Transcript
Page 1: XLF durham Apr2010 posterastro.dur.ac.uk/cosmology/Images/all_pdfs/durham2010... · 2010. 8. 13. · James Aird University of California, San Diego Kirpal Nandra, Elise Laird, Antonis

JamesAirdUniversityofCalifornia,SanDiego

KirpalNandra,EliseLaird,AntonisGeorgakakis,Ma@Ashby,PaulineBarmby,AlisonCoil,JiashengHuang,AntonKoekemoer,ChuckSteidel,ChrisWillmer

IntroducJon

ThefaintendoftheXLFatz≈4–5:preliminaryresults Conclusions

FormoreinfoseeAirdetal.2010,MNRAS,401,2531email:[email protected]

References:AdelbergerK.L.etal.,2004,ApJ,607,226;GeorgakakisA.etal.,2008,MNRAS,388,1205;LuoB.etal.,2010,ApJS,187,560;SteidelC.C.etal.,2003,ApJ,592,728

2)CorrecJngforincompleteness

3)Photometricredshibs 4)Rest‐frameUVcolourpre‐selecJonatz≈2–3

1)X‐rayfluxuncertainJesandsensiJvity

5)Bayesianmodelcomparison

0 2 4 6 8 10 12Count rate s

0.00

0.01

0.02

0.03

0.04

0.05

P(s

| N

,b)

-16 -15 -14 -13 -12 -11log(fX / erg s-1 cm-2)

10

15

20

25

30

R m

agnit

ude

(AB

)

(a)

log(fX /f

opt )=-1.0

0.0

+1.0

R=25.5

-2 -1 0 1 2log(fX/fopt)

0

20

40

60

80

100

120

Num

ber

(b)

0.1 0.2 0.5 1.0 2.0 5.0zspec

0.1

0.2

0.5

1.0

2.0

5.0

CF

HT

LS

z

phot

-0.5 0.0 0.5 1.0 1.5G-

-1

0

1

2

3

Un-G

R

QSO

GAL

NLAGN

LBG

BX

-0.5 0.0 0.5 1.0 1.5g’-r’

-1

0

1

2

3

u*-g

LBG

BX

-0.5 0.0 0.5 1.0 1.5r’-i’

-1

0

1

2

3

g’-

r’

z~4

0.0

0.2

0.4

0.6

0.8

1.0

P(z

)

GAL

NLAGN

QSO

u*g’r

’i’

1 2 3

0.0

0.2

0.4

0.6

0.8

P(z

)

BX LBG

1 2 3 Redshift (z)

BX LBG

1 2 3 4

BX LBG

UGR

•  BayesianapproachusedtodeterminetheXLFthataccountsforthefullprobabilitydistribuJons(i.e.uncertainJes)inX‐rayfluxandredshibforeachsource,opJcalincompleteness,X‐raysensiJvityandthehigh‐zselecJonfuncJons.

•  Keyfeature:Bayesianevidenceiscalculated(vianestedsamplingalgorithm),allowingrobustmodelcomparison‐penalisesmorecomplexmodels

•  CompareourluminosityanddensityevoluJon(LADE)withsimplerPureLuminosityEvoluJon(PLE)andmorecomplexLuminosity‐DependentDensityEvoluJon(LDDE)

SystemaJcbias?

•  Photo‐zessenJaltoobtainadequateredshibcompletenessforlow‐luminosityAGN

•  Adoptphoto‐zfromCFHTLS(templatefilng,u*g’r’i’z’)andANNz(ArJficialNeuralNetworkstrainedatz<1.2)

•  Photo‐zhavelargeerrorsandtheremaybemulJplepeaksintheredshibprobabilitydistribuJon(seeFig.3)

•  p(z)distribuJonsareadoptedforeachsource(seealsobox5)

•  Photo‐zsufferfromcatastrophicfailuresandmaybesystemaJcallybiasedatz≳1.2(seeFig.4).WethereforeadoptanalternaJveapproachathighredshibs(seebox4)

