designed and detailed cp110-1972 higgins and hollington

Upload: structengresearcher

Post on 06-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    1/29

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    2/29

    esg eJ.B.Higgins and M.R.Hollington

    ContentsTntroduction

    2 Li Init sta te design6 Design information7 Structural summary sheer8 FloorsJab10 Main beam16 Edge beam1 8 Columns22 Foundation24 Shear wall26 Staircase2 8 Simplif ied des ign char ts

    '1

    a dIntroduetlonThe purpose of th is bookle t is to exp lain the basis of lim it state design and toi ll us tr at e i ts p ra ct ic al a pp li ca ti on by m eans of a sim ple worked exam ple for areinforced concrete bui Iding frame.The calculations and details are presentedin a form suitable for d esign office p urposes and conform w ith the principlerecom m ende d in the fo llow ing publ ications:The Building Regulations 1972. L on don, H .M .S .D .CP 3. Code cf'basic datafor the design ofbuikiings. Chapter V. Loading.P arts 1 (1 96 7) and 2 (197 2). L ond on, B ritish S tand ard s In stitu tion.CP 110: [972. Code of Practice/or the structural use ofconcrete. Parts 1 and 2.London, British Standards Institution.(T il is publication is know n fam iliarly as 'the U n ified C ode")Handbook on the Unified Code/or structural concrete re p llO: 1972).London, Cem ent and Concrete Association, 1972.B .S _4 46 6: 1 96 9. Specifica lion/or bending dimensions and scheduling ofharfor the reinforcement oJco 11 crete. London, British Standards Institution.Standard method a/detailing reinforced concrete. London .The Conc re teS ociety and the Institu tion of S tructural E ngine ers, 1970.Model procedure/or the presentation 0/ calculations. Loridon.The ConcreteS ocie ty , 1 97 2.Itshould be noted that, when a problem occurs m ore than once in the designexample, it is sometimes tre ate d in d ifferen t w ays in orde r to illu strat e asm any of the recom m endations in the C ode" as possib le . it is hoped that thecalcu Ia rio n s a nd details wi I I fa rn il i ar i z e t he reader wi th the eve ryda yap plication of lim it state d esig n.*AU unqualified references in the text to 'the Code' refer to CP 110,

    . . .

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    3/29

    I

    Object[ve

    Oharactertstl v ~ues

    Partial safety tactors

    2

    iIII51

    When a structure, or part of a structure, becomes 1 . 1 1 1 fit for use, it is said to havereached a limit state. Unfitness for use can arise in various ways and the aim of thel imi t state design isto provide an acceptable probability th a L a structure will no treach any of the limite sta tes duri ng its worki ng life.Limit states can be placed in two main categories:(1) the ultimate limit state which isconcerned with the maximum load-carryingcapacity of the structure:(2) the serviceability limit states, which are concerned with the durability anddeformation behaviour of the structure.The importance of a particular limit Slate depends upon the function of'thestructure and upon the environ mental conditions. I n some instances, the designcriteria in the Code will indicate that durability or deformation is more importantthan strength. At first sight, this concept may Seem to be a radical departure fromthe philosophy ofearlier codes, but it does in fact have a very close relationship tothe practical design procedures used by experienced engineers at the present lime.

    An economic design should lake into account any variations in the magnitude ofthe loading which are likely to occurduring the life of'the building. Similarly anallowance should be made for the anticipated variations in the strengths of theconcrete and reinforcement in the structure. These variations cannot be definedprecisely, but can be expressed in statistical terms so that it is possible to derive! val~~forslrengt~1swhich can bel,lsed in design and whichare known as charac-teristic val ues. .TI1e concept of'characteristic values has been applied to concrete cubestrengths in previous codes, whereCharacteristic strength (fou) = (Mean strength) - (Kx Standard deviation)The factor Kcontrols the percentage of cube strengths which are likely to fa I!below the specified minimum. In the Code, K 1'64, which means statisticallythat there is a 5 % chance that the concrete strength will be less t han the charac-teristic va l ue. Th e q uali ty can trol p roced u r es for dell 11 ing ti l e characteristicstrength of concrete are given in the Code. Methods of determ ining the charac- I 'teristic strength of reinforce men I(h) are given in the relevant British Standards. ~Loads can be treated in the same way as 1 1 1areriaIstrengths, so thatCharacteristic load= Mean load+ ]64 X Standard deviation for loadA t the presen I time the statistical evidence req uired to esta blish characteristicloads is not available and tbe values to be used in design should be taken fromCP3: Chapter V: Parts I and2.

