development of a time-of-flight mass spectrometer

7
INTEGRATED PAPER INTEGRATED PAPER 腄腁腆腒腃腇腈腉腌腔腅腙腘腀腂腖腎腏腋腐腚腗腓腍腃腊腕 Development of a Time-of-Flight Mass Spectrometer Utilizing a Spiral Ion Trajectory Takaya S6ID= 腕腪腉臏膦臓膠臘 JEOL Ltd., Akishima, TOKYO, JAPAN A novel time-of-flight mass spectrometer that utilizes a spiral ion trajectory was developed. In this mass spectrometer, the ions sequentially pass through four toroidal electrostatic sectors and revolve along a figure- eight-shaped orbit on a particular projection plane. Each toroidal electrostatic sector has eight stories, and during multiple revolutions, the ion trajectory shifted perpendicular to the projection plane in every cycle, thereby generating a spiral trajectory. Two prototypes, orthogonal acceleration time-of-flight mass spectrome- ter (OA-TOFMS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI- TOFMS) were made and tested. The total flight path lengths were 20 and 17 m for OA-TOFMS and MALDI- TOFMS, respectively. By adopting an ion optical system that has a flight path length more than five times longer than that of the commonly used reflectron ion optical system, the m/z-dependent mass resolving power was reduced while improving the mass accuracy of the mass measurements. (Received April 7, 2009; Accepted June 23, 2009) 1. 臇臑膧臕腸腥(time-of-flight mass spectrome- try) 腝腣腴腶膐膞臷腡臸腕腮腒腧腓腧腠 m/z 腱腩 腛腴腶膐膴腱腈腮臑膧臎腌腬膘膞腒腯腮膇膎腾膑腝 膞臷腔膻臞腧腝腢膗臇腒腗腮膻臞腧腝 臇臑膧腣腴腶膐腢 m/z 腦腨臊腡腚腝腹腕腮腙 m/z 腢臣腒腉腴腶膐腌腬臠臒膻臞臼腔腴腶 膐膴腱 m/z 腥腷腕腮腐腞腍腝腎腮臇臑膧臕腸腥臰膸 (time-of-flight mass spectrometer: TOFMS) 腢臕腸腥膗腢 m/z 腱腩腛腴腶膐膴 腴腶膐膇腺膂膅腢膻臞腝腢臇臑膧腥腡 DT 腕腠腰 腚膻臞腝腢臃腢腴腶膐膇腺膂膅腢膲膧腠臅腍腭 腝腈腮腅腀 腋腫腤腘腢臝臩T 腄腆臇臑膧腉腜 T/ 2DT 膿腕腮腐腞腍腝腎腮TOFMS 1964 腙腬 腒腯腜膔1) T 腱臺腎腏腕腮腐腞DT 腱臣腒腏腕腮腐腞 腡腫腭臕腸腥腢臃臦腍自腬腯腜腎腙1955 腡腣腴 腶膐膾腝腢臡膩臨膺腢腥腡臇臔臃腡臚臵腒腗腮膞臷 腨腩腍膤腒腯DT 腱臣腒腏腕腮腐腞腍膟腞腠腭臕腍臃臦腔腙 2) 腧腙 1970 腡腣腘腢膞臷腨腩 腡腫腮臚臵膕腱臎腞腔腴腶膐膋膌腂 3) 腪臱膶4) 腝臆臭腒腯腮膙腵膆膎腷腂臚臵臬腱腩腛腴腶膐臂膥膷腱 腕腮腐腞腝臇膯腕腠腰腚臇臑膧 T 腱至膞 腒腗腧腙 DT 臣膜腡膨腕腮腐腞腝腸腥臃臦腔腜腉腮膿臌腢臐腢腦腞腲腟腣腴腶膐膋膌腂 腵腳腔腜腋腭臇膯13m 腝腈腮腝腣臉臮腠膪膣膞臄膭臟腔腙臉膾膭臟臉臷腝腢臉膑腾腴膂膁膐腹膭臟臉臷膄腽膀膎膸臶膭臟腠腟腩 DT 臣腒腏腕腮腐腞腡臈膼腔腜腉腮腒腬腠腮臕腸腥腢臃臦腢腙腨腡臇膯腱膛TOFMS 膓腒腯臯臍膝腒腯腜腉腮膗腛腣腴腶膐膬臫膢臇腒腗腮膊膎膁膍膈膏腸膃腳膐腹膵 臹臝臗膵5) 腪膊膎膁膀腂膐膵 臹臝臛膢膵6), 7) 腢腴 腶膐臂膥膷腍腈腮腧腙腩腊膗腛腡腣腴腶膐膋膌腂腢膳 腔腱臹腡腔腙腽腹腼腹膵 8) 膊膎膁膀腂膐膵腴腶膐 臂膥膷腢膬腱臛膢腑腞腡腰腖腌腡腖腬腔腙腬腗腲膬腢腴腶膐臂膥膷腍腈腮 9)11) 膊膎膁膍膈膏腸膃腳膐腹膵腪 膊膎膁膀腂膐膵腴腶膐臂膥膷腣腻膐膇腸膅腠膲膧臀臺腢臇膯腱臖膿腝腎腮腯腜腉腮腔腌 膗膬臇腒腗腮腙腨臇臷腢臺腎腉腴腶膐 m/ z 腢臣腒腉腴腶膐臇臷腢臣腒腉腴腶膐 m/z 腢臺腎腉腴腶膐腉膚腕腢腝腸腜膖腍臀 腒腯腜腔腧腊腍腈腮腽腹腼腹膵腪腬腗腲膬腢腴腶膐臂膥膷腣腐腢腉膚腔腢臻腱膡膹腝腎腌腛 腢腴腶膐膋膌腂腱腵腳腕腮膀腴膉腡腥腜臉臉臕腱臖膿腕腮腐腞腍腝腎腮Correspondence to: Takaya S6ID=, JEOL Ltd., Musashino 312, Akishima, Tokyo 1968558, JAPAN, e-mail: taksatoh@ jeol.co.jp 腕腪腉臏膦臓膠臘腀 腇1968558 312 膽膮腣 2008 腖腋腕腪腸腥臰膥膠臢臥腱臙臥腔腙腁 J. Mass Spectrom. Soc. Jpn. Vol. 57, No. 5, 2009 363