•  Atz>1.2werestrictoursampletoobjectsthatsaJsfyrest‐frameUVcolourselecJoncriteriainUGRcolourspace

‐BX:z~2.3,LBGz~3,(Steideletal.2003,Adelbergeretal.2004)

•  Suchsamplesarehighlyincomplete

•  However,havewell‐definedselec;onfunc;ons(seeFig.6)thatallowustocorrectforthisincompleteness

•  CalculatedbymodelingcolourdistribuJonofdifferentAGNhostsandsimulaJngtheobserveddata(seeFig.5)

Fig.5(above):ModeltrackswithredshibfordifferentopJcalclassificaJonsinUGRcolourspaceFig.6(le0):SelecJonfuncJonsforLBGandBXcriteriaforeachopJcalclassificaJon

GAL NLAGN QSO

high‐zUVcolourpre‐selecJon

Results

10-8

10-7

10-6

10-5

10-4

10-3

0.0 < z < 0.2

0.2 < z < 0.5

0.5 < z < 0.8

10-8

10-7

10-6

10-5

10-4

10-3

d!

/d(l

og L

X)

0.8 < z < 1.0

1.0 < z < 1.2

1.2 < z < 1.5

41 42 43 44 45 46

10-8

10-7

10-6

10-5

10-4

10-3

1.5 < z < 2.0

42 43 44 45 46log(LX / erg s-1)

2.0 < z < 2.5

42 43 44 45 46

2.5 < z < 3.5

TheXLFevolvesinluminosity…Movingtohigherluminosi9esathigherredshi0sThisstrong,posi3veevolu3onofthecharacteris3cluminosity,L*,,dominatestheevolu3onatz≲1.5

…ANDdensityDecreasinginoveralldensityasredshi0increasesAthighredshiDs(z≳1.5)theluminosityevolu3onslows,andtheevolu3onisdominatedbythisweakexponen3aldeclineindensitywithincreasingredshiD.

BUTretainsthesameshapeWefindnoevidenceforaflaNeningofthefaint‐endslopeathighredshiDs.TheXLFhasthesameshapeatallredshiDs.Wedonotrequireamorecomplexluminosity‐dependentdensityevolu3onmodel(LDDE).Previouses3matesmaybebiasedbythefailureofphotometricredshiDsatz≈1.5–3,thatcanimplyaflaNenedfaint‐endslope.

photo‐z(notusedinfilngatz>1.2)

LADEmodelevaluatedatz=0

• ManyX‐raysourcesdetectedwithfewcounts➔significantPoissonianuncertaintyintheflux

• WeaccountforthefullprobabilitydistribuJonforthefluxofeachsourcedirectlyinourXLFfilng

•  AlsousedindeterminaJonoftheX‐raysensiJvityfuncJon(seeGeorgakakisetal.2008)

•  AllowscorrecJonforthesignificanteffectsofEddingtonbias(seeFig1) high‐z

colourpre‐selecJon

Fig.1:ExamplePoissionprobabilitydistribuJonforX‐raycountrate(black)andthedistribuJonabercorrecJonforEddingtonbias(red)

N=5b=0.4

Fig.2:X‐rayfluxvs.opJcalmagnitudeforoursample

Fig.3:ExampleredshibprobabilitydistribuJon,p(z),foraCFHTLSphoto‐z

Fig.4:CFHTLSphoto‐zvs.spectroscopicredshibsforAEGIS‐X(200ks)sources

Fig.7:2‐10keVX‐rayluminosityfuncJonatarangeofredshibs

•  LikelihoodRaJo(LR)methodisusedtoidenJfysecureopJcalcounterpartsofX‐raysources

•  X‐raysourcesaresca@eredoverarangeofX‐rayflux–opJcalfluxraJos

•  ForthefaintestX‐raysourceswesufferfromincompletenessassourceslackopJcalcounterparts

•  IncompletenessiscorrectedforbydirectlymodelingthefX/foptrelaJoninthedeterminaJonoftheXLF,andcorrecJngforthefracJonofsourceswithopJcalcounterpartswithR>25.5

