ee141 – fall 2005 lecture...

31
EE141 – Fall 2005 Lecture 4 The MOS Transistor The MOS Transistor MOS Transistor Model MOS Transistor Model EE141 2 Important! Discussions and Labs start next week! You must show up in one of the lab sessions next week If you don’t show up you will be dropped from the class (unless you let me know that you still want to be in the class) Homework 2 due next Thursday, September 15

Upload: others

Post on 03-Aug-2020

4 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

1

EE141 – Fall 2005Lecture 4

The MOS TransistorThe MOS TransistorMOS Transistor ModelMOS Transistor Model

EE141 2

Important!

Discussions and Labs start next week!

You must show up in one of the lab sessionsnext week• If you don’t show up you will be dropped from the

class (unless you let me know that you still want to be in the class)

Homework 2 due next Thursday, September 15

Page 2: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

2

EE141 3

TAmtng

* Discussion sessions will cover identical material

Mon

Tue

Wed

Thu

Fri

Lec(Dejan)

203 McLaughlin

Lec(Dejan)

203 McLaughlin

OH(Dejan)511 Cory

DISC*(Ke)203

McLaughlin

9 10 11 12 1 2 3 4 5 6 7

Lab(Louis)353 Cory

Lab(Louis)353 Cory

OH(Ke)

197 Cory

OH(Lynn)197 Cory

ProblemSets Due

Lab - NEW(Lynn)353 Cory

Lab (Ke) 353 CoryDISC*(Lynn)

293 Cory

Your EE141 Week at a Glance

EE141 4

Agenda

Last Lecture• Design metrics• MOS manufacturing process• Design rules

Today’s Lecture• Basic MOS transistor operation• Large-signal MOS model for manual analysis• The CMOS inverter at a first glance

Page 3: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

3

EE141 5

The MOS Transistor

Polysilicon Aluminum

EE141 6

Design Rules

Interface between designer and process engineer

Guidelines for constructing process masks

Unit dimension: Minimum line width• Scalable design rules: lambda parameter• Absolute dimensions (micron rules)

Page 4: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

4

EE141 7

CMOS Process Layers

Layer

Polysilicon

Metal1

Metal2

Contact To Poly

Contact To Diffusion

Via

Well (p,n)

Active Area (n+,p+)

Color Representation

Yellow

Green

RedBlue

MagentaBlack

BlackBlack

Select (p+,n+) Green

EE141 8

Layers in 0.25µm CMOS Process

Page 5: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

5

EE141 9

Design Rules

Intra-layer: widths, spacing

Inter-layer: enclosures, overlaps• Transistor rules• Contact and via rules• Well and substrate contacts

Special rules (sub-0.25µm)• Area, antenna rules, density rules

EE141 10

Intra-Layer Design Rules

Metal2 4

3

10

90

Well

Active3

3

Polysilicon2

2

Different PotentialSame Potential

Metal1 3

32

Contactor Via

Select2

or6

2Hole

Page 6: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

6

EE141 11

1

2

5

3

Tran

sist

or

Inter Layer: Transistor Rules

Tran

sist

or

EE141 12

Inter Layer: Vias and Contacts

1

2

1

Via

Metal toPoly ContactMetal to

Active Contact

1

2

5

4

3 2

2

Page 7: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

7

EE141 13

1

3 3

2

2

2

WellSubstrate

Select3

5

Inter Layer: Well and Substrate

EE141 14

Example: CMOS Inverter Layout

A A’

np-substrate Field

Oxidep+n+

In

Out

GND VDD

(a) Layout

(b) Cross-Section along A-A’

A A’

Page 8: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

8

EE141 15

Layout Editor – MicroMagic

EE141 16

Layout Editor –Cadence Virtuoso

In1 In2Out

vdd

gnd

Page 9: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

9

EE141 17

Design Rule Checker

poly_not_fet to all_diff minimum spacing = 0.14 um.

EE141 18

Sticks Diagram

1

3

In Out

VDD

GND

Stick diagram of inverter

• Dimensionless layout entities• Only topology is important

Page 10: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

10

EE141 19

Outline

MOS TransistorMOS Transistor• Basic Operation• Modes of Operation• Deep sub-micron MOS

CMOS InverterCMOS Inverter

EE141 20

What is a Transistor?

|VGS|

A MOS Transistor

|VGS| ≥ |VT|

S DRon

A Switch!

