xlf durham apr2010 posterastro.dur.ac.uk/cosmology/images/all_pdfs/durham2010... · 2010. 8....

1
James Aird University of California, San Diego Kirpal Nandra, Elise Laird, Antonis Georgakakis, Ma@ Ashby, Pauline Barmby, Alison Coil, Jiasheng Huang, Anton Koekemoer, Chuck Steidel, Chris Willmer IntroducJon The faint end of the XLF at z≈ 4 – 5: preliminary results Conclusions For more info see Aird et al. 2010, MNRAS, 401, 2531 email: [email protected] References: Adelberger K.L. et al., 2004, ApJ, 607, 226; Georgakakis A. et al., 2008, MNRAS, 388, 1205; Luo B. et al., 2010, ApJS, 187, 560; Steidel C.C. et al., 2003, ApJ, 592, 728 2) CorrecJng for incompleteness 3) Photometric redshibs 4) Rest‐frame UV colour pre‐selecJon at z≈2 – 3 1) X‐ray flux uncertainJes and sensiJvity 5) Bayesian model comparison 0 2 4 6 8 10 12 Count rate s 0.00 0.01 0.02 0.03 0.04 0.05 P(s | N,b) -16 -15 -14 -13 -12 -11 log(fX / erg s -1 cm -2 ) 10 15 20 25 30 R magnitude (AB) (a) log(f X /f opt )=-1.0 0.0 +1.0 R=25.5 0.1 0.2 0.5 1.0 2.0 5.0 zspec 0.1 0.2 0.5 1.0 2.0 5.0 CFHTLS z phot -0.5 0.0 0.5 1.0 1.5 G- -1 0 1 2 3 U n -G R QSO GAL NLAGN LBG BX 0.0 1 2 3 0.0 0.2 0.4 0.6 0.8 P(z) BX LBG 1 2 3 Redshift (z) BX LBG 1 2 3 4 BX LBG UGR Bayesian approach used to determine the XLF that accounts for the full probability distribuJons (i.e. uncertainJes) in X‐ray flux and redshib for each source, opJcal incompleteness, X‐ray sensiJvity and the high‐z selecJon funcJons. Key feature : Bayesian evidence is calculated (via nested sampling algorithm), allowing robust model comparison ‐ penalises more complex models Compare our luminosity and density evoluJon (LADE) with simpler Pure Luminosity EvoluJon (PLE) and more complex Luminosity‐Dependent Density EvoluJon (LDDE) SystemaJc bias? Photo‐z essenJal to obtain adequate redshib completeness for low‐ luminosity AGN Adopt photo‐z from CFHTLS (template filng, u*g’r’i’z’) and ANNz (ArJficial Neural Networks trained at z<1.2) Photo‐z have large errors and there may be mulJple peaks in the redshib probability distribuJon (see Fig. 3) p(z) distribuJons are adopted for each source (see also box 5) Photo‐z suffer from catastrophic failures and may be systemaJcally biased at z1.2 (see Fig. 4). We therefore adopt an alternaJve approach at high redshibs (see box 4) At z>1.2 we restrict our sample to objects that saJsfy rest‐frame UV colour selecJon criteria in UGR colour space ‐ BX: z~2.3, LBG z~3, (Steidel et al. 2003, Adelberger et al. 2004) Such samples are highly incomplete However, have well‐defined selec;on func;ons (see Fig. 6) that allow us to correct for this incompleteness Calculated by modeling colour distribuJon of different AGN hosts and simulaJng the observed data (see Fig. 5) Fig. 5 (above): Model tracks with redshib for different opJcal classificaJons in UGR colour space Fig. 6 (le0): SelecJon funcJons for LBG and BX criteria for each opJcal classificaJon GAL NLAGN QSO Results 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 0.0 < z < 0.2 0.2 < z < 0.5 0.5 < z < 0.8 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 d!/d(log L X ) 0.8 < z < 1.0 1.0 < z < 1.2 1.2 < z < 1.5 41 42 43 44 45 46 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 1.5 < z < 2.0 42 43 44 45 46 log(L X / erg s -1 ) 2.0 < z < 2.5 42 43 44 45 46 2.5 < z < 3.5 The XLF evolves in luminosity… Moving to higher luminosi9es at higher redshi0s This strong, posi3ve evolu3on of the characteris3c luminosity, L *, , dominates the evolu3on at z1.5 … AND density Decreasing in overall density as redshi0 increases At high redshiDs (z1.5) the luminosity evolu3on slows, and the evolu3on is dominated by this weak exponen3al decline in density with increasing redshiD. BUT retains the same shape We find no evidence for a flaNening of the faint‐end slope at high redshiDs. The XLF has the same shape at all redshiDs. We do not require a more complex luminosity‐dependent density evolu3on model (LDDE). Previous es3mates may be biased by the failure of photometric redshiDs at z≈1.5 – 3, that can imply a flaNened faint‐end slope. photo‐z (not used in filng at z>1.2) LADE model evaluated at z=0 Many X‐ray sources detected with few counts significant Poissonian uncertainty in the flux We account