effect of total modeling uncertainty on the accuracy of numerical simulations · 1999-09-23 ·...

25
EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy K. Hasselman ACTA Incorporated presented at the IMA “Hot Topics” Workshop Decision making Under Uncertainty: Assessment of the Reliability of Mathematical Models Institute for Mathematics and its Applications University of Minnesota September 16-17, 1999

Upload: others

Post on 24-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

EFFECT OF TOTAL MODELING UNCERTAINTYON THE ACCURACY OF NUMERICAL SIMULATIONS

by

Timothy K. HasselmanACTA Incorporated

presented at the

IMA “Hot Topics” WorkshopDecision making Under Uncertainty:

Assessment of the Reliability of Mathematical Models Institute for Mathematics and its Applications

University of Minnesota

September 16-17, 1999

Page 2: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/2 of 25

OVERVIEW OF PRESENTATION

❑ Total Modeling Uncertainty - Definition

❑ A General Approach Suitable for All Simulations

❑ Specialization - Linear Structural Dynamics

❑ Quantification of Total Modeling Uncertainty - Examples• Frequency uncertainty• Mode shape uncertainty• Mass and stiffness uncertainty• Uncertainty expressed in terms of generalized “modal” metrics

❑ Accuracy of Numerical Simulations - Examples• Frequency response of a truss beam• Airblast response of a reinforced concrete wall

Page 3: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/3 of 25

TOTAL MODELING UNCERTAINTY

q Truth Assumption

That which we observe in the physical world

q Simulation Uncertainty

Statistical representation of the difference between simulated and observedphenomena, e.g. a covariance matrix of a discrete time series or frequencyresponse function (FRF).

q Total Modeling Uncertainty

Statistical representation of the difference between simulated and observedphenomena expressed in terms of generic, dimensionless metrics that may beaveraged over a family of generically similar phenomena, e.g. ratio of measuredto predicted natural frequency; normalized analysis-test eigenvector products.

Page 4: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/4 of 25

SOURCES OF VARIABILITY / UNCERTAINTY

q Test Article or Product Variability• Tolerances• Material properties• Construction

q Experimental Variability• Variability in experimental setup• Measurement variability• Variability in data processing

q Modeling Variability• Variability in modeling assumptions - parameterization• Parametric variability• Computational variability

q Total Modeling Uncertainty - All of the Above

Page 5: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/5 of 25

GENERAL APPROACH

q Observed Phenomena

q Corresponding Numerical Simulation

q Singular Value Decomposition

Y t

y t

y t

y t

y t y t y t

y t y t y t

y t y t y t

i

n

m

m

n n n m

0 50 50 5

0 5

0 5 0 5 0 50 5 0 5 0 5

0 5 0 5 0 5=

%&KK

'KK

()KK

*KK

=

!

"

$

####2

1 1 1 2 1

2 1 2 2 2

1 2

M

LL

M M ML

, ,

, ,

, ,

0

0

0

2

0

0

1 1

0

1 2

0

1

0

2 1

0

2 2

0

2

0

1

0

2

0

Y t

y t

y t

y t

y t y t y t

y t y t y t

y t y t y t

i

n

m

m

n n n m

0 50 50 5

0 5

0 5 0 5 0 50 5 0 5 0 5

0 5 0 5 0 5=

%&KK

'KK

()KK

*KK

=

!

"

$

####M

LL

M M ML

, ,

, ,

, ,

Y t U V D

Y t U V D

T

T

0 50 5

= == =

ΣΣ

φ ηφ η0 0 0 0 0 0 0

Page 6: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/6 of 25

PRINCIPAL COMPONENTS ANALYSIS

q Singular Values and Singular (Eigen) Vectors• Singular value (from the diagonal matrix, D)• Left (column) eigenvector• Right (row) eigenvector

q Orthonormal properties of Eigenvectors

q Principal Components : Energy-ordered “Modes”

