development of sfr fuel cladding tube materials...heat treatment – normalizing : 1050 oc x 1 hour...

26
1 FR09, Kyoto, 7-11 December 2009 Development of SFR Fuel Cladding Tube Materials International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan 8 December 2009 Sung Ho Kim, Chan Bock Lee, and Dohee Hahn

Upload: others

Post on 24-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

1 FR09, Kyoto, 7-11 December 2009

Development of SFR Fuel Cladding Tube Materials

International Conference on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan

8 December 2009Sung Ho Kim, Chan Bock Lee, and Dohee Hahn

Page 2: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

2 FR09, Kyoto, 7-11 December 2009

Outline

Core Environment of SFRISFR Fuel Cladding Development ProgramIIAlloy Design for SFR Cladding MaterialsIIIEvaluation of New AlloysIVEvaluation of Fabrication ProcessVSummaryVI

Page 3: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

3 FR09, Kyoto, 7-11 December 2009

Core Environment of SFRI

I.1 Fuel Rod and Assembly I.2 Core Environment & Design

Requirements for Cladding Tube

Page 4: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

4 FR09, Kyoto, 7-11 December 2009

I.1 Fuel Rod & AssemblyHandling Socket

Duct

Nose Piece

Coolant Port

Fuel Pin

� Fuel cladding tube dimension– Outer diameter : 8.5 mm– Thickness : 0.53 mm– Length : 3500 mm

� Fuel assembly– No. of rod : 271– No. of fuel rod : 267– Length : 4500 mm

� SFR fuel materials– Fuel : Metallic– Cladding material : FM steel– Duct material : FM steel

Page 5: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

5 FR09, Kyoto, 7-11 December 2009

�Core Environment– Inlet temperature : 370oC– Outlet temperature : 545oC– Fuel temperature : 650oC– Fast neutron fluence : 200 dpa– Hoop stress (end of life) : 70MPa– 3-4 cycles (1 cycle : 18 month) : 50,000 hrs

�Design Requirements of Cladding Tube– Thermal strain : < 1%– Total strain : < 3%– Swelling : < 5%

I.2 Core Environment & Design Requirements

Page 6: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

6 FR09, Kyoto, 7-11 December 2009

SFR Fuel Cladding Development ProgramII

II.1 TargetII.2 Long-term Development PlanII.3 Short-term Development Plan

Page 7: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

7 FR09, Kyoto, 7-11 December 2009

II.1 Target

KALIMER 600 New TargetMax. allowable temp. of cladding tube 630oC Above 650oC Max. fluence of cladding tube 200 dpa 250 dpaLimitation in cladding temp. by eutectic melting (oC)

650oC – 700oC No. (Apply barrier to cladding tube)

�Development of new cladding having higher creep rupture strength �Development of barrier materials for applying to

cladding tube

Page 8: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

8 FR09, Kyoto, 7-11 December 2009

II.2 Long-term Development Plan’’07~07~’’0808 ’’09~09~’’1010 ’’11~11~’’1212 ’’13~13~’’1414 15~15~’’1616 17~17~’’1818 ’’19~19~’’2020 ’’21~21~’’2222 ’’23~23~’’2424 ’’25~25~’’2626 ’’27~27~’’2828

SFRSFR

SFR Fuel CladdingSFR Fuel Cladding

Develop. Key tech.Develop. Key tech. Verification tech.Verification tech. Demonstration tech.Demonstration tech. Commercialization tech.Commercialization tech.

Develop. New FMS claddingDevelop. New FMS cladding

Verifi. of new FMSVerifi. of new FMS

Manufac. FM steel cladding & out-of-pile test

Manufac. FM steel cladding & out-of-pile test

In-pile test of FM steel claddingIn-pile test of

FM steel claddingCommercialization of new FM steel

Commercialization of new FM steel

Basic studyBasic study

Develop. of evaluation technologyfor out-of-pile performance

Develop. of evaluation technologyfor out-of-pile performance

Cladding Manufac. Tech.Cladding Manufac. Tech.