for the full probability distribuJon for the flux of each source directly in our XLF filng Also used in determinaJon of the X‐ray sensiJvity funcJon (see Georgakakis et al. 2008) Allows correcJon for the significant effects of Eddington bias (see Fig 1) high‐z colour pre‐ selecJon Fig. 1: Example Poission probability distribuJon for X‐ray count rate (black) and the distribuJon aber correcJon for Eddington bias (red) N=5 b=0.4 Fig. 2: X‐ray flux vs. opJcal magnitude for our sample Fig. 3: Example redshib probability distribuJon, p(z), for a CFHTLS photo‐z Fig. 4: CFHTLS photo‐z vs. spectroscopic redshibs for AEGIS‐X (200ks) sources Fig. 7: 2‐10 keV X‐ray luminosity funcJon at a range of redshibs Likelihood RaJo (LR) method is used to idenJfy secure opJcal counterparts of X‐ray sources X‐ray sources are sca@ered over a range of X‐ray flux – opJcal flux raJos For the faintest X‐ray sources we suffer from incompleteness as sources lack opJcal counterparts Incompleteness is corrected for by directly modeling the f X /f opt relaJon in the determinaJon of the XLF, and correcJng for the fracJon of sources with opJcal counterparts with R>25.5 Incompleteness AddiJonal 1.8 Ms of Chandra Jme awarded in A09 to take 3 of the AEGIS‐X Chandra poinJngs to 800 ks depth – AEGIS‐XD(eep) Provides a unique, large area of very deep X‐ray data, providing a significant sample of low‐L X AGN at z4 X‐ray sources are cross‐idenJfied with mulJwavelength counterparts in opJcal, near‐ or mid‐IR using the likelihood raJo technique => 97% idenJficaJon rate (see also Luo et al. 2010) Aperture magnitudes extracted for opJcally blank sources => upper limits Photo‐z’s determined from 10 bands from UV to 8.0µm Preliminary results agree well with extrapolaJon of LADE model 41 42 43 44 45 46 10 -8 10 -7 10 -6 10 -5 10 -4 10 -3 d!/d(log L X ) 3.5 < z < 4.5 42 43 44 45 46 log(L X / erg s -1 ) 4.5 < z < 5.5 Fig. 8: Preliminary measurements of the 2‐10 keV X‐ray luminosity funcJon at z≈4 and z≈5 LADE model at z=0 Preliminary results using AEGIS‐XD data ExtrapolaJon of LADE model The luminosity funcJon of AcJve GalacJc Nuclei (AGN) is a key tracer of the distribuJon and history of accreJon acJvity over the lifeJme of the Universe. Accurate measurements out to the highest possible redshibs are essenJal to constrain models of supermassive black hole formaJon and growth, the triggering and fueling of AGN, and their co‐evoluJon with galaxies. X‐ray surveys provide an efficient method of idenJfying AGN, including unobscured and moderately obscured sources, and low‐luminosity AGN. However, a range of issues can lead to incompleteness in samples and potenJally bias measurements of the X‐ray luminosity funcJon, especially at the faintest luminosiJes and highest redshibs. We present measurements of the 2—10 keV X‐ray luminosity funcJon (XLF) over a wide range of redshibs (z≈0—3) Use data from CDF‐N (2Ms), CDF‐S (2Ms), AEGIS‐X (200ks), ASCA LSS and ASCA MSS We make a number of significant and important methodological improvements – see boxes 1—5 We also present preliminary results from the AEGIS‐XD (800ks) survey at z≈4—5 SophisJcated method used to determine the evoluJon of the 2—10 keV XLF, which accounts for uncertainites in photometric redshibs, the Poissonian nature of X‐ray flux esJmates, the fracJon of sources with counterparts below the magnitude limits of the opJcal data and the opJcal selecJon funcJons at high redshibs. We find that the XLF retains the same shape at all redshibs, evolving only in luminosity and overall density. There is no evidence for a fla@ening of the faint‐end slope at high redshibs. The total luminosity density of AGN peaks at z=1.2±0.1, with a mild decline to higher redshibs. Lower luminosity AGN peak in number density at lower redshibs, but we find a smaller shib than prior studies. These results indicate that the same processes are responsible for triggering and fuelling AGN at all redshiMs, but increase in overall density from the earliest ;mes to z≈1. Exhaus;on of gas supplies in the most massive galaxies at later ;mes may result in the “downsizing” of AGN to lower luminosi;es. We find that >50% of black hole growth takes place at z>1, with around half in low‐luminosity AGN.