Dii

i=

ηi=

YY D D D

y t Tr YY Tr D D

T T T T

i

n

i j

T T

iii

n

j

m

= =

= = =∑ ∑∑

φ η η φ φ φ

φ φ

0 51 62 7 1 6 1 6

2

2 2 2

φ φ δ η η δφ φ δ η η δ

i

T

j ij i j

T

ij

i

T

j ij i j

T

ij

= == =0 0 0 0

Page 7: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/7 of 25

PC METRICS FOR QUANTIFYING TOTAL MODELING UNCERTAINTY

q Express and as linear combinations of and

q Evaluate differences between observation and simulation

q Vectorize

φi’s 0η

i’s

φ φ ψ φ φ ψ

η ν η ηη ν

≅ =

≅ =

0 0

0 0

1 60 5

:

:

T

T

~ ~r

vec

vec D

vec

=

%&K

'K

()K

*K

ψ

ν

0 52 70 5

∆ ∆ ∆ψ ν, ~ ,D

∆ ∆

∆ ∆ ∆∆ ∆

φ φ φ φ ψ φ ψ

η η η ν η ν η

= − ≅ − =

= − == − ≅ − =

0 0 0

0 0 1

0 0 0

I

D D D D D D

I

0 5

0 5; ~

ηi’s 0φ

i’s

Page 8: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/8 of 25

EVALUATION OF TOTAL MODELING UNCERTAINTY

q Using Replicate Test Data for a Particular Test Article

q Using Test Data from Generically Similar Test Articles

S r rN

r r

rN

r

r r r r

T

ri

N

r

T

ri

N

~~ ~ ~ ~ ~

~

~ ~ ~ ~

~ ~

= − − =−

− −

= =

=

=

Ε ∆ ∆ ∆ ∆

Ε ∆ ∆

∆ ∆ ∆ ∆

µ µ µ µ

µ

0 50 5 0 50 511

11

1

(Systematic Error)

S r rN

r rr r

T

i

NT

r

~~

~

~ ~ ~ ~= ==∑Ε ∆ ∆ ∆ ∆

1 6 11

µ is assumed to be zero

Page 9: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/9 of 25

FAST RUNNING SIMULATION

q Recall Singular Value Decomposition

q Recall Difference Analysis

q Fast Running Simulation

φ φ φ φ ψ

η η η η ν

= + ≅ +

= + = +

= + ≅ +

0 0

0 0

0 0

∆ ∆

∆ ∆

∆ ∆

I

D D D D I D

I

0 52 70 5

~

Y t D

y t D t Di j

k

p

ik kk k jk

p

ik kk kj

0 52 7 2 7

=

= == =

∑ ∑

φ η

φ η φ η1 1

$ ~Y I D I D Iij

= + + +0 0 0φ ψ η ν∆ ∆ ∆0 5 2 7 0 5

Page 10: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/10 of 25

EVALUATING THE ACCURACY OFNUMERICAL SIMULATIONS

q Linear Covariance Propagation

q Interval Propagation - Vertex Method

q Monte Carlo Simulation• Diagonalize• Execute PC Model for randomly selected values of ∆s