Develop. of evaluation technologyfor in-pile performance

Develop. of evaluation technologyfor in-pile performance

Develop. ODS steelDevelop. ODS steel Manufac. ODS steel cladding & out-of-pile testManufac. ODS steel

cladding & out-of-pile testIn-pile test of

ODS steel claddingIn-pile test of

ODS steel claddingCommercialization

of ODS steel Commercialization

of ODS steel

Gen IV SFR Advanced concept

design

Gen IV SFR Advanced concept

designPreliminary designPreliminary design Detailed designDetailed design

ConstructionConstruction

Gen IV SFRConcept design

Gen IV SFRConcept design

Gen IV SFRStandard design

Gen IV SFRStandard design

Page 9: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

9 FR09, Kyoto, 7-11 December 2009

II.3 Short-term Development Plan

� Develop. evaluation technology• Evalu./analysis tech for creep test • Evalu./analysis tech for cladding/sodium compatibility test

� Fabrication of HT9 tube • Evaluate fabrication process• Perform mechanical test with HT9 cladding tube

Patent fornew cladding

materialMaterial standard

for cladding

2007200720072007 2011201120112011

Development of SFR Fuel Key Technology

Manufac. of cladding/sodium compatibility tester

� Basic studies• Basic properties• Creep deformation map• Irradiation effects

� Verifi. candidate cladding materials (Pilot scale )

• Verifi. of creep properties• Verifi. of cadding/sodium compatibility

• Production of material database

� Basic study for cladding fabrication• Analysis fabrication technology• Analysis fabrication process

Database for new FMS

� Develop. candidate claddingmaterials (Lab scale )

• Analysis of status (patent map)• Design & testing of new alloy• Selection of candidate claddingmaterial

Basic database

Performancedatabase

Fabricationprocess

Newcladding materials for high burnup

Cladd./sodium Compa. test

Page 10: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

10 FR09, Kyoto, 7-11 December 2009

Alloy Design for SFR Fuel Cladding MaterialsIII

III.1 Evaluation of Minor Alloying Elements III.2 Strengthening Mechanism of FM SteelsIII.3 Alloy Design III.4 Fabrication Process

Page 11: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

11 FR09, Kyoto, 7-11 December 2009

III.1 Evaluation of Minor Alloying Elements Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I II III IV V VI VII VIIIPeriod

hydrogen helium

1 2H He

1.0079 4.0026lithium beryllium boron carbon nitrogen oxygen fluorine neon3 4 5 6 7 8 9 10Li Be B C N O F Ne6.94 9.01218 10.81 12.011 14.0067 15.999 18.998403 20.18

sodium magnesium aluminium silicon phosphorus sulfur chlorine argon11 12 13 14 15 16 17 18Na Mg Al Si P S Cl Ar

22.98977 24.305 26.98154 28.086 30.97376 32.07 35.453 39.948potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

39.0983 40.08 44.95591 47.867 50.9415 51.996 54.93805 55.84 58.9332 58.693 63.55 65.4 69.723 72.6 74.9216 79 79.904 83.8rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe85.468 87.62 88.9058 91.22 92.9064 95.94 [97.9072] 101.1 102.9055 90 107.868 112.41 114.82 118.71 121.76 127.6 126.9045 131.3caesium barium 57-71 hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon55 56 * 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

132.9054 137.33 178.5 180.9479 183.84 186.207 190.2 192.22 195.08 196.9666 200.6 204.383 207.2 208.9804 [208.9824] [209.9871] [222.0176]francium radium 89-103 rutherfordiu

m dubnium seaborgium bohrium hassium meitnerium darmstadtium roentgenium ununbium ununtrium ununquadiu

m ununpentium ununhexium ununseptium ununoctium87 88 ** 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo

[223.0197] [226.0254] [263.1125] [262.1144] [266.1219] [264.1247] [269.1341] [268.1388] [272.1463] [272.1535] [277] [284] [289] [288] [292] [291]*** [294]***