Upload: others

Post on 13-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development of a Time-of-Flight Mass Spectrometer

INTEGRATED PAPERINTEGRATED PAPER

��������� ���������������

Development of a Time-of-Flight Mass Spectrometer Utilizing aSpiral Ion Trajectory

����Takaya S6ID=

�������� JEOL Ltd., Akishima, TOKYO, JAPAN

A novel time-of-flight mass spectrometer that utilizes a spiral ion trajectory was developed. In this massspectrometer, the ions sequentially pass through four toroidal electrostatic sectors and revolve along a figure-eight-shaped orbit on a particular projection plane. Each toroidal electrostatic sector has eight stories, andduring multiple revolutions, the ion trajectory shifted perpendicular to the projection plane in every cycle,thereby generating a spiral trajectory. Two prototypes, orthogonal acceleration time-of-flight mass spectrome-ter (OA-TOFMS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOFMS) were made and tested. The total flight path lengths were 20 and 17 m for OA-TOFMS and MALDI-TOFMS, respectively. By adopting an ion optical system that has a flight path length more than five timeslonger than that of the commonly used reflectron ion optical system, the m/z-dependent mass resolving powerwas reduced while improving the mass accuracy of the mass measurements.

(Received April 7, 2009; Accepted June 23, 2009)

1. � �

���� (time-of-flight mass spectrome-

try) ��� ��������������� m/z ��� ���!�� "��# $%&��'�()*�+���,� -.���/0�1����2�3 -.���/���� ���/ m/z�/��4������56� m/z �/7�8���$%9:-.���;,� ���!� m/z �����<=>�?�3���� @ (time-of-flight mass spectrometer:

TOFMS) /��A��� �0/ m/z ��� ���!B���(CDEF /-.��/��� DT B��GH-.��/��I/���(CDE/J���K>L�"�F� MNOP/QR� T BS��F ��8T T/

2DT��U��<=>�?�3 TOFMS� 1964�����'TV 1)� T�W?X��<=� DT�7�X��<=�NL��A�/IY>Z%'T?53 1955������[�/\]^_/���`�I�ab�2����>c��'� DT�7�X��<=>d�=�L��A�>IY,52)3 �5 1970�\!��� P/���

�N�abe"�# =,� ���fgh3) ijk�l4)

�mn�'�o#pq)rhabs�� ���tuv�w$�%��<=���1���GH�� T�x��2� �5 DT/&7y�z'��<=�� ��A�>IY,T8�3 U{/|(}"/~=������fgh�)�,TML�1� 1�3 m�"�3 ������*�������� ��,5��+�[��� ���/��+*�D������ �����)@������ DT�7�X��<=���,T8�3�%����A�/IY/56�� �1���+�� TOFMS�,��'� ��-��'T8�3 0 ��0����.�/����2��)����� ¡��¢B£Q�¤¢F5) i�)��h�¢ B£Q¥�¢F6), 7) /���tuv>"�3 �5�¦0 ��� ���fgh/§L0,�£$�,5��¨�¢8)� �)��h�¢���tuv/�.�¥�©=�Gª$�ª%,5%2��.¢/���tuv>"�9)�11)3 �)����� ¡��¢i�)��h�¢���tuv�� «�(�E�J�1�23Y4¬W/�1��­U�?� �5'T8�3 ,$,� �0�.���2�56� ��*/W?8���Bm/z �/7�8���F >� ��*/7�8���Bm/z�/W?8���F �68®�/�� ��7¯>¬��'T,�¦8° >"�3 ��¨�¢i%2��.¢/���tuv�� </68®,/8°�A±�?� $ ² /���fgh�)�����³��´T�A������*�­U��<=>�?�3

Correspondence to: Takaya S6ID=, JEOL Ltd., Musashino 3�1�2, Akishima, Tokyo 196�8558, JAPAN, e-mail: [email protected]����� ��������� µ196�8558 9¶:·;|<¸= 3�1�2�¹º� 2008�*���� u�»>¼�½¼,53

J. Mass Spectrom. Soc. Jpn. Vol. 57, No. 5, 2009

�363�

Page 2: Development of a Time-of-Flight Mass Spectrometer

����� ������ ���������������������� TOFMS ����� TOFMS!� ��"#�$%&'

2. ����� TOFMS���

(�)� *+,-(�./ T! �01*&2�3��45�67�8&�9��� DT �:;�+#<=�>?��@#����ABCD�(�E6���FGH*&2IJ��K&' �����LM�>?N�OPQ�RS�GTU+&�9� VWXY� Z�9��� (�6�[��\]+��@^&���ABCD��_��`&2IJ�2+&' �<=+ab���*���cde2��� fgfd���T� “perfect focusing” 2hijklm�n12) �opq,��K&' ����cde�rstu�vwT� TOFMS 2��xyFz3��45�r{��@|� ����� TOFMS }�~���F�2�`��'ijklm������cde��������� *

&�9��� 1 ���2����������2�\]

6�����#U���K&' ��� f�U�^� 2

������`�&' � 1 ��� ����}�������SW��������[��\]��-� 1 ���2�����l+���6�������#U��K|� � 2 ����SW��������[���9�����SW�I������������#U��K&'���� ��������l��u*&���K|� ���+���� �+&=`� ����l���6�<&���ABCD�¡�|��¢T+#2#=£¤I¥¦*&' §�¨��Ff��¤�� �����*�9�������+2�K&' ��©�� �9���<&ijklm������cdeM����ª«T&�� ¬�SW�­W2®U�"2���¯°�GTU*&2���&2�±T�' ���� ���cde�������²�³j���#2��`�I2¨��´µ��'�$�fgfd� �T� “perfect focusing” 2 hi

jklm�n �opq,��r{��tu2��� ¶·��2¸"�¹Jº��»�opq,�� MULTUM

Linear plus6) 2�¶·��2 2��i¼½³�mD�op

Fig. 1. Schema of the ion optical system utilizing a spiral ion trajectory. (a) The configuration of the four toroidalelectrostatic sectors is shown along with beam defining slit, detector, and spiral ion trajectory. (b) Extendedfigure of TES1 (without outer electrode) which shows configuration of Matsuda plates inside TES. (Reprintedwith permission from ref. 11, �2007 Elsevier.)