Upload: others

Post on 20-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: XLF durham Apr2010 posterastro.dur.ac.uk/cosmology/Images/all_pdfs/durham2010... · 2010. 8. 13. · James Aird University of California, San Diego Kirpal Nandra, Elise Laird, Antonis

JamesAirdUniversityofCalifornia,SanDiego

KirpalNandra,EliseLaird,AntonisGeorgakakis,Ma@Ashby,PaulineBarmby,AlisonCoil,JiashengHuang,AntonKoekemoer,ChuckSteidel,ChrisWillmer

IntroducJon

ThefaintendoftheXLFatz≈4–5:preliminaryresults Conclusions

FormoreinfoseeAirdetal.2010,MNRAS,401,2531email:[email protected]

References:AdelbergerK.L.etal.,2004,ApJ,607,226;GeorgakakisA.etal.,2008,MNRAS,388,1205;LuoB.etal.,2010,ApJS,187,560;SteidelC.C.etal.,2003,ApJ,592,728

2)CorrecJngforincompleteness

3)Photometricredshibs 4)Rest‐frameUVcolourpre‐selecJonatz≈2–3

1)X‐rayfluxuncertainJesandsensiJvity

5)Bayesianmodelcomparison

0 2 4 6 8 10 12Count rate s

0.00

0.01

0.02

0.03

0.04

0.05

P(s

| N

,b)

-16 -15 -14 -13 -12 -11log(fX / erg s-1 cm-2)

10

15

20

25

30

R m

agnit

ude

(AB

)

(a)

log(fX /f

opt )=-1.0

0.0

+1.0

R=25.5

-2 -1 0 1 2log(fX/fopt)

0

20

40

60

80

100

120

Num

ber

(b)

0.1 0.2 0.5 1.0 2.0 5.0zspec

0.1

0.2

0.5

1.0

2.0

5.0

CF

HT

LS

z

phot

-0.5 0.0 0.5 1.0 1.5G-

-1

0

1

2

3

Un-G

R

QSO

GAL

NLAGN

LBG

BX

-0.5 0.0 0.5 1.0 1.5g’-r’

-1

0

1

2

3

u*-g

LBG

BX

-0.5 0.0 0.5 1.0 1.5r’-i’

-1

0

1

2

3

g’-

r’

z~4

0.0

0.2

0.4

0.6

0.8

1.0

P(z

)

GAL

NLAGN

QSO

u*g’r

’i’

1 2 3

0.0

0.2

0.4

0.6

0.8

P(z

)

BX LBG

1 2 3 Redshift (z)

BX LBG

1 2 3 4

BX LBG

UGR

•  BayesianapproachusedtodeterminetheXLFthataccountsforthefullprobabilitydistribuJons(i.e.uncertainJes)inX‐rayfluxandredshibforeachsource,opJcalincompleteness,X‐raysensiJvityandthehigh‐zselecJonfuncJons.

•  Keyfeature:Bayesianevidenceiscalculated(vianestedsamplingalgorithm),allowingrobustmodelcomparison‐penalisesmorecomplexmodels

•  CompareourluminosityanddensityevoluJon(LADE)withsimplerPureLuminosityEvoluJon(PLE)andmorecomplexLuminosity‐DependentDensityEvoluJon(LDDE)

SystemaJcbias?