1 3) V, Nb, Ta, Ti5) C, N

1) Cr2) Mo, W, Re

5) B

3

4

5

6

7

6) Si, Mn7) Ni, Cu, Co8) Al, P, S

2

1) Cr: Precipitation hardening2) Mo, W, Re: Solid solution hardening3) V, Nb, Ta, Ti: Precipitation hardening4) C, N: Precipitation hardening5) B: Stabilization of precipitates6) Si, Mn: Stabilization of precipitates7) Ni, Cu, Co: Stabilization of microstructure8) Al, P, S: Stabilization of microstructure

Evaluation Evaluation of base dataof base data

• Crystal structure/atomic radius• valence/Electronegativity/MP• nucleus embrittlement• Formation of δδδδ-ferrite• Phase transformation temp. (Ms, A1)

Page 12: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

12 FR09, Kyoto, 7-11 December 2009

III.2 Strengthening Mechanism of FM Steels

+ Mo + W+ W

Solid SolutionStrengtheningSolid SolutionStrengthening

+ V + Nb+ V + Nb C, N, B Ta, Zr, Ti

PrecipitationStrengtheningPrecipitation

Strengthening

Strengthening mechanisms of FMS SteelsStrengthening mechanisms of FMS Steels

•• Effect of B additionEffect of B addition•• Optimization of Optimization of C C andand NN•• Optimization of Optimization of NbNb,, VV•• Effect of Ta additionEffect of Ta addition•• Effect of Effect of ZrZr and and TiTi

Page 13: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

13 FR09, Kyoto, 7-11 December 2009

III.3 Alloy Design � Chemical compositions

� Specimen manufacturing– Vacuum Induction Melting (Ingot size : 30kg)– Hot rolling (1150oC)

� Heat treatment– Normalizing : 1050oC x 1 hour– Tempering : 750oC x 2 hours– Air cooling was applied during all the heat treatment.

“9Cr-2W-Nb-Ta-V2BEffect of C and N concentration 9Cr-2W-Nb-Ta-V1-C1-N1C

Effect of Ti 9Cr-2W-Nb-V-TiDEffect of Zr9Cr-2W-Nb-V-ZrE

Effect of V concentration 9Cr-2W-Nb-Ta-V1ARemark Nominal composition ID

Page 14: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

14 FR09, Kyoto, 7-11 December 2009

III.4 Fabrication Process

�Cold rolling and heat treatment– Plate : normalized at 1050oC for one hour, tempered at 550oC for 2 hours– Cold rolled from 4 mm to 1 mm– One time cold rolling :

• Reduction ratio : 75%• Heat treatment : 750oC for 30 min

– Three times cold rolling• Reduction ratio : 33% or 44%• Heat treatment : 750oC for 10 min

Page 15: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

15 FR09, Kyoto, 7-11 December 2009

Evaluation of New AlloysIV

IV.1 Phase Equilibrium DiagramIV.2 Mechanical Properties

Page 16: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

16 FR09, Kyoto, 7-11 December 2009

IV.1.1 Phase Equilibrium Diagram�Phase equilibrium of Alloy A & B

– Alloy A : high vanadium steel– Alloy B : low vanadium steel– Equilibrium phases : M23C6, MX, BN and

Laves phase– Ae1 temperature : 805oC and 780oC in

alloy A and B• Alloy A can be tempered at higher

temperature.• More stable precipitates may be formed.• Creep resistance of Alloy A may be

improved.– V-rich MX phases

• Formed in Alloy A• Not appeared in Alloy B

0

5

10

15

20

25

30

35

40

45

50

10-3

BPW(

*)

300 400 500 600 700 800 900 1000 1100 1200 1300TEMPERATURE_CELSIUS

DATABASE:TCFE5 W(CR)=9.33E-2, W(MO)=5.21E-3, W(W)=1.95E-2, W(V)=2.96E-3, W(NB)=5.2E-4, W(C)=7E-4, W(SI)=7E-4, W(MN)=4.44E-3, W(NI)=4.74E-3, W(N)=6E-4, W(B)=1.6E-4, P=1E5, N=1.;

2

2:T-273.15,BPW(BN_HP4)

1

1:T-273.15,BPW(BCC_A2)

24

4:T-273.15,BPW(FCC_A1#2)

2 42 45

5:T-273.15,BPW(FCC_A1#4)

24

524

5 6

6:T-273.15,BPW(M23C6)

