drops on patterned surfaces halim kusumaatmaja alexandre dupuis julia yeomans

93
Drops on patterned surfaces m Kusumaatmaja Alexandre Dupuis Julia Ye

Upload: twila

Post on 23-Jan-2016

23 views

Category:

Documents


0 download

DESCRIPTION

Drops on patterned surfaces Halim Kusumaatmaja Alexandre Dupuis Julia Yeomans. Summary. The model Chemically patterned surfaces Spreading on stripes Hysteresis Superhydrophobic surfaces Introduction Hysteresis - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drops on patterned surfaces

Halim Kusumaatmaja Alexandre Dupuis Julia Yeomans

Page 2: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Summary

The model

Chemically patterned surfaces

Spreading on stripes Hysteresis

Superhydrophobic surfaces

Introduction Hysteresis Transitions between states Dynamics

Page 3: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Navier-Stokes equations

t

t

n nu 0

nu nu u

1P u u u

3

continuity

Navier-Stokes

No-slip boundary conditions on the velocity

Equations of motion

Page 4: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

S cV b dSndVnn )()

2)(( 2

bulk term interface free energy surface term

Van der Waals

controls surface tension1 surfacen

controls contact angle

Equilibrium free energy

Page 5: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

1s surfacef n

1zn

Minimising the free energy leads to:

Surface free energy

Boundary condition on the Euler-Lagrange equation

1/ 21 2 1 2cos (sin ) cos (sin )

2 2 cos 1 cos3 3

eq eq1 w cp

A relation between the contact angle and the surface field

Controlling the contact angle

Page 6: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Summary

The model

Chemically patterned surfaces

Spreading on stripes Hysteresis

Superhydrophobic surfaces

Introduction Hysteresis Transitions between states Dynamics

Page 7: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Chemically striped surfaces: drop spreading

Page 8: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Experiments (J.Léopoldès and D.Bucknall)

64o / 5o

Page 9: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

LB simulations on substrate 4

Evolution of the contact line

Simulation vs experiments

• Two final (meta-)stable state observed depending on the point of impact.

• Dynamics of the drop formation traced.• Quantitative agreement with experiment.

Page 10: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Impact near the centre of the lyophobic stripe

Page 11: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Impact near a lyophilic stripe

Page 12: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

LB simulations on substrate 4

Evolution of the contact line

Simulation vs experiments

• Two final (meta-)stable state observed depending on the point of impact.

• Dynamics of the drop formation traced.• Quantitative agreement with experiment.

Page 13: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

80o /90o

Page 14: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Two wide stripes:

hydrophilic hydrophobic hydrophilic

110o /130o

Page 15: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

80o /90o

Page 16: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 17: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 18: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Characteristic spreading velocityA. Wagner and A. Briant

c

2n

nU

R

Page 19: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Summary

The model

Chemically patterned surfaces

Spreading on stripes Hysteresis

Superhydrophobic surfaces

Introduction Hysteresis Transitions between states Dynamics

Page 20: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 21: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 22: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 23: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 24: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 25: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 26: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 27: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 28: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

Page 29: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 30: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

slips at angle 1

advancing

2

Page 31: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

pinned until 2

Page 32: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

pinned until 2

Page 33: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

slips smoothlyacross hydrophobic stripe

Page 34: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

slips smoothlyacross hydrophobic stripe

Page 35: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

jumps back to 1

Page 36: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

stick slip jump (slip)

advancing

Page 37: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis

stick slip jump (slip)

advancing

receding

stick (slip) jump slip

Page 38: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

(Hysteresis) loop

advancing contact anglereceding contact angle

12

contact angle

volume

a

a

a

Page 39: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

(Hysteresis) loop

advancing contact anglereceding contact angle

12

contact angle

volume

stick

slip

jump

Page 40: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: 3 dimensions

A. squares 60o

background 110o

B. squares 110o

background 60o

CB

1 1 2 2

cos

f cos f cos

Page 41: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: 3 dimensions

A B

squares hydrophilic squares hydrophobic

Page 42: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: 3 dimensions

macroscopic contact angle versus volume

A B

stickjump

Page 43: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: 3 dimensions

macroscopic contact angle versus volume

A B

94o 92o

110/60

Page 44: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 45: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

1.Slip, stick, jump behaviour, but jumps at different volumes in different directions (but can be correlated)

2. Contact angle hysteresis different in different directions

3. Advancing angle (92o) bounded by max (110o) Receding angle (80o) bounded by min (60o)

4. Free energy balance between surface / drop interactions and interface distortions determines the hysteresis

Hysteresis on chemically patterned surfaces

Page 46: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Summary

The model

Chemically patterned surfaces

Spreading on stripes Hysteresis

Superhydrophobic surfaces

Introduction Hysteresis Transitions between states Dynamics

Page 47: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

                                                                                                    