T. Satoh

�364�

Page 3: Development of a Time-of-Flight Mass Spectrometer

���������� ������ MULTUM II7)

���� ������������ !"#$%&�'�� ($")*+,8��-./�0%��1�������2'3 #$"�����%45621�78��9�:3 ;�<=2��%��8'>?@�A>����� %BC�9��D����<E�78%F8D�83 ������������ %G��H�BC'��� MULTUM II������ %IJK21��� ���"456����� �2'3 +��L���M����

� �����"3 N����2�OP2 3GQ�2RS'�TUA/J�%��'�456������BC1��

����� �V�W% Fig. 1 2X1� Y�Y" 1)*Z82������[�\?]�Y��^3 _*�`a�"b��Y2c�'�� ����� "�d�� �456����� (toroidal electrostatic sector: TES)

1e4���'�� TES"3 ���.8=��.�OP Lx

23 �'?fO Ly%cg\�h��� i)*+j1k ��TUA/J������\?�� Fig. 1a � TES1"=��.%='�6�%X'\l^3 Fig. 1b 2 TES1�m�W%X'�� ���" Lx8 Ly8�n����fO��o%�p1�� �45� TES1e4%qG r'3 TES4

r#3 TES1�G45!�M1�� ;�%)*+!s^"178�3 ���6������%#9tuv2$%1� iFig. 1a �&�wx������k� TUA/J��y�% Lm3 )*��'% Lc81�83 1)*Z82 Y�Y2[��z("3 LyjLm��^3456�����!��ML q"3 1)*���' Lc%�?\3

tan q{(LyjLm)/Lc (1)

8���178��9��TES1e4!�|R�}"3 ���.�}3 =��.�}3 TUA/J��}� 3~)��^3 ;��� TES

1e4�1h\�TUA/J�3 TES1e4�����.l���=��.2����\?��

TES1�* 15�+(2"3 ����J�%��1��D2��K���%cg\?�� 7�"TUA/J�8N����n�1�������N���3 TUA/J�������fO��O,-.����/�>�D����

3. �������

(��c���2��93 ������0 (electron

ionization: EI) l���/���KA/J����0(electrospray ionization: ESI)8�1'��+R2�p�3!�� (orthogonal acceleration time-of-flight mass

spectrometer: OA-TOFMS)3 l��T���K��/J�J4(/����0 (matrix-assisted laser desorption/

ionization: MALDI) 8�1'�MALDI��p�O�3!�� (MALDI-TOFMS)�`a%p �� 5$2l?\¡¢£¤¥�����%6�'�� <¦2;�c�§72 ?\¨81��3 5$�9©% Table 1 2ªF8D��F[ OA-TOFMS�§72 ?\«h�� OA-TOFMS

����R2:% Fig. 2 2X1� 7����R2:" EI,

ESI 8��1�¬ ��^3 ����­®����R2:F��;¯"3 EI8��1�"/�0 3 ESI�"���°�±�p �� ���R2:2"3 �,�²®� j30

V ��²³�R2���<1����J��3 ´'u'�.8�,�. i�,�²k ��O²�2�M1�� �M'�����J�"3 ´'u'�.8�,�.O2 1 kHz

�|R��� j0.7 kV �µK�}2\ TES1�Y2R

Table 1. Comparison Table of Two Types of Time-of-flight Mass Spectrometer, OA-TOFMS and MALDI-TOFMS, UsingSpiral Ion Trajectory

OA-TOFMS MALDI-TOFMS

¶��pz( 20 m 17 m

�ML q 2.2 deg 1.6 deg

R2�} j7.4 kV j20.0 kV

456�����n6 *=>· 50 mm 80 mm*=L� 157.1 deg 157.1 degN���OP Lx 10 mm 16 mm1)*�'� Lc 1,308 mm 2,093 mmTUA/J�Oz( Ly 40 mm 50 mmTUA/J�y Lm 10 mm 8 mm¶�)*+ 15 cycle 8 cycle

|R�} ���. j1,477 V j4,000 V=��. ¸1,477 V ¸4,000 VTUA/J� j610 V j850 V

��K���? �.¹º�A�Y 1 mm 1 mmTUA/J��Y 6 mm 1 mm

tuv 14,882 option1 DM167»@¼�/

���6������%A�'��p�O�3!���½B

�365�

Page 4: Development of a Time-of-Flight Mass Spectrometer

����� ���� ��������� �� ������������ !"#$%�� & '�� 9(�)�*"#+,�� -."#� /7.0 kV �"0+1)��234� !"#5-."#�6� 8(�"#�� 7489"#:;<:=>?@ AB� "C<DEFGB�HI4 OA-TOFMS@�)�"0�� J7.4 kV @,4�TOFMS�� KLMN��� OPQR"C�� /7.0