    The characteristic value of the material strength (fk) takes into account theexpected variations in the results from test specimens. Itdoes not allow forpossible differences between the strength of the material inthe actual structureand the strength derived from the test specimens. Therefore it is necessary tointroduce a partial safety factor for strength (1'",) so . thatD izn tb Characteristic strength (A). .esign streng = Partial safety factor for strength (Ym)In considering the strength @ fa reinforced concrete structure, the appropriatevalues of Y h 1 are ]- 5 for concrete and l-LSfor reinforcement. These values takeaccount of the variation on workmanship and quality control that may normally

    be expeered to occur in the manufacture of the two materia Is.

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    4/29

    Umii state requirements

    Another partial safety factor ( ' 1 ' 1 " ) is introduced so thatDesig~ load _;_Characteri stic load (F I

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    5/29

    limit state requirementscontinued

    4

    (d) bycontinuous ver ti cal t ies from foundation to roofJeveJ in all columns andwalls in buildings otfi~or more storeys.In provid i ng these ties, it is assumed that no other forces are acting and that th ereinforcement is stressed to its characteristic value. The magnitudes of these tie nforces, which are relatively small, are given in the Code. The reinforcement r ~provided Ior other purposes can often be used to form part or whole of thesecontinuous ties.

    Serviceability limit statest DeflectionThe fin al d efle ction o f a beam or slab below th e a s-c as t.le ve l o f'its supports shouldnormally not exceed Span/lSO. The deflection that takes place after the construe-tion of the partitions orthe application of'the finishes should be not more than'J ! Span/350 or 20 mm, whichever is the lesser.

    In most cases, (he deflection requirements for beams and slabs will besa ti sfied by lim it ing the span /effecti ve-depth ratio 0f the mernber, The folJowingtable gives th e recommended values for the basic-ratios, which have to bemultiplied by the appropriate factors to allow for the influence ofdifferentpercen tages of tension and com pression rein forcernent,

    Support condition Span-:---::-.,..-Effective depth

    CantileverSimply supportedContinuous

    72026

    In cases where it isconsidered necessary to calculate deflection, as described inAppendix A20fthe Code, the recommended design loads a re as F ollo ws :(J) dead and im pose dload e- l-O G \{+ IO Q k(2 ) dead an d wind load= 1()Gk+],0 W it(3) dead ; imposed and w ind load = L'OOk+O8 Qk+0'8 W kThesecombi nations of loading are termed the s e rv i ce l oads .The normal serviceload for the lirnit state cf'deflection is ],0 Gk+ 10Qkilrtanged in a way to causethe la rg es t def lect ion .

    . j I l CrackingCrack ing of th e concrete shou Id n at ad versely a f fect the appearance 0r d u rab i lityof the structure. In general the surface width of cracks should not exceed 03 111m ' t ' " .but the possibility that some cracks may be wider must be accepted. The Codegives a table of maximum bar spacings, dependent upon the percentage ofmoment redistribution, which are 'deemed to satisfy' the cracki ng Iirnit staterequirements.The recommended design loads to be used in crack width calculation, asdescribed in Appendix A3 oftheCode, are the sa1.11Cas for the limit state ofdeflection.

    'J DurabilityThe Code cequirements for acceptable crack widths and COD crete covers areintended to meet the durabili ty cequ irernen ts of almost all struct ures, The am 0un tof cover r eq u ir ed is related to the grade of concrete as shown inthe followings im p lif ie d t ab le :

    Condition of exposureNominal cover (rnrn) for concrete grade of25 30 40 50

    MildModerateSevere

    204050J 520 -2 S

    1 53040

    1 52530

    The 0om inal cover should be provided to all reinforcement inel ud i ng links andshould always beatJeastequal to the nominal size of the bar.Fire resistanceThe req uirements for Jire resistance given in The Building Regulations, 1972 areI based on the size and occupancy ofthe building. In order to comply with theseregu.latio~s, all str.uctural mem~ers must becapa?le ofresisting the action of'firefor a specified period.Information on the fire resistance of many forms ofreinforced concrete construction is given iii the Code.