Incompleteness

•  AddiJonal1.8MsofChandraJmeawardedinA09totake3oftheAEGIS‐XChandrapoinJngsto800ksdepth–AEGIS‐XD(eep)

•  Providesaunique,largeareaofverydeepX‐raydata,providingasignificantsampleoflow‐LXAGNatz≳4

•  X‐raysourcesarecross‐idenJfiedwithmulJwavelengthcounterpartsinopJcal,near‐ormid‐IRusingthelikelihoodraJotechnique=>97%idenJficaJonrate(seealsoLuoetal.2010)

•  AperturemagnitudesextractedforopJcallyblanksources=>upperlimits

•  Photo‐z’sdeterminedfrom10bandsfromUVto8.0µm

• PreliminaryresultsagreewellwithextrapolaJonofLADEmodel

41 42 43 44 45 46

10-8

10-7

10-6

10-5

10-4

10-3

d!

/d(l

og L

X)

3.5 < z < 4.5

42 43 44 45 46log(LX / erg s-1)

4.5 < z < 5.5

Fig.8:Preliminarymeasurementsofthe2‐10keVX‐rayluminosityfuncJonatz≈4andz≈5

LADEmodelatz=0

PreliminaryresultsusingAEGIS‐XDdata

ExtrapolaJonofLADEmodel

•  TheluminosityfuncJonofAcJveGalacJcNuclei(AGN)isakeytracerofthedistribuJonandhistoryofaccreJonacJvityoverthelifeJmeoftheUniverse.AccuratemeasurementsouttothehighestpossibleredshibsareessenJaltoconstrainmodelsofsupermassiveblackholeformaJonandgrowth,thetriggeringandfuelingofAGN,andtheirco‐evoluJonwithgalaxies.

•  X‐raysurveysprovideanefficientmethodofidenJfyingAGN,includingunobscuredandmoderatelyobscuredsources,andlow‐luminosityAGN.

•  However,arangeofissuescanleadtoincompletenessinsamplesandpotenJallybiasmeasurementsoftheX‐rayluminosityfuncJon,especiallyatthefaintestluminosiJesandhighestredshibs.

• Wepresentmeasurementsofthe2—10keVX‐rayluminosityfuncJon(XLF)overawiderangeofredshibs(z≈0—3)

•  UsedatafromCDF‐N(2Ms),CDF‐S(2Ms),AEGIS‐X(200ks),ASCALSSandASCAMSS

• Wemakeanumberofsignificantandimportantmethodologicalimprovements–seeboxes1—5

• WealsopresentpreliminaryresultsfromtheAEGIS‐XD(800ks)surveyatz≈4—5

•  SophisJcatedmethodusedtodeterminetheevoluJonofthe2—10keVXLF,whichaccountsforuncertainitesinphotometricredshibs,thePoissoniannatureofX‐rayfluxesJmates,thefracJonofsourceswithcounterpartsbelowthemagnitudelimitsoftheopJcaldataandtheopJcalselecJonfuncJonsathighredshibs.

• WefindthattheXLFretainsthesameshapeatallredshibs,evolvingonlyinluminosityandoveralldensity.Thereisnoevidenceforafla@eningofthefaint‐endslopeathighredshibs.

•  ThetotalluminositydensityofAGNpeaksatz=1.2±0.1,withamilddeclinetohigherredshibs.LowerluminosityAGNpeakinnumberdensityatlowerredshibs,butwefindasmallershibthanpriorstudies.

•  TheseresultsindicatethatthesameprocessesareresponsiblefortriggeringandfuellingAGNatallredshiMs,butincreaseinoveralldensityfromtheearliest;mestoz≈1.Exhaus;onofgassuppliesinthemostmassivegalaxiesatlater;mesmayresultinthe“downsizing”ofAGNtolowerluminosi;es.

• Wefindthat>50%ofblackholegrowthtakesplaceatz>1,witharoundhalfinlow‐luminosityAGN.

Top Related