S D

G

Page 11: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

11

EE141 21

Switch Model of CMOS Transistor

|VGS|

S D

G

|VGS| < |VT| |VGS| > |VT|

Ron

S D S D

EE141 22

NMOS and PMOS

VGS > 0

S D

G

VGS < 0

S D

G

NMOS Transistor PMOS Transistor

Page 12: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

12

EE141 23

S

D

G B

S

D

G

S

D

G

S

D

G

NMOS Enhancement NMOS Depletion

PMOS Enhancement NMOS withBulk Contact

MOS Transistors:Types and Symbols

EE141 24

Outline

MOS TransistorMOS Transistor• Basic Operation• Modes of Operation• Deep sub-micron MOS

CMOS InverterCMOS Inverter

Page 13: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

13

EE141 25

n+

p-substrate

DSG

B

VGS

+

Depletionregion

n-channel

n+

Threshold Voltage: Concept

EE141 26

The Threshold Voltage

( )FSBFTT VVV φφγ 220 −+⋅+=

i

ATF n

Nln⋅= φφ

Threshold

Fermi potential

2ΦF is approximately −0.6V for p-type substratesγ is the body factorVT0 is approximately 0.45V for our process

Page 14: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

14

EE141 27

The Body Effect

-2.5 -2 -1.5 -1 -0.5 00.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

VBS

(V)

VT (V

)

VT0

reverse body bias

EE141 28

The Drain Current

[ ]TGSoxi VxVVCxQ −−⋅−= )()(ox

oxox t

C ε=

Charge in the channel is controlled by the gate voltage:

Drain current is proportional to charge and velocity:

WxQxI inD ⋅⋅−= )()(υ

dxdVxx nnn ⋅=⋅−= µξµυ )()(

Page 15: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

15

EE141 29

The Drain Current

( ) dVVVVWCdxI TGSoxnD ⋅−−⋅⋅⋅=⋅ µCombining velocity and charge:

Integrating over the channel:

( )

−⋅−⋅⋅=

2

2DS

DSTGSnDVVVV

LWkI ’

Transconductance:ox

oxnoxnn t

Ck εµµ ⋅=⋅=’

EE141 30

Outline

MOS TransistorMOS Transistor• Basic Operation• Modes of Operation• Deep sub-micron MOS

CMOS InverterCMOS Inverter

Page 16: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

16

EE141 31

n+n+

p-substrate

D

SG

B

VGS

xL

V(x) +–

VDS

ID

Transistor in Linear ModeVGS > VDS + VT

EE141 32

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT+-

Transistor in Saturation

Pinch-off

VT < VGS < VDS + VT

Page 17: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

17

EE141 33

Saturation

For VGD < VT, the drain current saturates:

( )22 TGSn

D VVL

WkI −⋅⋅=’

Including channel-length modulation:

( ) ( )DSTGSn

D VVVL

WkI ⋅+⋅−⋅⋅= λ12

2’

CLM

EE141 34

Modes of Operation

Cutoff:

VGS < VT

Resistive:VGS > VDS + VT

Saturation:VT < VGS < VDS + VT

( )

−⋅−⋅⋅=

2

2DS

DSTGSnDVVVV

LWkI ’

( )22 TGSn

D VVL

WkI −⋅⋅=’

0=DI

Page 18: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

18

EE141 35

QuadraticRelationship

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6x 10

-4

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

Current-Voltage Relations:A Good Ol’ Transistor

VDS (V)

I D(A

)

EE141 36

A Model for Manual Analysis

S

DG

ID

( )

−⋅−⋅⋅=

2

2DS

DSTGSnDVVVV

LWkI ’

( ) ( )DSTGSn

D VVVL

WkI ⋅+⋅−⋅⋅= λ12

2’

( )FSBFTT VVV φφγ 220 −+⋅+=

VDS > VGS – VT

VDS < VGS – VT

with

Page 19: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

19

EE141 37

Outline

MOS TransistorMOS Transistor• Basic Operation• Modes of Operation• Deep sub-micron MOS

CMOS InverterCMOS Inverter

EE141 38

LinearRelationship

-4

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

EarlySaturation

Current-Voltage Relations:The Deep Sub-Micron Era

VDS (V)

I D(A

)

Page 20: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

20

EE141 39

Velocity Saturation

ξ (V/µm)ξc = 1.5

υn

(m/s

)

υsat = 105

Constant mobility (slope = µ)

Constant velocity

Velocity saturates due to carrier scattering effects

EE141 40

Velocity Saturation

IDLong-channel device

Short-channel device

VDSVDSAT VGS - VT

VGS = VDD

Page 21: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

21

EE141 41

ID versus VGS

0 0.5 1 1.5 2 2.50

1

2

4

5

6x 10-4

Long Channel

Short Channel

quadraticlinear

quadratic

VGS (V)

I D(A

)

3

EE141 42

Regions of Operation

-4

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5 x 10VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6 x 10-4

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

VDS (V) VDS (V)

I D(A

)

I D(A

)

ResistiveVelocitySaturation

Long Channel(L=10µm)

Short Channel(L=0.25µm)W/L=1.5

Page 22: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

22

EE141 43

Including Velocity Saturation

c

n

ξξξµυ

+⋅

=1

In deep submicron, there are four regions of operation:(1) cutoff, (2) resistive, (3) saturation and (4) velocity saturation