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    6/29

    The fire resistance of a structu raIrnern ber isdependen t upon its resistanceto heat transmission and to penetration of flame, as well as upon its retention ofstructural strength. so that the m inim um thickness of the concrete section can be

    \

    the deciding factor. Inbeams and columns, the retention of'the protectiveconcrete coverto the reinforcem ent can be critical and it i s necessary (0 provide aLight reinforcement mesh w hen the cover required fora specified fire resistance isI'll are tha n 40 mm, A! tern a t ively, the use of a calcareou S orl igh tweigh 1 aggrega tewill reduce s pal li ng a t high temperatures and im prove the fire resistance o r themember.

    Other limit statesIn certain circumstances, itmay be necessary to consi der other limi t states, suchas vibration seismic effects, or fatigue life, to ensure that there is no Joss ofserviceability throughout the life of the structure.

    Application 11 1most practical design problems it is necessary to consider a number of limitstates. The normal design procedure is to ensure that the members comply withthe durability and fire resistance requiremen tsand then to design for (he ultimatelimit state before checking that other servi cea biIity lim it states are n01 reached,There w ill b e instances, however, when serviceability limit states w ill be crltical.~or example, in l~e cas,e offloor ~la,bswith la~g.espan/effecti.ve-depth ra~jos,it is tlikely that deflectionwill be the lirniti ng condition. Alternatively, excessivecracking over the supports could be th e critical limit state for a continuous beamdesigned 01 1 the basisofa m axim um of30 % redistribution of bending moments . *How much design time should be spent on checking for compliance with theserviceability requirements depends upon the importance of the limit state beingconsidered.For most jobs, the simplified design and detailing recommendations given inthe Code will be used, but a more economic structure can usually be obtained bycarrying out a rig oro us a na ly sis . In either case, the resulting structure will not beradically different from that designed in accordance with CP,114, since one of th emain objectives of'the Unified Code isto present existing design information in amore logical form that wiIJfacilitate the incorporation of new knowledge andexperience as itbecomes available,

    "

    5

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    7/29

    De . .I rm

    Client Tke Ce.w.e~ . i . COl\(.rte. "ssO = 1" IS k.W~?---k~71v\ -E : x t e . Y ' n a i - c l t l o d i n g = 50

    Speed 4OW\tsc W,nd loading conditionsFactors 5, ~ 10 , 52 :. OB-:' 7 S~ = t ..O ~-- -- -C -" ; 1 -1,

    Exposure conditionsMocie:n~"te C ext('Y-'Nl.,t_)_~ ~t.d. C~~e.'f"V\alL-- Subsoil conditionsStiff ci~ - _hO SI. l~pka.tre.Cj,_______- A I low q.ble be.a.\'""i~ -r~ ssv.\"'~ __ '2.00 YJih'!:_---

    -, Fou "dation type-

    -R.~.CAdf,oott.~ -- _- -- -- -Concrete Material da til-~ c4 \'"u t~ \'" ; " ~ t i . c . . ~e.~tb--fw. _ = 30~/~~ ___Reintorcement

    _~_419 " N ~ r ' 2 . -~~rutiri~i.

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    8/29

    t a su mary hee

    I I ,_ C D ] Q D I 'J~ C D I I

    , IIII

    r - - r - I1--

    ---- .