kV @,�� �� )�ST�UV�� WXY�)�"0 J30 V 5���Z[��T�)�"0J7.4 kV����� � 3.6\�]\<^_2`ab�� B�Bcdb�e9� TES1f 1gT�UV]\� 2.2\@,��@� �� )�S[c�FhBijklm�2�� OP�n

o<a_�OA-TOFMS�pg��q�rs"t�� MULTUM II

�uv5:w5B� OPQRxyz{ 50 mm� xy]\157.1\� N|/}|"#6�6~< 10 mm5B� 1�x���� 1.308 m @,�� OA-TOFMS@��������u<�)B� �x��C@`a��+����@,�� ��-��x�� 15�x@,4� -�`a��� 20

m�\@,�� ��r�kX�� Lm � 10 mm� ��r�kX�6~ Ly � 40 mm 5B� HI4� � (1)���� �pg��q�rs�"tT�UV]\� 2.2\@,��pg��q�rs"t�N|"#�}|"#���r�kX��������� OPQR"C�� /1,477 V,

Fig. 2. Schema of acceleration region of OA-TOFMS. The ion beam from ion source was orthogonally accelerated. Theincident angle to first layer of TES1 was adjusted by deflector after the acceleration. (Reprinted with permissionfrom ref. 9, �2005 Elsevier.)

Fig. 3. Schema of the MALDI ion source. This diagram includes acceleration region comprising of MALDI target, gridelectrode and grounded electrode 1, and the Einzel lens system comprising the lens electrode, and groundedelectrodes 1 and 2. (Reprinted with permission from ref. 11, �2007 Elsevier.)

T. Satoh

�366�

Page 5: Development of a Time-of-Flight Mass Spectrometer

�1,477 V,�610 V ������� �� ��������� 1������������ 1�6 mm ��������� �!"#��$%&'�()*+ �,-�.�/0��,-��1%�234 567%�+ETP89 TOFMS 2:�;<= 14,880 option1 �> ?�@�.�� 3 ns (full width at half maxi-

mum: FWHM) 2A4:% MALDI-TOFMS �B �CD4 Fig. 3 %

MALDI-TOFMS��,-�.��EF �,-�.��G-!�!"#�+ H��I�J+ KL�J 12MNOP(>4 MALDI-TOFMS2�QRS36���T�()*+ "#U#V�WX�G-!�!"#�)YZH��I�J%� �20 kV ���[��OP(>4 "#U#V�/0QP4\�]� nsX%H��I�J����17 kV ��^%�_O`4\�2�,-��.�abF4 KL�J 1�cdX+ "-e�J)YZKL�J 2

2MNOP4"-ef2ghOP+ TES1� 1�i$/j TES1� 1�i���k��XC�Yj% 1.6�2A4[+ �,-�.��l� mY�$n /0 1.6�op4\�2qr�(>4

MALDI-TOFMS2�+ �� ��������stk� 157.1��?�uu��+ v�wxst�y 80 mm+�z/{z�J|�|}� 16 mm�F4\�2+ ~sv� Lc � OA-TOFMS� 1.6� 2.093 m �� u+� �!"#�|} Ly � 50 mm+ � �!"#�� Lm

� 8 mm ��+ ~s]� 8~s m����� 17 mn �� � (1)/0�,-��� ��������i���k�� 1.6�2A4 �� ���������z�J+{z�J+ � �!"#�%�?P�P�,-v�wx�^ mKL�^n /0 �4,000 V, �4,000 V, �750 V ������� �� ��������� 1������������+ 1�1 mm �� 567%�+ ETP89TOFMS 2:�;<= DM167�> ?�@�.�� 1 ns (FWHM) 2A4

4. OA-TOFMS�����

EI, ESI �K�����+ m/z ����������� Fig. 4%EF EI���+�#��,����- (PFK)