Superhydrophobic surfaces

Page 48: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Superhydrophobic surfaces

Page 49: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

collapsed drop

suspended drop

He et al., Langmuir, 19, 4999, 2003

Two drop states

Page 50: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Homogeneous substrate, eq=110o

Suspended, ~160o Collapsed, ~140o

Suspended and collapsed drops

Page 51: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: suspended state

eq

eq 180 o

Page 52: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: suspended state

Suspended dropAdvancing contact angle 180o: pinned on outside of postsReceding contact angle : pinned on outside of postseq

advancing receding

Page 53: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: collapsed state

Collapsed dropAdvancing contact angle 180o: pinned on outside of postsReceding contact angle -90o: pinned on outside AND inside of postseq

receding

Page 54: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: three dimensions

2D 3D

Suspended drop: advancing angle 180o

receding angle e

Collapsed drop: advancing angle 180o

receding angle e-90o

Page 55: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis: three dimensions

2D 3D

Suspended drop: advancing angle 180o 180o

receding angle e > e

Free energy barrier very small

Collapsed drop: advancing angle 180o ~180o

receding angle e-90o > e-90o

Page 56: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Hysteresis on superhydrophobic surfaces

1. Advancing contact angles are close to 180o

2. Hysteresis smaller for suspended than collapsed drop High receding contact angle -- weak adhesion Small contact angle hysteresis – slides easily??

3. Free energy balance between drop -- surface interactions and interface distortion determines the hysteresis

?? Forced hysteresis

?? Changing relative length scales

?? Relation between hysteresis and easy run off

Page 57: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Summary

The model

Chemically patterned surfaces

Spreading on stripes Hysteresis

Superhydrophobic surfaces

Introduction Hysteresis Transitions between states Dynamics

Page 58: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

200 m

Drop collapse: Mathilde Reyssat and David Quere

Page 59: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: simulations

Page 60: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

1.Curvature driven collapse : short posts

2.Free energy driven collapse : long posts

Page 61: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: short posts

Page 62: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: short posts

Page 63: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: simulationsDrop collapse: simulations

Drop collapse: short posts

0

50

100

150

0 50 100 150

l 2 /h (µm)

R c (µm) 2R d / h:

Mathilde Reyssat and David Quere

Page 64: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: shallow posts

Page 65: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: long posts

Page 66: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: long posts

Deep posts: contact angle reaches e on side of posts

e

Page 67: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Variation of free energy with post height

ee

Page 68: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop collapse: two dimensions

Page 69: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Drop position with decreasing contact angle

Page 70: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Collapse on superhydrophobic surfaces

Shallow posts: curvature driven collapse

Deep posts: 2 dimensions – free energy driven collapse

Deep posts: 3 dimensions – is collapse possible ??

Page 71: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Summary

The model

Chemically patterned surfaces

Spreading on stripes Hysteresis

Superhydrophobic surfaces

Introduction Hysteresis Transitions between states Dynamics

Page 72: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

With thanks to

Alexandre Dupuis

Halim Kusumaatmaja

Page 73: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 74: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Droplet velocityDrop velocity: suspended drop

eq

Drop velocity

Page 75: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Dynamics of collapsed dropletsDrop velocity: collapsed drop

eq

Drop velocity

Page 76: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Summary

The model

Chemically patterned surfaces

Spreading on stripes Hysteresis

Superhydrophobic surfaces

Introduction Hysteresis Transitions between states Dynamics

Page 77: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

With thanks to

Alexandre Dupuis

Halim Kusumaatmaja

Page 78: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 79: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 80: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 81: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Chemically striped surfaces: drop motion

Page 82: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Two wide stripes:

hydrophilic hydrophobic hydrophilic

110o /130o

Page 83: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

80o /90o

Page 84: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 85: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 86: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 87: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 88: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

60o /110o

Page 89: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Base radius as a function of time

tR

t0

*

Page 90: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 91: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

1s surfacef n

1zn

Minimising the free energy leads to:

Surface free energy

Boundary condition on the Euler-Lagrange equation

1/ 21 2 1 2cos (sin ) cos (sin )

2 2 cos 1 cos3 3

eq eq1 w cp

A relation between the contact angle and the surface field

Controlling the contact angle

Page 92: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans
Page 93: Drops on patterned surfaces Halim Kusumaatmaja   Alexandre Dupuis   Julia Yeomans

Mathilde Callies and David Quere 2006