    L _

    I7

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    9/29

    175t t5000interior-span solid slab

    CP110ref. CALCULATIONS OUTPUT

    8

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    10/29

    E A < { .. h f'l+'ZYIO~4";~OOT 78'Y 1~ - S - 1 7 5 T@ __ r, .: "k 'r ,-~1\(1O-7-1!OTf-r- 1-- . . . . ,~-- 1-'--' ---- ---;--~~l-i~:- f.- , _ " & : l-I I -~ , . - - 1 .I I 0' A < J . . . . . 1I I ""lS0 r ; ; o p 1 , ~I , I II

    1- 1

    ,1 '1 I , " , ~A I -2X(.4t4)YlO-' ! I I - V r -;J I J- ~ o T I 1 1 - 1 1 I ~ I I j ~x1SJY10- 3 - 300E ti I I 'j _ ~ j A. - 1 i I.B r 1 l , . E >A f - + 1 ; 6H : r --iI , O r u l 950 l 350~olY to - 7 - 1 5 0 1 1 I L 1 -l- I'h i~-I r 0_ I - - ~ 1~- --r- -,-:- ~----.- --- f-------- ~~h--.[ J I,

    S5'(12.~ 1- 2SO~ I 'Z.7Y'B - 2 - $005PLA tJ (jrid. 2 C l I " f I . \ t ; V u { f o l ' " c~ity)4 G ~- 5 5, ' - 5A - A

    --s1~

    B - E ? COVf;~ -to oute.,.. bo..l""S = 15 Scale 1: 50Commentary on bar arrangement- - - -----CP110ref Earmark Notes------ ---_--- ---------3.11.7.33.11.4.23.11.8.23.1.2.23.11.6.5'3.11.4.2

    1

    All bars are labelled in the form described in the Standard method 0/detailing reinforced COl/crete, e.g,55y12-1-250 B means that there are 55bigh-yield 12mm deformed bars at 250 mm centres in thebottom of the member and the bar mark is 1.The bars are nu mbered in the probable sequence of fixing. The positions of the first and last bars in a groupare indicated on plan and section. Intermediate bars are omitted for clarity.Main tension reinforcement is staggered. 50 % is curtailed at 02 span and the remainder extends intothe support.Maximum clear spacing of bars is 2td at mid-span, in order to comply with a maximum 5d spaci ngbeyond the curtailment point. Spacing can be increased to 3d,however, ifbars are not curtailed.Internal stability tie-bar working at characteristic strength, lapping with main reinforcement.Lap length = 1'15 X ( 4 1 C b+25 % ) minimum, say 500mm. .Secondary reinforcement with maximum clear spaciog= Sd.Minimumarea=012 %bh=0'0012 x 1000 X 175=210mm"/m(YIO@ 300=262mm2/m).Minimum tension lap =25Cb+ 150 mm =400 mm. Lapping reduces par leng! hs for easier handli ng on si te,Main tension reinforcement over support iss taggered. 50 % iscurta iled at O'3 span and the remainder(area >0'3 %bh)extendsoverthefullel'fectiveflangewidthofmain beam (1420mm,seepage 12)whichis greater than the alternatives of 01 span or 45.Nominal reinforcement is placed across the full flange width of the edge beam (650 rnm, see page 16).Minimum area =3 % b l! =0003 X 1000 x ]75 =25 mm " 1 m (Y1O@ 150= 523 mrns/m).

    23,4,6

    3..11.6.53.11.7.33.11.4.23.11.7.33.11.4.2

    5

    7

    9

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    11/29

    aln beafou=30 '.=410 two-span flanged beam f f t8000 6000 300CP110ref CALCULATIONS OUTPUT

    " I I

    4 J I , + '2tb~ -I ' 2 c h e , i I 0 5~W~tt e,~__-ll-+-+-+---t-+-r-~~'...!.-f-.t~-+-+-+-r-t-+--t--t--t-+_t_2+k>

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    12/29

    CALC ULA TI ONS

    II

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    13/29

    CP1 1 0OUTPUTALCULATIONSref.