245

6

24

5

7

7:T-273.15,BPW(LAVES_PHASE_C14)

6

24

7

6

Ferrite Austenite

A e1

A e3

Delta

Mas

s fra

ctio

n

L a v e s

M23C6

MX

Temperature, oC

BN0

5

10

15

20

25

30

35

40

45

50

10-3

BPW(

*)

300 400 500 600 700 800 900 1000 1100 1200 1300TEMPERATURE_CELSIUS

DATABASE:TCFE5 W(CR)=9.33E-2, W(MO)=5.21E-3, W(W)=1.95E-2, W(V)=2.96E-3, W(NB)=5.2E-4, W(C)=7E-4, W(SI)=7E-4, W(MN)=4.44E-3, W(NI)=4.74E-3, W(N)=6E-4, W(B)=1.6E-4, P=1E5, N=1.;

2

2:T-273.15,BPW(BN_HP4)

1

1:T-273.15,BPW(BCC_A2)

24

4:T-273.15,BPW(FCC_A1#2)

2 42 45

5:T-273.15,BPW(FCC_A1#4)

24

524

5 6

6:T-273.15,BPW(M23C6)

245

6

24

5

7

7:T-273.15,BPW(LAVES_PHASE_C14)

6

24

7

6

Ferrite Austenite

A e1

A e3

Delta

Mas

s fra

ctio

n

L a v e s

M23C6

MX

Temperature, oC

BN

0

5

10

15

20

25

30

35

40

45

50

10 -3BP

W(*)

300 400 500 600 700 800 900 1 000 1100 1200 1300

TEM PERATUR E_CELS IU S

TH ERMO-CA LC (2009. 03.02:13.50 ) : DAT ABASE:TCF E5 W (CR) =9E-2 , W (MO) =5 .27E- 3, W (W )=2 .2E-2 , W (V )= 1. 1E-3 , W (NB)= 5.3E -4, W (C)=6 .6E -4, W (S I) =3.1E- 4, W (MN)= 4.43E-3, W (NI)= 4.85E -3, W (N)=7E-4 , W (B)= 1 .8E- 4, P=1E5, N= 1. ;

2

2:T-273.15,BPW(BN_HP4)

224

4:T-273.15,BPW(F CC_A1#3)

25

5:T-273.15,BPW(F CC_A1#2)

424 2542424

1

1:T-273.15,BPW(BCC_A2)

242 4

6

6:T-273.15,BPW(M23C6 )

24

6

24

7 7:T-273.15,BPW(L AVES _P HASE_C14)

6

Ferrite Austenite

A e1

A e3

Delta

Mas

s fr

actio

n

Lav es

M23C6

MX

Temperature, oC

BN0

5

10

15

20

25

30

35

40

45

50

10 -3BP

W(*)

300 400 500 600 700 800 900 1 000 1100 1200 1300

TEM PERATUR E_CELS IU S

TH ERMO-CA LC (2009. 03.02:13.50 ) : DAT ABASE:TCF E5 W (CR) =9E-2 , W (MO) =5 .27E- 3, W (W )=2 .2E-2 , W (V )= 1. 1E-3 , W (NB)= 5.3E -4, W (C)=6 .6E -4, W (S I) =3.1E- 4, W (MN)= 4.43E-3, W (NI)= 4.85E -3, W (N)=7E-4 , W (B)= 1 .8E- 4, P=1E5, N= 1. ;

2

2:T-273.15,BPW(BN_HP4)

224

4:T-273.15,BPW(F CC_A1#3)

25

5:T-273.15,BPW(F CC_A1#2)

424 2542424

1

1:T-273.15,BPW(BCC_A2)

242 4

6

6:T-273.15,BPW(M23C6 )

24

6

24

7 7:T-273.15,BPW(L AVES _P HASE_C14)