∆Y Y c Y e Y c Y e

c

e

i j i j i j i j

i

j

= −

==

max , min ,, ,

0 5 2 7 0 5 2 7J Lcoordinates of vertices of rectangular hyperspace

coordinates of extrema within rectangular hyperspace

S S T S TYY YY Yr r r Yr

T≅ =$ $ $~ ~~

$~

T Y rYr$~

$ / ~= ∂ ∂

S rr r~~ : ~∆ Θ∆= s

Page 11: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/11 of 25

SPECIALIZATION TO LINEAR STRUCTURAL DYNAMICS

q Classical Normal Mode Analysis

q Modal Mass and Stiffness Matrices

q Assumed “True” Modal Mass and Stiffness Matrices

m m m I m

k k k k

= + = += + = +

0

0 0

∆ ∆∆ ∆λ

0 0 0 0

0 0 0 0 0

m M I

k K

T

T

= == =

φ φφ φ λ

0 0 0 0

0

0

0K M

M

k

j j

j

j

− =

=

===

λ φλφ

2 7Analytical eigenvalues

Analytical Eigenvectors

Analytical mass matrix

Analytical stiffness matrix

0

0

Page 12: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/12 of 25

MODAL METRICS FOR QUANTIFYINGMODELING UNCERTAINTY

q Normalization of Test Modes,

q Cross-orthogonality of Analysis and Test Modes

q Difference Between Analysis and Test Modes

q Modal Metrics for Quantifying Total Modeling Uncertainty

∆ ∆ ∆

∆ ∆ ∆ ∆

m

k

T

T

= − +

= − −− −

ψ ψ

λ λ λ ψ ψ λ λ

1 6

1 6~ / /0 1 2 0 0 0 1 2

φ

φ φj

T

jM0 1=

0 0 0 0φ φ φ φψ ψj

T

j j

TM M= =

∆∆ ∆

λ λ λφ φ φ φ ψ φ ψ

= −= − = − =

0

0 0 0I0 5

~ ~r

vec m

vec k

vec

=

%&K

'K

()K

*K

0 52 70 5ζ

Page 13: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/13 of 25

COMPARISON OF FAST-RUNNING SIMULATIONS

q General Approach

where are the principal component metrics corresponding to theenergy-ordered modes of a SVD.

q Linear Structural Dynamics Approach

where are the classical modal metrics from a real symmetriceigenvalue/eigenvector analysis.

y t D ti j ik kk k j

k

p2 7 2 7==

∑φ η1

y t ti j ik kk k j

k

p2 7 2 7==

∑φ ηΓ1

φ η, D and

φ η, Γ and

φ

η

k

kk

kt

==

=

Classical normal mode

Modal participation factor

Modal response time history

Γ0 5

Page 14: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/14 of 25

NASA / LaRC EIGHT BAY TRUSS

Fixed end

Free end

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

;

<

=

Force input at Nodes 4 and 7

Acceleration response measured atNodes 1 through 32

Page 15: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/15 of 25

EXAMPLE OF TOTAL MODELING UNCERTAINTYCLASSICAL MODAL ANALYSIS

Normalized Frequency

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5

Mode No.

RM

S E

rro

r

54

32

1 12

34

50

0.1

0.2

0.3

0.4

0.5

RM

S E

rro

r

Mode No.Mode No.

Eigenvector Cross-orthogonality

Normalized Frequency

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4 5

Mode No.

RM

S E

rro

r

54

32

1 12

34

50

0.1

0.2

0.3

0.4

0.5

RM

S E

rro

r

Mode No.Mode No.

Eigenvector Cross-orthogonality

Variations of an 8-bay truss beam Generic family of space structures

Page 16: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/16 of 25

TOTAL MODELING UNCERTAINTY IN TERMS OFMODAL MASS AND STIFFNESS VARIABILITY

Variations of an 8-bay truss beam Generic family of space structures

54

32

1 12

34

50

0.1

0.2

0.3

0.4

0.5

RM

S E

rro

r

Mode No.Mode No.

Modal Mass

54

32

1 12

34

50

0.1

0.2

0.3

0.4

0.5

RM

S E

rro

r

Mode No.Mode No.

Normalized Modal Siffness

54

32

1 12

34

50

0.1

0.2

0.3

0.4

0.5

RM

S E

rro

r

Mode No.Mode No.

Modal Mass

54

32

1 12

34

50

0.1

0.2

0.3

0.4

0.5

RM

S E

rro

r

Mode No.Mode No.

Normalized Modal Stiffness

Page 17: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/17 of 25

FRF SIMULATION ACCURACY BASED ONSTRUCTURE-SPECIFIC MODELING UNCERTAINTY

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 20 X−Acceleration / 4 X−Force

ModelModel +/− 2 σTest

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 4 X−Acceleration / 4 X−Force

ModelModel +/− 2 σTest

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 4 Z−Acceleration / 4 X−Force

ModelModel +/− 2 σTest

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 20 Z−Acceleration / 4 X−Force

ModelModel +/− 2 σTest

Page 18: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/18 of 25

COMPARISON OF SIMULATION ACCURACY FORSPECIFIC AND GENERIC MODELING UNCERTAINTY

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 4 Z−Acceleration / 4 X−Force