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    14/29

    CP1 1 0reI. C ALC U LA TIO NS OU TPU T

    IJ

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    15/29

    5 S 5 5

    75/1@!50 14@&)0

    L di '2 . 'l 1I A - A

    L,:LS""'Y" I50

    G ~ 87Z+2Y!.G-'5

    5ca.\e

    .?>Y'20-9

    \ J L d W4 3 .3 4,[ ) - E J

    '20

    IE L E .V A T ION;

    !Jote', ( 5 U . < i u . . . . . . p l i . t l e c l Da:~lg"ChA,.t 'i4, pA' , le ZB)

    Fo., t v 1 vcJ....e oj te.v;io .... l"e~r\ftW ' r- -e Y \ f l . l s = 0 ) ~l ; 4.0N/~

    M : n'l k N T t \ ~ .-+RK-~-__j_~:=1:"_----,f . ) " Q . i Y\ . b !N r ~ 1

    ~\'r'.-pre.,slor. 60.r5 ( c w , . . c k o l ' " o . q e le""3'ch,) '2.6)~eN\~ I no m e .t ' \ t E tw e l o f -

    Terlh~"" bM"$ C~hor .le" 'q. th . >4\,6 ) ~

    d=' e f f . c { e p t h . . = 4SO > 'Z @x = e xte ,n .sio n o f C l A r ta i \ e abo.rs to po\.n.t where the

    o, '( 'eo.. O J the c o h t l I ' \ L L \ n . qbo..rs = 2 xMrea,i1(tnin.=a)I,1I.1.~ CUR.TAILMEi-JT D I A G R .-A tv\mmentary on bar arrangement

    P 110 ref Bar mark NotesThis beam detail has been chosen 10 i llustrate a splice intersection which can facili tate prefabrication andstandardization.50" 0of'the tensicn reinforcement in the 8 m Span iss topped 50 mm from the column race 10 avoidclashing with the column bars shown in the sections. Minimum cover is increased lathe nominal barsize, say 35 111m.Rerna ining 50 % of the tension rei nforceme n t stopped off as shown in the curtai Imen t diagram.These bars are paired side by side with bars mark 1, in order to avoid congestion at lap with U-bars.Separate compression splice bars are fiKed insidecolumn reinforcement as shown [0 section 8-B.Bars stopped off as shown incurtailment diagram.Minimum lap with bars mark 1=25+ 150=950mm.The two tension bars in the 6 m span are stopped 50 mrn from thecolurnn face to avoid clashing WIth thecolumn reinforcement.Link hanger bars provide the internalstability tie requirerneru. Alternatively, the bottom bars, if suitablylapped, could have been used for-this purpose. .The tension bars over the support stop off as.shown in the curtaiirnenr diagrarn. These bars arc fixed

    23

    45&86&7

    4

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    16/29

    1000

    ITYPICAL

    9@150{SOl-

    . . iLJ10 4 [ 1 ,1-- _I,'l.YZO-10 1

    ~LI 1 L ~1000 l [so

    2Y~Z-3'2.Y~2-4

    MAIN B~AMale 1; 50

    ISO 100 ' 2 C 1 J

    ,G~

    S h . , e o . . r cc"pa.c.it~ o f~ _ _ . . z 4 0 ~ { ~ \ ' J 'Y ~ h. 31okr) lZY3 '2 . ~Lo!' \ ' ( e . l n tt. Hori)on.l:at sro.te

    . {[email protected] 1;.100

    3.11.7.1(3)3.11.3.13.1.2.23.i1.8.13.11.7.1a3.11.6.53.11.6.83.1.2:2

    9&10

    inside the column reinforcement as shown insection B-B.These bars are paired one above the otherto allowa horizontal gap (about 75 mrn) for insertion ofavibra tor, These bars al 'so form part of the internal t ie system.Loose U-bars are fixed inside column reinforcement as shown insection A-A.Minirnum distance between bars~ 20 (aggregate size) +5=25 mm.Note that the bottom legs of the U-bar are provided with;0) 12minimum effective anchorage length beyond the column centre-line.OJ) 41+25 %= 102.5mm tension lap length with the main tension reinforcement.Similarly the top legs are provided with;(i) Nominal anchorage length past the face of the column assuming that the bars are not stressed beyonda point 4past the end of thestandard bend,(ii) 115x41, say 1025 mm tension lap length with link hanger bar to allow internal tie to work atcharacteristic strength.Lin ks, shape code 60, are arranged to sui t the shear force diagram. Open top links, shape code 73, are notsuitable for the sizes used.11