Approximate velocity:

satυυ =

for ξ ≤ ξc

for ξ ≥ ξc

And integrate current again:

( ) ( )

−⋅−⋅⋅

⋅+⋅

=21

2DS

DSTGScDS

oxnD

VVVVL

WLV

CIξ

µ

EE141 44

ID versus VDS

-4

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5 x 10VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

0 0.5 1 1.5 2 2.50

1

2

3

4

5

6 x 10-4

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

VDS = VGS - VT

VDS (V) VDS (V)

I D(A

)

I D(A

)

Long Channel(L=10µm)

Short Channel(L=0.25µm)

Early Saturation

W/L=1.5

Page 23: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

23

EE141 45

Regions of Operation

LinearRelationship

-4

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

VelocitySaturation

VDS (V)

I D(A

)

VDS = VGT

VDSAT = VGT

Saturation

Linear

VDS = VDSAT

Define VGT = VGS – VT VDSAT ≈ L·ξc

EE141 46

A Unified Model for Manual Analysis

B

D

G

ID

S

( )DSGTD VVVVL

WkI ⋅+⋅

−⋅⋅⋅= λ1

2'

2min

min

for VGT ≤ 0: ID = 0

with Vmin = min (VGT, VDS, VDSAT)

for VGT ≥ 0:

define VGT = VGS – VT

Page 24: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

24

EE141 47

Simple Model versus SPICE

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VDS (V)

I D(A

)

VelocitySaturated

Linear

Saturated

VDSAT=VGT

VDS=VDSAT

VDS=VGT

EE141 48

A PMOS Transistor

-2.5 -2 -1.5 -1 -0.5 0-1

-0.8

-0.6

-0.4

-0.2

0x 10

-4

Assume all variables negative!

VGS = -1.0V

VGS = -1.5V

VGS = -2.0V

VGS = -2.5V

VDS (V)

I D(A

)

Page 25: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

25

EE141 49

Sub-Threshold Conduction

0 0.5 1 1.5 2 2.510

-12

10-10

10-8

10-6

10-4

10-2

VGS (V)

I D(A

)

VT

Linear

Exponential

Quadratic

Typical values for S:60 – 100 mV/decade

The Slope Factor

ox

DnkTqV

D CCneII

GS

+=1 ,~ 0

S is ∆VGS for ID2/ID1 =10

VGS (V)

I D(A

)

EE141 50

Transistor Model for Manual Analysis

Textbook: page 103

Page 26: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

26

EE141 51

The Transistor as a Switch

VGS ≥ VT

S DRon

( ) ( )

⋅+⋅

+⋅+⋅

⋅=21

212

1

DDDSAT

DD

DDDSAT

DDeq VI

VVI

VRλλ

⋅⋅−⋅≈ DD

DSAT

DDeq V

IVR λ

651

43

ID

VDS

VDDVDD /2

VGS = VDD

Rmid

R0

( )021 RRR mideq +⋅=

EE141 52

The Transistor as a Switch

0.5 1 1.5 2 2.50

1

2

3

4

5

6

7 x 105

VDD (V)

Req

(Ohm

)

W/L=1, L=0.25µm

Page 27: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

27

EE141 53

The Transistor as a Switch

Textbook: page 106

EE141 54

Outline

MOS TransistorMOS Transistor• Basic Operation• Modes of Operation• Deep sub-micron MOS

CMOS InverterCMOS Inverter

Page 28: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

28

EE141 55

Vin Vout

CL

VDD

The CMOS Inverter:A First Glance

EE141 56

Polysilicon

In Out

VDD

GND

PMOS 2λ

Metal 1

NMOS

OutIn

VDD

PMOS

NMOS

Contacts

N Well

CMOS Inverter

Page 29: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

29

EE141 57

Two Inverters

Connect in Metal

VDD

Share power and ground

Abut cells

EE141 58

VDD VDD

Vin = VDD Vin = 0

VoutVout

Rn

Rp

CMOS Inverter:First Order DC Analysis

VOL = 0VOH = VDD

VM = f(Rn, Rp)

Page 30: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

30

EE141 59

V outV out

R n

R p

V DDV DD

V in = V DDV in = 0

(a) Low-to-high (b) High-to-low

CLCL

CMOS Inverter: Transient Response

tpHL = f(Ron·CL)= 0.69 Ron·CL

EE141 60

CMOS Properties

Full rail-to-rail swing

Symmetrical VTC

Propagation delay function of load capacitance and resistance of transistors

No static power dissipation

Direct path current during switching

Page 31: EE141 – Fall 2005 Lecture 4bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f05/Lectures/Lec-4-MOS.pdf12 EE141 23 S D G B S G S D G D NMOS Enhancement NMOS Depletion PMOS Enhancement

31

EE141 61

Future Perspectives

25 nm MOS transistor (Folded Channel)