•  Photo‐zessenJaltoobtainadequateredshibcompletenessforlow‐luminosityAGN

•  Adoptphoto‐zfromCFHTLS(templatefilng,u*g’r’i’z’)andANNz(ArJficialNeuralNetworkstrainedatz<1.2)

•  Photo‐zhavelargeerrorsandtheremaybemulJplepeaksintheredshibprobabilitydistribuJon(seeFig.3)

•  p(z)distribuJonsareadoptedforeachsource(seealsobox5)

•  Photo‐zsufferfromcatastrophicfailuresandmaybesystemaJcallybiasedatz≳1.2(seeFig.4).WethereforeadoptanalternaJveapproachathighredshibs(seebox4)

•  Atz>1.2werestrictoursampletoobjectsthatsaJsfyrest‐frameUVcolourselecJoncriteriainUGRcolourspace

‐BX:z~2.3,LBGz~3,(Steideletal.2003,Adelbergeretal.2004)

•  Suchsamplesarehighlyincomplete

•  However,havewell‐definedselec;onfunc;ons(seeFig.6)thatallowustocorrectforthisincompleteness

•  CalculatedbymodelingcolourdistribuJonofdifferentAGNhostsandsimulaJngtheobserveddata(seeFig.5)

Fig.5(above):ModeltrackswithredshibfordifferentopJcalclassificaJonsinUGRcolourspaceFig.6(le0):SelecJonfuncJonsforLBGandBXcriteriaforeachopJcalclassificaJon

GAL NLAGN QSO

high‐zUVcolourpre‐selecJon

Results

10-8

10-7

10-6

10-5

10-4

10-3

0.0 < z < 0.2

0.2 < z < 0.5

0.5 < z < 0.8

10-8

10-7

10-6

10-5

10-4

10-3

d!

/d(l

og L

X)

0.8 < z < 1.0

1.0 < z < 1.2

1.2 < z < 1.5

41 42 43 44 45 46

10-8

10-7

10-6

10-5

10-4

10-3

1.5 < z < 2.0

42 43 44 45 46log(LX / erg s-1)

2.0 < z < 2.5

42 43 44 45 46

2.5 < z < 3.5

TheXLFevolvesinluminosity…Movingtohigherluminosi9esathigherredshi0sThisstrong,posi3veevolu3onofthecharacteris3cluminosity,L*,,dominatestheevolu3onatz≲1.5

…ANDdensityDecreasinginoveralldensityasredshi0increasesAthighredshiDs(z≳1.5)theluminosityevolu3onslows,andtheevolu3onisdominatedbythisweakexponen3aldeclineindensitywithincreasingredshiD.

BUTretainsthesameshapeWefindnoevidenceforaflaNeningofthefaint‐endslopeathighredshiDs.TheXLFhasthesameshapeatallredshiDs.Wedonotrequireamorecomplexluminosity‐dependentdensityevolu3onmodel(LDDE).Previouses3matesmaybebiasedbythefailureofphotometricredshiDsatz≈1.5–3,thatcanimplyaflaNenedfaint‐endslope.

photo‐z(notusedinfilngatz>1.2)

LADEmodelevaluatedatz=0

• ManyX‐raysourcesdetectedwithfewcounts➔significantPoissonianuncertaintyintheflux

• WeaccountforthefullprobabilitydistribuJonforthefluxofeachsourcedirectlyinourXLFfilng

•  AlsousedindeterminaJonoftheX‐raysensiJvityfuncJon(seeGeorgakakisetal.2008)

•  AllowscorrecJonforthesignificanteffectsofEddingtonbias(seeFig1) high‐z

colourpre‐selecJon

Fig.1:ExamplePoissionprobabilitydistribuJonforX‐raycountrate(black)andthedistribuJonabercorrecJonforEddingtonbias(red)

N=5b=0.4

Fig.2:X‐rayfluxvs.opJcalmagnitudeforoursample

Fig.3:ExampleredshibprobabilitydistribuJon,p(z),foraCFHTLSphoto‐z

Fig.4:CFHTLSphoto‐zvs.spectroscopicredshibsforAEGIS‐X(200ks)sources

Fig.7:2‐10keVX‐rayluminosityfuncJonatarangeofredshibs

•  LikelihoodRaJo(LR)methodisusedtoidenJfysecureopJcalcounterpartsofX‐raysources

•  X‐raysourcesaresca@eredoverarangeofX‐rayflux–opJcalfluxraJos

•  ForthefaintestX‐raysourceswesufferfromincompletenessassourceslackopJcalcounterparts