    15

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    17/29

    E 9 be t f =--350

    5000 300

    interior-span flanged beam

    CPll0 C AlC U LA TlON 5 OUTPUTref,

    1 6

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    18/29

    2'?>R.10-S-200

    ZYl'2.-32YZ5- 4 )

    tor. cover- GOsld.e. ., 75

    ZY20- 1 ZYt '2- '2 , Jsid.e cover 15II ELEVATION

    5c.o.te t : 50Co V e . . ?. \;:0 bnq ;_b_".cLl~

    btars ::;:40 UA\less I

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    19/29

    fo"=30 f y=41011 4:0 ) 5 0 0 0 I I .30030 08000 6000

    slender and short columnsoum s

    CPllOret CALCULATIONS OUTPUT

    18

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    20/29

    CP110 CALCULATIONSret. OUTPUT[ t . . { 1t,~\.1 ;tiL I C~ (.., M~ I ' - ,i- ....,[.J.. i s ! : ' t.~ !?J.S.1.4- &f ed;t\ ~e ~ I:rht: e ; b I 1= -& J~ ~~ ~\ ~i'\. 0"".11 Ie "I. ~ ,;&;t ' o . . . L : )= . . . . . I~o ~ . . . . .-_ --- .. . : . . I

    A t 1~"~ t o c' ' f ' TOIj 'J_ C 2 C o I'r 0. ')co " , 1 ~,;_~g.1-4 --6~ t - G-_- -;- ~I 1 i~~'2~ , t p " : ~r ( BS { b . d ~ 4 > < j~ 4-t~ C)'f ~ - ( ! J . o S lx - D ' ~ ' = ' 1 1 . = ~90d~ t o -I--I 2.~Op l . . . . . w l~ ( k . i . ~ ~ ~ ~ . ' , -2t.S.Vl - ~)l:l~~1 f - . ? ~ ~ i~: r . iAa~1 = I ~ ~ = 1'3> ~2 5 L . f : . H e a. ~ < ,t~ q ~ 1 e t : U @ ~d.1 1 tt~~ 1--tr----7kN-. : : > t 7ltW Iee, 1" I I I- ~~~r~ Ip _ ~ ~o- - - 1 W 't ' t,J-~ -r-_ , ~ ~ \ . . " I A : . . C : 6_ - ~ = 4rkNM (~e ~ .Ie:) 1::"l ' / V I .5.5.5 _ ~~~. ~k:e~~I' It~ 6.~ - = 00~N,' b-- M.I.= (~~~k~O~ 1 G B 'V ::: ~~ 6< 4~4k~t~ \., l - u - L.J, r 1 ~....: - ~:,{ W ~ 1 ! r ..S.1.1 ' : I . . ~ l l - * - . t - 4 : > M t l . ~t-----~~ f 1 V . r-i l l l~.0 + ohx 5J4:- r z ' ~ . ~ k,NM ) D 4,M ' I~ I--1 ~ ,-3r=i , 1---, tr= . 1 - ( ej r7 I~ ) ..Mtr~'-~i,_t;~~I/lJl" "-(~._,~o3~ I(;.j - p o . ; . : ' ~ ' i - -- ~ I I ~ 'K~ ) X H ) 1 ] - t--- \ 1= ' 2 V r !-Ws~~-[ -(1). (bOo; 1--::---I - 1 : : : - - - - l ' l ! + ' $5 6'2.2 k t I"",) 1 0 1 0 : ~ - B~' 2 ~.. . . . .-[ l ~ T M A d c -f J v E I N 1 = - J . . . ) . z:. " '" =-NIT O L P M N"I' ,Deilgt\. I '~J I. I~" . . _ - , . . ~ . ( , r 7 ~~t ~ =-~~::: o B ~ Ill;; l}'o r = Z~1 r : I / m m , 1 _ ; J ! . ' l . _ 8 , , ' 'un", = ~ ~j r J ; f T \: . . . .NO~_ .~ :"''''' ",n . . \ , l ' { " j 10M ;,I!f'Vl I ; - I- A 'ID - - s Q , ~ lA\1-f ,~~ I\" ~ ~ f . . p t p e Ii. : D ~ , ~ ' I. . (l"" ...) - ~ ~ - 1 8- I~J K T , 1- t 4 ~ - z -I- )J- -U , ~ 2 . - : ' [ - 1~~ P~1

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    21/29

    CP110ref. CALCULATIONS OUTPUT

    ~.S>.S

    20

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    22/29

    I ~ T E R . . N A L COLUMNF 2 .

