dqgwkh&hqwuh1dwlrqdoghod5hfkhufkh6flhqwliltxh · helen goitia, patricia quispe, luciana g....

6
Interactions of rutin with oxidovanadium(IV) cation. Anticancer improvement effects of glycosylated flavonoids. Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M. Williams * New Journal of Chemistry Supplementary material 250 300 350 400 EPR Signal (a.u.) Magnetic Field (mT) experimental simulation Figure S1. Experimental powder EPR spectrum of the Na 2 [VO(rut)(OH) 2 ].5H 2 O complex obtained at 120 K (black) together with simulation (gray). Microwave frequency 9.4516 GHz. EPR parameters obtained by simulation: g 1 = 1.9869, g 2 = 1.9763, g 3 = 1.9477; A 1 = 28.7 x 10 -4 cm -1 , A 2 = 51.7 x 10 -4 cm -1 ; A 3 = 158.9 x 10 -4 cm -1 . Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Upload: others

Post on 25-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DQGWKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH · Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M

Interactions of rutin with oxidovanadium(IV) cation. Anticancer improvement effects of glycosylated flavonoids.

Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M. Williams*

New Journal of Chemistry

Supplementary material

250 300 350 400

EPR

Sig

nal (

a.u.

)

Magnetic Field (mT)

experimental simulation

Figure S1. Experimental powder EPR spectrum of the Na2[VO(rut)(OH)2].5H2O

complex obtained at 120 K (black) together with simulation (gray). Microwave

frequency 9.4516 GHz. EPR parameters obtained by simulation: g1 = 1.9869, g2 =

1.9763, g3 = 1.9477; A1 = 28.7 x 10-4 cm-1, A2 = 51.7 x 10-4 cm-1; A3 = 158.9 x 10-4

cm-1.

Electronic Supplementary Material (ESI) for New Journal of Chemistry.This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Page 2: DQGWKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH · Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M

A B

, nm

200 300 400 500 600

Abs

0.0

0.5

1.0

1.5

2.0

2

11

nm

200 300 400 500 600

Abs

0.0

0.5

1.0

1.5

2.0

2

11

C

(nm)

600 700 800 900

Abs

orba

nce

0.0

0.1

0.2

0.3

0.4

0.5

L/M

0 2 4 6 8 10 12

Abs

orba

nce

0.0

0.1

0.2

0.3

0.4

0.5

10

8

6

4

2

1

0.7

0.5

Figure S2. A) Spectra of rutin (4 x 10-5 M), aqueous solutions, at different pH

values. B) Spectra of aqueous solutions of 5 x 10-5 M rutin and 2.5 x 10-5 M

VOCl2 at different pH values. C) UV-vis spectra of rutin (8 x 10-3 M) DMSO with

the addition of aqueous solutions of VOCl2 in ligand-to-metal ratios (L/M) from

10.0 to 0.7 (pH 7); nitrogen atmosphere. Inset: Spectrophotometric

determination of VOrut complex stoichiometry at 820 nm.

Page 3: DQGWKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH · Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M

250 300 350 400

EPR

Sig

nal (

a.u.

)

Magnetic Field (mT)

experimental simulation

Figure S3. Frozen EPR spectra on DMSO solution of [VO(rut)(OH)2]Na2.5H2O

complex (black) together with simulation (gray). Microwave frequency 9.46546 GHz.

EPR parameters obtained by simulation: g1 = 1.9873, g2 = 1.9780, g3 = 1.9510; A1 =

26.0 x 10-4 cm-1, A2 = 52.0 x 10-4 cm-1; A3 = 157.7 x 10-4 cm-1.

275 300 325 350 375 400

60 min

50 min

40 min

30 min

20 min

10 min

EPR

Sign

al (a

.u.)

Magnetic Field (mT)

Vorutin DMSO solution120 K

Figure S4. Frozen EPR spectra on DMSO solution of [VO(rut)(OH)2]Na2.5H2O

recorded at 120K as a function of time.

Page 4: DQGWKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH · Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M

A-SOD B-ROO

-log [concentration]2 3 4 5 6 7 8 9

% R

educ

tion

of N

BT

0

20

40

60

80

100

120

IC50 = 356 M

VOrut

rutin

Concentration (M)0 5 10 15 20 25 30 35 40

Lag

(min

)

0

2

4

6

8

10

12

14

16

18

20rutin

VOrut

trolox

C-OH D-DPPH

Concentration (M)0 2.5 5 10 25 50 75 100

% c

ontr

ol

0

20

40

60

80

100

120

VOrut

V(IV)O2+

rutin

Concentration (M)0 20 40 60 80 100

% c

ontr

ol

0

20

40

60

80

100

120

IC50 = 32 M IC50 = 44 M

V(IV)O2+

VOrutrutin

Figure S5. Effects of rutin, oxidovanadium(IV) cation and VOrut on: A) the

reduction of nitroblue tetrazolium by the generated superoxide radical

(phenazine methosulfate and reduced nicotinamide adenine dinucleotide

system). B) peroxyl radicals generated by the thermal decomposition of AAPH

(2,2-azobis(2-amidinopropane) dihydrochloride); lag phase is the delay of the

consumption of the spectrometric probe, pyranine, calculated as the time due to

the consumption of peroxyl radicals by the added compounds, before the

consumption of pyranine started. C) extent of deoxyribose degradation by

hydroxyl radical, measured with the thiobarbituric acid method. D) reduction of

the concentration of 1,1-diphenyl-2-picrylhydrazyl radical. The values are

expressed as the mean ± the standard error of at least three independent

experiments.

Page 5: DQGWKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH · Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M

Figure S6. Fluorescence emission spectra of BSA (6 µM) with successive

addition of rutin (A) and VOrut (B) at different concentrations (0, 5, 10, 20, 30,

40, 50, 75, 100 µM).

Ksv rutin Ksv VOrut

[Q] M

0 1e-5 2e-5 3e-5 4e-5 5e-5

F o/F

1.0

1.5

2.0

2.5

3.0

3.5

[Q] M0 1e-5 2e-5 3e-5 4e-5 5e-5

F o/F

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure S7. Plots of F0/F vs [Q] for BSA with rutin and VOrut at different

temperatures ((●), 298 K; (▲), 303 K; (■), 310 K), λex = 280 nm.

(A) (B)

Page 6: DQGWKH&HQWUH1DWLRQDOGHOD5HFKHUFKH6FLHQWLILTXH · Helen Goitia, Patricia Quispe, Luciana G. Naso, Valeria R. Martínez, Marilin Rey, Alberto C. Rizzi, Evelina G. Ferrer, Patricia A.M

Ka rutin Ka VOrut

Log [Q]-5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2

Log

[(Fo-

F)/F

]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Log [Q]-5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2

Log

[(Fo-

F)/F

]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure S8. Plots of log(F0 − F)/F vs. log [Q] for BSA with rutin and VOrut at

different temperatures ((●), 298 K; (▲), 303 K; (■), 310 K), λex = 280 nm

Table S1 Assignment of the main bands of the infrared spectra of rutin and the

oxidovanadium(IV) complex, VOrut (band positions in cm-1)

Assignments [VO(OH)2(Rut)]Na2 Rutin(O–H) 3414, br 3422, br(C=O) 1650, vs 1656, s(C=C) 1577, s 1601, s(C=C), ring B 1485, s 1505, sip(O-H) 1361, s 1361, s(C-O-H) 1272, s 1296, s(C–O–C) 1205, m 1205, m(C-O)endo 1013, w 1013, s(V=O) 920, w

Br, broad; s, strong; m, medium; w, weak; sh, shoulder.