•  IncompletenessiscorrectedforbydirectlymodelingthefX/foptrelaJoninthedeterminaJonoftheXLF,andcorrecJngforthefracJonofsourceswithopJcalcounterpartswithR>25.5

Incompleteness

•  AddiJonal1.8MsofChandraJmeawardedinA09totake3oftheAEGIS‐XChandrapoinJngsto800ksdepth–AEGIS‐XD(eep)

•  Providesaunique,largeareaofverydeepX‐raydata,providingasignificantsampleoflow‐LXAGNatz≳4

•  X‐raysourcesarecross‐idenJfiedwithmulJwavelengthcounterpartsinopJcal,near‐ormid‐IRusingthelikelihoodraJotechnique=>97%idenJficaJonrate(seealsoLuoetal.2010)

•  AperturemagnitudesextractedforopJcallyblanksources=>upperlimits

•  Photo‐z’sdeterminedfrom10bandsfromUVto8.0µm

• PreliminaryresultsagreewellwithextrapolaJonofLADEmodel

41 42 43 44 45 46

10-8

10-7

10-6

10-5

10-4

10-3

d!

/d(l

og L

X)

3.5 < z < 4.5

42 43 44 45 46log(LX / erg s-1)

4.5 < z < 5.5

Fig.8:Preliminarymeasurementsofthe2‐10keVX‐rayluminosityfuncJonatz≈4andz≈5

LADEmodelatz=0

PreliminaryresultsusingAEGIS‐XDdata

ExtrapolaJonofLADEmodel

•  TheluminosityfuncJonofAcJveGalacJcNuclei(AGN)isakeytracerofthedistribuJonandhistoryofaccreJonacJvityoverthelifeJmeoftheUniverse.AccuratemeasurementsouttothehighestpossibleredshibsareessenJaltoconstrainmodelsofsupermassiveblackholeformaJonandgrowth,thetriggeringandfuelingofAGN,andtheirco‐evoluJonwithgalaxies.

•  X‐raysurveysprovideanefficientmethodofidenJfyingAGN,includingunobscuredandmoderatelyobscuredsources,andlow‐luminosityAGN.

•  However,arangeofissuescanleadtoincompletenessinsamplesandpotenJallybiasmeasurementsoftheX‐rayluminosityfuncJon,especiallyatthefaintestluminosiJesandhighestredshibs.

• Wepresentmeasurementsofthe2—10keVX‐rayluminosityfuncJon(XLF)overawiderangeofredshibs(z≈0—3)

•  UsedatafromCDF‐N(2Ms),CDF‐S(2Ms),AEGIS‐X(200ks),ASCALSSandASCAMSS

• Wemakeanumberofsignificantandimportantmethodologicalimprovements–seeboxes1—5

• WealsopresentpreliminaryresultsfromtheAEGIS‐XD(800ks)surveyatz≈4—5

•  SophisJcatedmethodusedtodeterminetheevoluJonofthe2—10keVXLF,whichaccountsforuncertainitesinphotometricredshibs,thePoissoniannatureofX‐rayfluxesJmates,thefracJonofsourceswithcounterpartsbelowthemagnitudelimitsoftheopJcaldataandtheopJcalselecJonfuncJonsathighredshibs.

• WefindthattheXLFretainsthesameshapeatallredshibs,evolvingonlyinluminosityandoveralldensity.Thereisnoevidenceforafla@eningofthefaint‐endslopeathighredshibs.

•  ThetotalluminositydensityofAGNpeaksatz=1.2±0.1,withamilddeclinetohigherredshibs.LowerluminosityAGNpeakinnumberdensityatlowerredshibs,butwefindasmallershibthanpriorstudies.

•  TheseresultsindicatethatthesameprocessesareresponsiblefortriggeringandfuellingAGNatallredshiMs,butincreaseinoveralldensityfromtheearliest;mestoz≈1.Exhaus;onofgassuppliesinthemostmassivegalaxiesatlater;mesmayresultinthe“downsizing”ofAGNtolowerluminosi;es.

• Wefindthat>50%ofblackholegrowthtakesplaceatz>1,witharoundhalfinlow‐luminosityAGN.