ModelModel +/− 1 σ SpecificModel +/− 1 σ Generic

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 20 X−Acceleration / 4 X−Force

ModelModel +/− 1 σ SpecificModel +/− 1 σ Generic

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 4 X−Acceleration / 4 X−Force

ModelModel +/− 1 σ SpecificModel +/− 1 σ Generic

101

102

100

101

102

103

104

Frequency (Hz)

Acc

eler

atio

n/F

orce

Node 20 Z−Acceleration / 4 X−Force

ModelModel +/− 1 σ SpecificModel +/− 1 σ Generic

Page 19: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/19 of 25

BLAST RESPONSE OF A BURIED R/C STRUCTURE

Finite Element Model

❑ ~ 80,000 continuum elements

(concrete and soil)

❑ ~ 20,000 rebar elements

Test Measurements

❑ 12 Pressure gages

(10 on interior walls)

❑ 12 Accelerometers on interior walls

❑ 5 Locations each wall

Page 20: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/20 of 25

EXAMPLE OF TOTAL MODELING UNCERTAINTYPRINCIPAL COMPONENTS ANALYSIS

Typical Singular Values

01020304050607080

1 2 3 4

Mode Number

Sin

gu

lar

Val

ue Test

Analysis

Normalized Singular Values

0

0.5

1

1.5

2

2.5

1 2 3 4

Mode Number

RM

S E

rro

r

12

34

12

34

0

0.2

0.4

0.6

0.8

1

RMS Error

Mode NumberMode Number

Right Eigenvector Cross-Orthogonality

12

34

12

34

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RMS Error

Mode NumberMode Number

Left Eigenvector Cross-Orthogonality

Page 21: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/21 of 25

DISPLACEMENT SIMULATION UNCERTAINTY FOR R/C WALLPRE-UPDATE MODEL OF STRUCTURE 1

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

Left Horizontal Quarter Point Upper Vertical Quarter Point

Center Point Lower Vertical Quarter Point

Page 22: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/22 of 25

DISPLACEMENT SIMULATION UNCERTAINTY FOR R/C WALLPOST-UPDATE MODEL OF STRUCTURE 1

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04−1

0

1

2

3

4

5

6

7

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

Left Horizontal Quarter Point Upper Vertical Quarter Point

Center Point Lower Vertical Quarter Point

Page 23: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/23 of 25

DISPLACEMENT SIMULATION UNCERTAINTY FOR R/C WALLPRE-UPDATE MODEL OF STRUCTURE 2

0 0.01 0.02 0.03 0.04

0

2

4

6

8

10

12

14

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04

0

2

4

6

8

10

12

14

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04

0

2

4

6

8

10

12

14

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

0 0.01 0.02 0.03 0.04

0

2

4

6

8

10

12

14

Time (sec)

Dis

plac

emen

t (in

)

Model Model +/− 1 σTest

Gage 1 Gage 2

Gage 3 Gage 4

Page 24: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/24 of 25

SUMMARY

q Why total modeling uncertainty? The predictive accuracy of numerical simulations can be reliably estimated

only to the extent that total modeling uncertainty is quantified.

q How does one obtain the necessary data?By decomposing corresponding sets of simulated and measured response intotheir principal components, and statistically processing the differencesbetween corresponding PC (modal) metrics.

q How is the predictive accuracy of numerical simulations derived fromtotal modeling uncertainty?ì By first order covariance propagation,ì By interval propagation, and/orì By Monte Carlo simulation

Page 25: EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS · 1999-09-23 · EFFECT OF TOTAL MODELING UNCERTAINTY ON THE ACCURACY OF NUMERICAL SIMULATIONS by Timothy

IMA Workshop Sep 99/25 of 25

CONCLUSIONS

q Numerical simulations are increasingly relied upon for making criticaldecisions.

q The reliability of these simulations depends on uncertainty inherent in theunderlying mathematical models.

q A true representation of this uncertainty must include all possible sourcesof uncertainty, i.e. total modeling uncertainty.

q Decision making under uncertainty demands that total modelinguncertainty be quantified realistically.