Transcript
  • Slide 1

// RF Transceiver Design Condensed course for 3TU students Peter Baltus Eindhoven University of Technology Department of Electrical Engineering 20070607 / 20070608 Slide 2 // Agenda Day 1 Thursday June 7 th 2007 10:00-11:15 lecture 1 Systems, specs Technologies & FOMS Architectures + finding subblock parameters 11:15-12:00 instruction 1 12:00-13:00 lunch 13:00-14:15 lecture 2 Amplifiers & Mixers 14:15-15:30 instruction 2 15:30-16:30 lecture 3 Oscillators & Filters 16:30-17:00 instruction 3 Slide 3 // Agenda Day 2: Friday June 8 th 2007 9:00-10:15 lecture 4 Block interaction: substrate xtalk coupling of inductors Packaging thermal effects multi-mode non-linear input/output impedance 10:15-11:00 instruction 4 11:00-12:00 lecture 5 Multiple-antenna OFDM systems: overview, system build-up, digital signal processing 12:00-13:00 lunch 13:00-14:00 lecture 6 Influence and digital compensation of Phase Noise and Carrier frequency offset 14:00-14:30 instruction 14:30-15:30 lecture 7 Influence and digital compensation of IQ imbalance and nonlinearities, generalized error model 15:30-16:00 instruction Slide 4 // Lecture 1: RF Systems & Specifications Slide 5 // Instruction Slide 6 // Question 1 Design a simple mass-market WLAN system: - f = 5..6GHz - BW = 20MHz - SNRmin = 11dB - Range = 100m LOS Find a consistent (but not unique) set of parameters: - Transmit power - Receive noise figure - Receiver IP3 - Receiver selectivity Make any reasonable assumption required Slide 7 // Question Calculate required transmit power if: Frequency = 2.5GHz range = 10m sensitivity = -70dBm omnidirectional antennas LOS Slide 8 // Solution PRX=-70dBm GRX= GTX=0dB Wavelength=0.12m PTX =0.11mW Low power! Cheap AA NiCd battery: 1.5Wh => 14000 hr! Slide 9 // Question: -10 dBm frequency 2 -40 dBm P out What is IIP2 and OIP2 assuming a power gain of 7 dB Slide 10 // Two signals at the input of a non-linear system Yield a lot! of other frequency components 11 22 Slide 11 // A forest of frequencies Slide 12 // Graphical overview of inter-modulation products Slide 13 // Calculation of IP2 IIP2: input power where wanted power = second order power (extrapolated point). Slide 14 // Formula for OIP2 (small signal extrapolation!) P fund,out P frequency P out (dBm) 2 Slide 15 // Answer The input IIP2 is OIP2 divided by the power gain (so -7 dB) Slide 16 // Calculation of IP3 IIP3: input power where wanted power = the third order power (extrapolated point). Slide 17 // Formula for OIP3 (when not in compression) P fund,out P freq. P out (dBm) 2 Slide 18 // RX NF Exercise: Calculate RX minimum NF for: Psensitivity = -70dBm BW = 20MHz SNRmin=15dB Slide 19 // RX NF Solution: P RX =-70dBm BW=20MHz SNR min 15dB Equivalent input noise: -85dBm Equivalent input noise density: -158dBm/Hz Thermal noise density (kT) : -174dBm/Hz Total transceiver NF=16dB Note: need to include losses for antenna filter, switches, antenna loss (total e.g. 3dB) and baseband implementation loss to get RX IC NF Slide 20 // RX ADC Exercise Bandwidth = 1MHz max signal = -20dBm min signal = -70dBm SNRmin = 11dB Calculate ADC minimum sampling rate & minimum # bits assuming perfect analog channel selectivity but no AGC, and ADC noise contribution less than 1dB Slide 21 // RX ADC Solution: Bandwidth = 1MHz, sample rate >=2Msps Resolution: max signal = -20dBm min signal = -70dBm equivalent input noise = -81dBm equivalent ADC input noise = -91dBm Dyn range: 71dB Effective resolution: >= 12bit Slide 22 // Lecture 2: Amplifiers & Mixers Slide 23 // Instruction Slide 24 // Question 1 For a simple mass-market WLAN system: - select a (very simple) LNA topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 25 // Question 2 For a simple mass-market WLAN system: - select a (very simple) Mixer topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 26 // Lecture #3: VCOs and Filters Slide 27 // Instruction Slide 28 // Question 1 For a simple mass-market WLAN system: - select a (very simple) VCO topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 29 // Question 2 For a simple mass-market WLAN system: - select a (very simple) IF filter topology - identify main performance parameters - choose typical/common sense values - set approximate values for components - draw an approximate layout of the IC - identify potentially relevant parasitic elements Slide 30 // The End for today! Thanks for your attention ! Tomorrow: Block interaction or Why it still doesnt work Slide 31 // Lecture #4: Why it still doesnt work Slide 32 // Instruction Slide 33 // Question Design: -Floorplan -Pin-out -For a 4x4 MIMO WLAN transceiver for the mass- market Slide 34 // The End for my contribution today Thanks for your attention !


Top Related