6

Ferrite Austenite

A e1

A e3

Delta

Mas

s fr

actio

n

Lav es

M23C6

MX

Temperature, oC

BN

Alloy A

Alloy B

Page 17: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

17 FR09, Kyoto, 7-11 December 2009

Mas

s fra

ctio

n

IV.1.2 Phase Equilibrium Diagram

�Phase equilibrium of Alloy C– Carbon concentration : decrease– Nitrogen concentration : increase– Ae1 temperature : 780oC– Mass fraction of M23C6 precipitates : reduce in Alloy C– Mass fraction of MX precipitates : increase in Alloy C

Page 18: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

18 FR09, Kyoto, 7-11 December 2009

IV.2.1 Tensile Properties

�Tensile test results– Tensile test temperature : 650oC– V effect

• Low V alloy : higher yield and tensile strengths– C & N effect

• Low C & high N alloy : higher yield and tensile strengths – Ti of Zr effect

• Zr addition : more effective in improving yield and tensile strengths

0 200 400 600 8000

200

400

600

800

Stren

gth (M

Pa)

Test Temperature (oC)

Alloy A, YS Alloy B, YS Alloy A, TS Alloy B, TS

0 200 400 600 800

200

400

600

800

Stren

gth (M

Pa)

Test Temperature (oC)

Alloy A, YS Alloy C, YS Alloy A, TS Alloy C, TS

0 200 400 600 800200

400

600

800

Stren

gth (M

Pa)

Test Temperature (oC)

Alloy D, YS Alloy E, YS Alloy D, TS Alloy E, TS

Page 19: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

19 FR09, Kyoto, 7-11 December 2009

IV.2.2 Creep Properties

�Creep rupture test results– Creep test temperature : 650oC– Applied stress : 120 ~ 150 MPa– V effect

• Low V alloy : higher creep rupture strength• Perform the creep test at low stress levels

– C & N effect• Low C & high N alloy : lower creep rupture strength

– Ti or Zr effect• Zr bearing alloy : higher creep rupture strength

10 100 1000 10000100

120

140

160

180

Appli

ed Lo

ad (M

Pa)

Time to Rupture (hrs)

Alloy A Alloy B

10 100 1000 10000100

120

140

160

180

Appli

ed Lo

ad (M

Pa)

Time to Rupture (hrs)

Alloy A Alloy C

100 1000 10000100

120

140

160

180

Appli

ed Lo

ad (M

Pa)

Time to Rupture (hrs)

Alloy D Alloy E

Page 20: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

20 FR09, Kyoto, 7-11 December 2009

IV.2.3 Creep Rupture Elongation

100 110 120 130 140 150 1600

10

20

30

40

50

Ruptu

re Elo

ngati

on (%

)

Applied Load (MPa)

Alloy A Alloy B Alloy C Alloy D Alloy E

�Creep rupture elongation– V effect

• High V alloy : higher creep rupture elongation– C & N effect

• Low C & high N alloy : lower creep rupture elongation– Ti or Zr effect

• Similar creep rupture elongation– Creep rupture elongation : 15 ~ 25%, not changed with applied load

Page 21: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

21 FR09, Kyoto, 7-11 December 2009

Evaluation of Fabrication ProcessV

V.1 MicrostructureV.2 Mechanical Properties

Page 22: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

22 FR09, Kyoto, 7-11 December 2009

V.1.1 Microstructure - Matrix�Matrix microstructure

– Mother plate • Normalized at 1050oC for 1 hour• Tempered at 550oC for 2 hours• Typical tempered martensite structure• Lath width : 200 nm

– One time cold rolling• Reduction ratio : 75%• Tempered at 750oC for 30 min• Fully recrystallized ferritic structure• Excess strain energy stored through cold rolling • Average grain size : 3 um

– Three times cold rolling• Reduction ratio : 33-44%• Tempered at 750oC for 10 min• Recrystallized ferritic structure was observed.• Strain energy accumulated through first and second cold rolling : disappeared by intermediate heat treatment (a) Normalized

(b) One time cold rolling(c) Three times cold rolling

(a)

(b)

(c)

500nm

500nm

500nm

Page 23: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

23 FR09, Kyoto, 7-11 December 2009

V.1.2 Microstructure - Precipitates

(a) Normalized(b) One time cold rolling(c) Three times cold rolling

(a)

(b)

(c)