    E X T E R . f ' f A L COLUM~F 1

    ....-----1--- I- -f---.,~-...- ..0.sU 'l

    ~0

    -~0 ~c< ) II 1 : ' . . 1~ til

    I }-rf) - sd 1 1\3. . . . .

    _ J

    C ?4 I 4

    CP 110 refCommentary on bar arrangement

    Notes

    3 . 1 1 . 4 . 13 . 1 1 . 53 . 1 1 . 6 . 5

    3 . 1 1 . 4 . 3

    Bar mark

    1 & 4

    2

    3

    56

    - ------ - -The presentation shown above isschematic. This schedule method adapts readily to element repetition.The secticns are shown in their relative positionsadjacent to the longitudinal reinforcement.Main longitudinal bars, area> I%bh, cranked at the lower end to standardize the lap detail at each floor.Slopeofcrank= 1 ;10 maximum. Offset ofcrank=2cD+l0 % allowance for deformed bars.Reinforcement area at laps

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    23/29

    feu =0

    500 groundpressure=200

    reinforced pad footing

    3000

    CP 1 1 0 -ref, CA LCULAT IONS i OUTPUT

    bU~'-\Ir~ II I I ~ I I I I i I I I 1T p,& l t \ ~ J[d~'l ' i c J 2 v e r l ~ r ~ \ A + e ~ : ~,~~~b:~p~r~ = 50~ -~e = 3:J!! WI.T1 j~ 1 I I I I I I I t ii I' 1 ! L i l_ _ j _ _ -- 1-- t + --- LO t > - D , I I - t ~ l(sJe ~ f 5 1 i 1 l 9 ) . I ~eM t~ed. T d t~ ~ NI I I I I 1"'1 I ~-*. ~ . ! - ' ~ ~ ~ n c k d b r ; 4 - e 5 ~ r t '~t ' 4 ~ ~ + - J s ~ d l - - 1 9 b _ + 1 - . _ 1 = , ! +1- I II I I" - -- -1---. - r-r-- - 1 ' 4 8 ? 1 ' : 5 1 ' I 2 " " i I '-Lf l l l ~"er~;de 1 i4 1= ,ier~----~r-{~12~_ 1 ~ t 7 ~ 1 - r I : I- - T-- - : I' I L - 1 I 'I I' .... I . I t i ,I I. I > . J L I. 'a_ T I I i~7'J I - r ~~_. ~eo., ~f"e __ . I = qeD I: GI~a. rrv: ~~~el ~4:--., At>~t T ; '

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    24/29

    ---"C A ~ A.

    C O V ~ ! C v :O.u.te.Y"b~s =90'C o L Sk~r-7 :::-G

    WL

    IiSY25 - 1- '200B

    " Q ' 2 ,'~

    2' ~

    Commentary on bar arrangement----- -- ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -CP 110 ref Bar mark Notes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3.11.6.23.11.6.5

    Straight bars extend fu.llwid th of base less end c ov e rs . T h e r ni n ir n u r n tension bond length b~o'nd theface of column >41ct>= 1025 mm .Column starter bars are wired to bottom mat. Bars project a minimum. compression lap 20$ +150 mm+75 mm for kicker, say 900 mm , above the top of foundation.Links are provided tostabilizeand locate the starter bars-during the construction process. These are thesame size as the column Iinks.