[F(CF2)nF] �+ ESI���+ ����,����������,-_� ��+ m/z 1002����� 20,000

(FWHM), m/z�1,0002 40,000�50,000 (FWMH)��N�:% OA-TOFMS��(������:���2��� u� EI 2�,-_��#��,����-�m/z 69�381� 18���#�%�>(+  ¡��¢|�£N�/0�0P4¤¥m/z�� 1�4:�¦§� (2)2�¨�©¨-H�+:]%@ª(�] a�e�¥6F4 m�«¬+ 3:�2AP¬+ a, b, c, d�¥6F4n

�m/zm/z­a�bt�ct2�dt3�et4 (2)

:%�0P¦§� (2)%?P�P��#�� ¡��¢|�®��+  ¡ m/z��¥6F4 ¯X% ¡ m/z ��¤¥ m/z��°±�²³2´µ+ ?� rms (root mean

square) ��²:]%�>(¥6� � �¶·2 ESI

%(�,-_�����,��������� m/z

703�3,014� 18���#��>(���������>+ ��� Table 2 %u�µ EI, ESI �¸%:]2¹3º»>�º'°±� 0.3�0.5 ppm�qr�

Table 2. Comparison between the Theoretical andCalibrated m/z Values in Terms of the RootMean Square (rms) Values Using Di#erentNumbers of Terms up to the Fourth Order forthe Calibration Equations. Eighteen Peaks ofm/z and m/z Was Used for EI and ESI,Respectively

Order

1st 2nd 3rd 4th

EI 0.5 ppm 0.5 ppm 0.4 ppm 0.4 ppmESI 0.4 ppm 0.3 ppm 0.3 ppm 0.3 ppm

Fig. 4. Relationship between the mass resolving power and m/z value utilizing EI and ESI.

0`¼ ��,-v������¢|���½¤�a

�367�

Page 6: Development of a Time-of-Flight Mass Spectrometer

TOFMS������ ��� m/z�� ��������� 1��������� ���� � ! "#$�%&��'()*�+,-�.��/012#3"�45167� ���"189:;��� 1�.����<=">?@A1B8CDE,� ��� m/z�� ���<7FGH1��I31J�C�� I�I3�� K"7LM��NOPQRSTUV1WX���I3YJZ�D7��[\]�^_Y`a��I3�bcMY`a�� EI�deVf�� CF3

g (m / z 69), ESI �deVf��C33H41N2O9

g (m/z 609)�hSi�-�3jk��lmYno��pqYJ� (Fig. 5)� rs�pq�tuvw��x�� 1bcy z�"{|}~�P���~���CD7�� �8 15bcy�jk��tu`f�"7��� I���deV���� 100� Y���D7�37���

���"18� bcY�����xDhSi�1�1���� -�3�D� 60�70� �A������

5. MALDI-TOFMS�����

��MALDI-TOFMS��9HX����7D����m/z �3>?��X���Y Fig. 6 �J�� :���bradykinin1�9, angiotensin II, angiotensin I, P14R�,

adrenocorticotropic hormone (ACTH)18�39��5���,�  C¡C�¢£�V¤¥deV�¦§¨d©�h�ideV�ª« m/z ��� 757.3991, 1,046.5418,

1,296.6848, 1,533.8576, 2,465.1983���� ¬�Pi��� a-CHCAY­7�� Fig. 6 �� ®¯°\±�²³Y�

�P14R: Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Pro-Arg

Fig. 5. Variation in peak area and height of PFK (m/z 69) and reserpine (m/z 609) from EI and ESI ion source,respectively.

Fig. 6. The variation in mass resolving power (FWHM) of five standard peptides by adjusting the delay time atBradikinin1�9, P14R and ACTH18�39. (Reprinted with permission from ref. 11, �2007 Elsevier.)

T. Satoh

�368�

Page 7: Development of a Time-of-Flight Mass Spectrometer

bradykinin1�9, angiotensin I, ACTH18�39������������ ������� ���� ����������������� � !"#��������$� ��� ��� m/z�%������ m/z

�&��"'()�������*+,- .� ���/%�,-0./��� m/z 757� 33,000

143,000, m/z 2,465� 60,000180,000���������23+4���"�56�789:;6<=>�?@:���A�BC�

m/z 67912,769� 37 �8=D���� OA-TOFMS

����������� ���� ����E��FG�Table 3 �+� MALDI-TOFMS���� 1HI� 2HI�J�K��A�BC� 2HI14HI�0�"��0LM�� 1HI� 2HI�������K�0� 1HI��� �N�"LM�� � !#� �O�P&�� 2HI��N�"��$�.4��QLM��

MALDI-TOFMS�R��STUV>WX:�Y6�Z:[�������E��� \=]^Y�9=Y_�`��� 50 fmol La 0.1 fmol b���Bc�� ����defg:h=�6:ig:;� �j�k��� FG�Table 4 �+� l=\m=eno 0MASCOT����� %�FG� `�� 50 fmol �0� Z=p:eqr=�75s td^�������u 52v�e<V 570� `�� 0.1

fmol �/Z=p:eqr=� 18s td^�������u 12v� e<V 92��w+4���"��

6. � � � �

xy� z{J���!|0�"#����!|����.�0� }?W6^�~����!|���$����� z{J���!|0� dee�DY>�%�$ e��:+&'�'� b��(�)����.4��*+�.� xy/� ,u����.�0���=q=��(�� ����� �~�),��-����-��zM��� ��0� %������� �-+/��.�

� � �0� .��/ 0�t�v �zM� �ac��1 TOFMS���2�b�$�/��+����3|�`� ���� ,���4����"b�����!|�2��� R����b+� OA-TOFMS�`� �"b��0� ���� 5w 166�7¡¢£��89¤¥�2�¦§� �jz�b��� b�� y¨:��©;�/ 0�<ª«� ���¬­ .�j� �©;®��4����"b��� ¯=>?°±� ²³´>?°±� @µ¶°±� A=¶°±�0·$��b+�¸�¨�¨¹B¨��º�B¨C»���!;>=��¼� R����b+�

1) W. E. Stephens, Phys. Rev., 69, 691 (1946).2) W. C. Wiley and I. H. McLaren, Rev. Sci. Instrum., 26,

1150 (1955).3) B. A. Mamyrin, V. I. Karataev, D. V. Shmikk, and V. A.

Zagulin, Sov. Phys. JETP, 37, 45 (1973).4) W. P. Poschenrieder, Int. J. Mass Spectrom. Ion. Phys., 6,

357 (1972).5) H. Wollnik and A. Casares, Int. J. Mass Spectrometry, 227,

217 (2003).6) M. Toyoda, M. Ishihara, S. Yamaguchi, H. Ito, T. Matsuo,

R. Reinhard, and H. Rosenbauer, J. Mass Spectrom., 35,163 (2000).

7) D. Okumura, M. Toyoda, M. Ishihara, and I. Katakuse, J.

Mass Spectom. Soc. Jpn., 51, 349 (2003).8) M. Yavor, A. Verentchikov, J. Hasin, B. Kozlov, M.

Gavrik, and A. Trufanov, Physics Procedia, 1, 391 (2008).9) T. Satoh, H. Tsuno, M. Iwanaga, and Y. Kammei, J. Am.

Soc. Mass Spectrom., 16, 1969 (2005).10) T. Satoh, H. Tsuno, M. Iwanaga, and Y. Kammei, J. Mass

Spectrom. Soc. Jpn., 54, 11 (2006).11) T. Satoh, T. Sato, and J. Tamura, J. Am. Soc. Mass

Spectrom., 18, 1318 (2007).12) M. Ishihara, M. Toyoda, and T. Matsuo, Int. J. Mass

Spectrom., 197, 179 (2000).

Keywords: Time-of-flight mass spectrometer, Spiral ion tra-jectory, MALDI, Orthogonal acceleration

Table 3. Comparison between the Theoretical andCalibrated m/z Values in Terms of the RootMean Square (rms) Values of 37 Peaks UsingDi#erent Numbers of Terms up to the FourthOrder for the Calibration Equations

Order

1st 2nd 3rd 4th

1.2 ppm 0.8 ppm 0.8 ppm 0.8 ppm

Table 4. Search Result of Protein Identification byPeptide Mass Fingerprinting Using MASCOT(Reprinted with permission from ref. 11,�2007Elsevier.)

`��(fmol)

Z=p:eqr=�(s)

d^�������u e<V

50 75 52 57010 64 41 390

5 54 36 3511 43 28 2550.5 46 31 3060.1 18 12 92

ac�½�?@:�1���� z{J���!|��2

�369