�Precipitates microstructure– Mother plate

• M23C6 and V-rich MX fully dissolved• Tempering temperature was low enough to avoid the formation of M23C6 and V-rich MX

• Nb-rich MX phase• 85Nb-9V-4Cr-2W (at%)

– One time cold rolling• Nb-rich MX phase : originally contained in the steel before cold rolling

• M23C6 phase : 68Cr-25Fe-3Mo-4W (at%)• V-rich MX phase : 65V-12Nb-15Cr-8W• Size of V-rich MX : less than 100 nm• Size of M23C6 : relatively large

– Three times cold rolling• Nb-rich MX, V-rich MX, M23C6 phase • Fine and uniform precipitates• High density of dislocations: provide favorable nucleation site for precipitates

M23C6

500nm

500nm

500nm

Page 24: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

24 FR09, Kyoto, 7-11 December 2009

V.2.1 Microhardness

100

200

300

400

500

FHT (750oC/30min+AC)

CR (1.0T, 75% Re)

Mother plate (4.0T)

CR: Cold rollingRe: Reduction ratio FHT: Final heat treatment AC: Air cooling

Vicke

rs ha

rdnes

s (Hv

)100

200

300

400

500

2nd IHT (750oC/10min+AC)

FHT (750oC/10min+AC)

1st CR (2.7T, 33% Re)

3rd CR (1.0T, 44% Re)

2nd CR (1.8T, 33% Re)

1st IHT (750oC/10min+AC)

Mother plate (4.0T)

CR: Cold rollingRe: Reduction ratio IHT: Intermediate heat treatment FHT: Final heat treatmentAC: Air cooling

Vicke

rs ha

rdnes

s (Hv

)

�Microhardness test results– Mother plate : 350 Hv– One time cold rolling

• Cold rolling : 419 Hv, heat treatment : 175 Hv• Significant softening : fully recrystallizedgrains

– Three times cold rolling• 1st cold rolling : 391 Hv, heat treatment : 344 Hv,

• Heat treatment recovered mechanical properties degraded during cold rolling.

• 2nd cold rolling : hardness increased, heat treatment : hardness decreased

• Final cold rolling & heat treatment : 246 Hv• Formation and growth of recrystallized grains

Page 25: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

25 FR09, Kyoto, 7-11 December 2009

V.2.2 Tensile Properties

0

20

40

60

80

0

200

400

600

800

Stren

gth (M

Pa)

Yield Ultimate tensile

Three cold rollingsOne cold rollingFHT FHT2nd IHT1st IHT

Elongation

Elon

gatio

n (%)

�Tensile test results– Tensile test temperature : 650oC– One time cold rolling

• Yield, tensile strengths and elongation : 201 MPa, 235 MPa, and 35%

• Fully recrystallized structure– Three times cold rolling

• First heat treatment : 446 MPa, 544 MPa, and 17%

• Second heat treatment : yield and tensile strengths slightly reduced, elongation increased

• Third heat treatment : 368 MPa, 405 MPa, and 23%

• Partially recrystallized structure and finely distributed precipitates

Page 26: Development of SFR Fuel Cladding Tube Materials...Heat treatment – Normalizing : 1050 oC x 1 hour – Tempering : 750 oC x 2 hours – Air cooling was applied during all the heat

26 FR09, Kyoto, 7-11 December 2009

Summary�Alloy Design and Evaluation

– Increase of V concentration caused the increase of mass fraction of V-rich MX particles.

– The high V steel showed lower yield, tensile and creep rupture strengths.– The high N and low C steel showed higher yield and tensile strengths, but revealed lower creep rupture strength than the low N and high C steel.

– The Zr addition was more effective than Ti addition in terms of yield, tensile and creep rupture strengths.

�Fabrication Process– The 75% cold rolling and the final heat treatment led to a transition to a fully recrystallized structure with a formation of large inhomogeneous M23C6carbides, resulting in a significant softening.

– However, three times cold rolling with an intermediate heat treatment after each cold rolling led to the formation of fine and uniform M23C6 carbides in a partially recrystallized structure, thus providing an enhanced tensile strength. These fabrication processes could be effective for fabricating a high strength ferritic/martensitic steels.