    123

    15Y2S-1- 200B

    p L A ~

    C,Y:32- '2J II T ZF\5 -~-~oo~

    i'---1

    A- A

    ,II

    23

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    25/29

    t - - - - - - ,-----...-~--- f y=410175~OOO.&;500

    S e wa14000 1000

    external plain concrete wall

    CP110ret C A L C U LAT I ON S OUTPUT

    5.?:' jtJALYS,ls! c l f ? e J C - \ ~ C : H " i @""'~I,jtte. ofhstn~;i-U.~

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    26/29

    '2>- socl 1 0 I,N ($0 1'F+50 FF)2 I I1 2 10+ '" II , >tz I"'t" dJ~ ~ ,II ~ ~ t

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    27/29

    feu=30 fy=410 Stair ase3500175

    end-span continuous slab

    5000

    CP110ref. CALCULATIONS OUTPUT

    +-+-~_~~N~~-r~4-+-+-~~_,~2~r5~O~_L_~IL-1~4-~~~~~'~-4~~4~2~~9~~ ~ ,t It~

    ~-I---r-l--l--l------+I- - "~~+-:~~I---I--_I+ - - - I - - + - = + - ; : ' ~ S " , - - - ' _ . f - ! ! 2 r N - D / J ! l I e-,:_Jt\7;~~1

    ~ Ti _ B . 1.,.1.\ I 1Z,.!'.4 U L T1MA II ' .M "i L . . , . , . o 1'01 I1a.p\e 4 s~~,.., I t,. ~._ t S o - f - e : - r i~r' ~ ~ = Q -

    . - t i.,.,, 2 * 1_M iip nO . ~ ~ , ~- f ? = H =- ,

    ~L' -f--I 0 ~fI\ < d o 'cokk y, Itt ~\,n0 k.1-----1- I

    2 6

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    28/29

    7Ye -'1 1 - 200I'7Ye-10- ZOO

    10Yf2-1'2-1507 10 Y 12.- \0 -150

    10YI'Z:-15- ISO

    IFLlGHT 10 1~r ~I 1G ? r ~ 1 5COVER. ~. ou.t-er b !i\l""s = 1 .5

    Scale 1:50 A - A~7'(8 -0- '200

    ,4Y6 - e --200 !

    I15'(10-7

    2+~Y~-B'7Y8-IO-200-:-'200 U-;a.r

    4Y8-9-'200 I 4Y'6 - '2 - 200

    lOY12-5- 150

    150 GY1'Z-3+GlYI'2- 4 J600 .:, - \ r z 5 ol!.:e.... a . . t e~ 2 . . . . a

    ~~~~==~~~db==~~~~ ~

    A JF LI G HT 5Y8 - '2- 200I~ lOY12-1-1~OCommentary on bar arrangement -- ------ ~-----------------CP 110 ref Bar mark3.11.6.5 1,5,63.11.4.2 2,8,93.11.7.3 3,43.11.4.23.11.7.3 73.11.4.1 10&11

    NotesMain tension reinforcement. Laps and anchorages are full bond length = 41 (J ) minimum, say SODmm.Laps are positioned to facilitate probable construction sequence. Bar marks} 2, 13and 15are similar.Secondary reinforcement. Minimumarea=0'12%bh=0'0012 x 1000 x 175=210 mm=/m.(Y8@ 200=252 mm "/m.)Main tension rei nforcement over support. 50 % curtai led at O3 span. Remai rider extends over the fu IIeffective Range width of main beam. Bar mark l4issimila.r.U-bar provides 50 % mid-span re inforcement in top and bottom at support eeO'S x 705=353 ml11'/111.(YIO@200=393rnme/m.)Optional t en si on r ei nf or cem ent . M i nimum area=015 %bd=0'OOI5 x 1000 ~ 150=225 I11m/m.(Y8@ 200mm e/m.) Bar mark 16issimilar.

    27

  • 8/2/2019 Designed and Detailed CP110-1972 Higgins and Hollington

    29/29

    Simp ified deslqn charts

    . .Floor slab design 5based on Design Chart 2, 40CP110:Part 2 3025fou=30 f~=410r-b-t " 'E . .E E~T

    - - EZI .. _e A s . l b

    zI.0 :>"- -.2~ 14lO

    0'30 0'42 '5100A.lbd

    Main beam design 12 40based an DeslqnChart 24,CP110:Part 2(c"=30 fy=410 dla=O'10 \,0"Ej-b-j E -0- -

    ~~: ; = 62 ~0