  closed).  

In  this  particular  circuit  topology  shown  in  Figure  4  each  capacitor  is  charged  up  to  half  the  input  voltage  when  the  A  switch  is  turned  on.  When  the  A  switch  is  turned  off  and  B  switches  turned  on  the  capacitors  discharge  their  voltage  (½  input  voltage)  into  the  load.  

 

Procedure,  Results  and  Discussion  

Simple  Capacitor  converter  

The  first  circuit  was  made  using  a  just  a  capacitor.  A  diagram  of  the  circuit  is  shown  in  Figure  3.  The  idea  behind  this  circuit  is  to  charge  up  a  big  capacitor  to  the  desired  voltage,  in  this  case  5  volts.  Theoretically  this  should  create  a  more  stable  voltage  output  with  less  

fluctuation  in  voltage  at  the  load  than  at  the  solar  output.  If  the  voltage  on  the  capacitor  reached  5  volts  the  switch  would  be  closed,  stopping  the  capacitor  from  charging  to  a  higher  voltage.  Then  the  capacitor  would  discharge  into  the  load  until  it’s  voltage  was  below  4.98v  at  which  point  the  switch  is  closed  again  to  allow  the  capacitor  to  charge  up.  The  switching  was  done  at  a  rate  of  1k  hz.  In  order  to  turn  the  switch  on  and  off  at  the  appropriate  times  a  signal  was  needed  that  went  to  zero  volts  at  when  the  capacitor  was  at  5  volts  and  to  5  volts  when  the  capacitor  reached  4.98.    

This  was  accomplished  by  creating  a  slightly  complicated  Schmitt  trigger.    Normally  Schmitt  triggers  utilize  a  comparator,  a  couple  resistors  of  specific  sizes  and  a  negative  and  positive  rail  

Figure  4:  Simple  capacitor  charging  circuit  

Figure  3:  Step-­‐down  Switched  capacitor  converter  designed  to  decrease  input  voltage  by  half  

voltage.  The  problem  was  that  in  the  solar  circuit  there  was  no  negative  voltage  source  because  it  was  powered  solely  by  the  solar  panel.  Because  of  this  slight  complication  a  configuration  using  two  311  comparators  was  used.1  

In  the  beginning  one  of  the  problems  with  this  circuit  was  what  to  use  as  a  switch.  In  a  standard  MOSFET  the  gate  voltage  needs  to  be  5-­‐10  volts  higher  than  the  drain.  This  was  not  possible  to  do  because  the  gate  was  driven  by  a  logic  signal  (0  or  5  volts)  from  a  555  oscillator  and  the  drain  voltage  also  needed  to  be  5  volts.  For  this  reason  the  solid-­‐state  relay  chip  LH1511  was  used.  This  type  of  relay  chip  uses  an  LED  to  activate  photodiodes  so  the  control  signal  just  needs  to  be  enough  to  turn  on  the  LED.      

After  the  circuit  worked  inside  I  took  it  outside  to  test  the  circuit  under  real  conditions,  on  a  sunny  day  in  November  the  capacitor  output  0.02A.  This  is  less  than  5%  of  the  rated  output  of  a  USB  port.  With  this  kind  of  performance  this  circuit  was  discarded  because  the  capacitor  was  not  outputting  enough  current  to  charge  any  kind  of  device.    

Difficulties  

After  the  single  capacitor  circuit  was  rejected  the  idea  of  a  switched  capacitor  converter  was  proposed  and  built.  However  after  a  couple  days  of  troubleshooting  the  converter  was  still  not  working.  As  a  desperate  attempt  a  transformer  converted  was  built  according  to  the  circuit  described  in  the  theory  section.  The  transformer  ended  up  being  the  wrong  size  for  

                                                                                                                         1  The  Schmitt  trigger  circuit  configuration  was  obtained  in  Dr.  Derin  Sherman’s  graduate  thesis  which  can  be  found  here:  http://dspace.mit.edu/handle/1721.1/33487    

the  desired  conversion.  After  these  missteps  it  was  discovered  that  the  breadboard  of  the  original  switched  capacitor  circuit  was  shorted.  The  circuit  worked  when  moved  to  a  new  breadboard.  

 

The  Final  Circuit  

The  final  circuit  was  a  switched  capacitor  parallel-­‐series  step-­‐down  converter.  As  you  can  see  in  Figure  6  the  circuit  is  very  similar  to  the  circuit  described  earlier  in  the  theory  section.  However  since  the  solar  panel  puts  out  18  volts  it  is  necessary  to  third  the  voltage  instead  of  halve  it.  Other  than  the  step-­‐down  ratio  the  circuit  works  the  same  as  the  example.  When  the  “A”  switches  are  closed  the  capacitors  are  in  series  connected  to  the  solar  panel  causing  them  to  each  charge  up  to  1/3  the  input  voltage,  in  this  case  6  volts.  When  the  “B”  switches  are  closed  the  capacitors  are  hooked  up  in  parallel  and  to  the  holding  capacitor.  In  phase  B  the  holding  capacitor  is  charged  with  6  volts.  The  circuit  is  shown  in  Figure  5.  

The  idea  in  this  circuit  is  to  output  triple  the  current  that  the  solar  panel  was  outputting.  As  each  capacitor  charges  up  at  the  voltage  and  current  of  the  solar  panel  and  then  discharges  at  the  same  current  but  now  there  are  3  capacitors  all  outputting  the  solar  current  which  

Figure  5:  The  final  switched  capacitor  circuit.  When  A  switches  are  closed  the  three  capacitors  are  connected  in  series.  When  B  switches  are  closed  the  three  capacitors  are  connected  in  parallel.  

creates  triple  the  current  going  to  the  holding  capacitor.    

The  problem  with  the  circuit  as  I  have  described  it  is  that  the  holding  capacitor  is  only  charging  for  the  time  that  the  “B”  switches  are  on.  In  order  to  fix  this  problem  another  bank  of  capacitors  was  add  with  the  identical  switch  configuration.  The  two  circuits  were  timed  so  that  when  one  bank  was  discharging  into  the  holding  capacitor  the  other  bank  was  charging  from  the  solar  panel  and  vice  verse.  In  this  configuration  there  was  always  a  capacitor  bank  providing  current  to  the  holding  capacitor.  

In  the  final  circuit  two  banks  of  capacitors  were  used  with  two  SC  converters.  The  capacitors  used  in  the  capacitor  banks  were  470μF.  The  holding  capacitor  was  a  0.06F  capacitor.  The  switches  were  solid-­‐state  relay  chip  LH1511.  The  chips  were  hooked  up  in  AC  mode.  The  switches  were  turned  on  and  off  by  a  555  oscillator  and  a  not  gate.  The  not  gate  was  needed  because  when  some  switches  were  receiving  the  on  signal  (5  volts)  others  needed  an  off  signal  (0  volts)  and  vice  versa.  A  linear  voltage  regular  was  used  to  power  the  not  gate  and  the  555  oscillator.  While  this  wasted  power  it  was  necessary  to  have  5  volts  to  run  these  chips.    

On  a  relatively  sunny  day  the  holding  capacitor  outputted  0.15  amps  at  4  volts.  While  this  was  greater  than  the  output  current  of  the  original  circuit  it  was  far  less  than  ideal.  Especially  considering  that  the  solar  panel  was  also  outputting  0.15  amps.  For  some  reason  the  tripling  of  the  current  was  not  happening.  The  voltage  on  the  capacitor  also  fluctuated  depending  on  the  output  of  the  solar  panel.    

The  final  circuit  did  not  tripling  the  current  as  expected.  Possible  problems  were  the  solar  panel  not  outputting  it’s  rated  current  at  maximum  power,  the  circuit  was  not  operated  in  the  maximum  power  range  of  the  solar  panel,  too  much  power  was  being  used  by  the  circuit  elements,  and  the  load  resistance  and  current  

draw  was  not  accounted  for  in  the  design  of  the  circuit.    Most  likely  some  combination  of  these  factors  was  creating  the  less  than  ideal  output  current  and  voltage  of  the  final  circuit  configuration.  

Conclusion  

In  the  end  none  of  the  circuits  that  were  built  met  the  goals  of  the  project.  It  turned  out  that  the  most  difficult  part  was  outputting  enough  current.  Using  a  larger  solar  panel  could  solve  this  problem,  however  this  option  would  satisfy  the  goal  of  efficiency.      Future  work  

A  more  detailed  analysis  of  the  current  flow  through  the  switched  capacitor  circuit  including  the  holding  capacitor  and  load  resistance  is  needed  in  order  to  understand  what  is  going  wrong  and  make  a  circuit  that  can  meet  the  goals.  Further  research  into  any  of  the  problems  mentioned  in  the  final  circuit  section  would  greatly  help  improve  the  performance  of  the  circuit.  

A  true  Buck  converter  was  never  implemented  over  the  course  of  the  project.  The  Buck-­‐converter  should  be  considered  as  a  viable  way  to  meet  the  goals  of  the  project.  Theoretically  it  should  be  possible  to  regulate  the  output  voltage  via  duty  cycle  depending  on  the  input  coming  from  the  solar  panel.  It  would  allow  for  a  more  constant  voltage  and  hopefully  boosted  current  flow  to  the  load  if  properly  designed.    

Another  interesting  avenue  of  research  would  be  to  create  a  converter  that  outputted  120  volts  alternating  current.  This  would  need  a  larger  solar  panel  to  be  able  to  generate  enough  current.  However  it  would  also  be  a  usable  form  of  power.    

 

References  

[1]University  of  Technology  Sydney.  Step-­‐down  Buck  converter:  Ideal  circuit.  1999.  http://services.eng.uts.edu.au/~venkat/pe_html/contents.htm  (accessed  2012).  

[2]Anthony,  Sebastian.  Extreme  Tech.  January  24,  2012.  http://www.extremetech.com/computing/115251-­‐how-­‐usb-­‐charging-­‐works-­‐or-­‐how-­‐to-­‐avoid-­‐blowing-­‐up-­‐your-­‐smartphone  (accessed  November  19,  2012).  

[3]  Jaycar  Electronics.  "Jaycar  Electronics  Reference  Datasheet."  2001.  http://www.jaycar.com.au/images_uploaded/dcdcconv.pdf  (accessed  November  20,  2012).  

[4]M.  Wens,  M.  Steyaert.  "Basic  DC-­‐DC  Converter  Theory."  In  Design  and  Implementation  of  Fully-­‐Integrated  Inductive,  27-­‐63.  DOI  10.1007/978-­‐94-­‐007-­‐1436-­‐6_2:  Springer  Science+Business  Media,  2011.  

[5]  M.D  Seeman.  A  Design  Methodology  for  Switched-­‐Capacitor  DC-­‐DC  Converters.  Graduate  thesis    University  of  California  Berkley.  2009  

[6]  M.D  Seeman,  S  Sanders.  “Analysis  and  Optimization  of  Switched-­‐Capacitor  DC–DC  Converters”.  IEEE  TRANSACTIONS  ON  POWER  ELECTRONICS,  VOL.  23,  NO.  2,  MARCH  2008.