electrical power systemmodeling and simulation of putrajaya

117
Electrical Power System Modeling and Simulation of Putrajaya Precinct 5 Gas District Cooling Plant by Nurul Nashwar binti Mohd Taib Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Electrical and Electronics Engineering) DECEMBER 2004 Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

Upload: others

Post on 08-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Electrical Power System Modeling and Simulation of Putrajaya

Precinct 5 Gas District Cooling Plant

by

Nurul Nashwar binti Mohd Taib

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

DECEMBER 2004

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Electrical Power System Modeling and Simulation of Putrajaya

Precinct 5 Gas District Cooling Plant

by

Nurul Nashwar binti Mohd Taib

A project dissertation submitted to the

Electrical andElectronics Engineering Programme

Universiti Teknologi PETRONAS

in partialfulfillment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Approved by,

(Mr. Zuhairi B Hj Baharudin)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2004

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original worki s my ownexcept ass pecified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MOHD TAIB

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL

CERTIFICATION OF ORIGINALITY

ABSTRACT

ACKNOWLEDGEMENT

CHAPTER 1: INTRODUCTION

1.1 Background of Study

1.2 Problem Statement

1.2.1 Problem Identification

1.2.2 Project Significance

1.3 Objectives

1.4 Scope of Study

1.5 Feasibility of Project

CHAPTER 2: LITERATURE REVIEW AND THEORY

2.1 Per Unit Method Short Circuit

2.1.1 Objectives

2.1.2 Per Unit (PU) Notation

2.2 Load Flow Studies

2.3 Overview of SKM® Application Software

in

CHAPTER 3: METHODOLOGY AND PROJECT WORK

3.1 Load Flow Analysis Method 9

3.2 Short Circuit Analysis Method 10

3.3 Developing Model in SKM® Power Tools 11

3.3.1 Switchboard 11

3.3.2 TNB Utility 12

3.3.3 Transformer 13

3.3.4 Cables 15

3.3.5 Induction Machines 18

3.3.6 Distribution Load 21

3.3.7 Protective Devices 23

CHAPTER 4:

CHAPTER 5:

REFERENCES

APPENDICES

RESULTS AND DISCUSSION

4.1

4.2

4.3

4.4

Electrical Equipment Sizing

4.1.1 Transformer Sizing

4.1.2 Cable Rating and Sizing

SKM® Power Tools Report

Data Comparison

26

26

27

29

30

SKM® Power Tools Simulation Studies Diagram 35

4.4.1 Comprehensive Short Circuit Study

Simulation Diagram 35

4.4.2 Load Flow Study Simulation Diagram 36

CONCLUSION AND RECOMMENDATION 38

41

42

LIST OF FIGURES

Figure 1: Radial System Losses

Figure 2: Single Line Diagrams for Basic EngineeringDesign

Figure 3: SingleLineDiagrams for Detail Engineering Design

Figure 4: Load Flow Analysis

Figure 5: Comprehensive Short Circuit Study

Figure 6: Switchboard Component Editor

Figure 7: Utility Component Editor

Figure 8: Transformer Component Editor (2-Winding Transformer)

Figure 9: Transformer Component Editor (Transformer Impedance)

Figure 10: TransformerComponent Editor (Automatic LTC)

Figure 11: TransformerComponent Editor (Damage Curve)

Figure 12: Cable Component Editor (Cable)

Figure 13: Cable Component Editor (Cable Z Matrix)

Figure 14: Cable Component Editor (Impedance)

Figure 15:Cable Component Editor (Damage Curve)

Figure 16: Motor Component Editor (Induction Motor)

Figure 17: Motor Component Editor (Induction Motor-FLA Calculator, Power Factor and

Efficiency)

Figure 18: Motor Component Editor (Motor Diversity)

Figure 19: Motor Component Editor (Motor Diversity-Rated HP)

Figure 20: Motor Component Editor (IEC Contribution)

Figure 21: Motor Component Editor (TCC Starting Curve)

Figure 22: Motor Component Editor (TCC StartingCurve)

Figure 23: Distribution Load Component Editor (General Load)

Figure 24: Distribution LoadComponent Editor (LoadDiversity)

Figure 25: Air CircuitBreakerComponent Editor (Protective Device)

Figure 26: Vacuum CircuitBreaker Component Editor (Protective Device)

Figure 27: Capacitor Bank Component Editor (Protective Device)

Figure 28: Bus-tie Component Editor

Figure 29: Study Selection and Setup Screen

Figure 30: Voltage Drop

LIST OF TABLES

Table 1: Load Demand Estimation

Table 2: Calculation Results for Transformers

Table 3: Parameter Settings for Both Simulation Analyses

Table 4: Data Comparison for Fault ContributionReport

Table 5: Data Comparison for Load Flow SummaryReport

LIST OF EQUATIONS

Equation 1: Zpu = kVABaSe / kVAutiiityPuQ

Equation 2 : ZpU =X"d (kVMotor / kVBase f (kVABase / kVAMotor) puQ

Equation 3 : ZpU =ZCable / (kVBaSe2* 1000 / kVABase) puQ

Equation 4 : Zpu = (ZTransfom1er%)*(kVTranSformer)2*(kVABase) puO

Equation 5 : IShort circuit = (V / Z^^nm) puA

Equation 6 : Ishort circuit = Ishort circuit pU*IBase

Equation 7 : IBase = kVABase / 31/2*kVBase

Equation8:I = P+jQ/E2*

Equation 9 : Vd = I(R+jX)

Equation 10: E2 = (Er] - IR) + j(Eu - IX)

Equation 11: (Ratedmotor) / (3 lA *voltage*power factor*efficiency)

Equation 12: I2t

Equation 13: (Let through energy of fuse) / (Cable S.C. withstand capacity)*100%

ABSTRACT

As a prerequisite for FYP, the author is required to submit a dissertation that records on

going study of electrical power system in a Gas District Cooling (GDC) Plant located in

Putrajaya Precinct 5, which subsequently is simulated to explore the system behaviour

and response. Two major approaches of power system analysis, which has been covered,

are load flow and short circuit studies. In relation with the operation of the plant, it is

necessary to conduct such studies to ensure system's stability and robustness.

The robustness of a power system is measured by the ability of the system to operate in a

state of equilibrium under normal and perturbed conditions. Power system stability deals

with the study of power system's behaviour under conditions such as sudden changes in

load or short circuits on buses or branches.

The first section of this report will elaborate on the introductory part, which consists of

the brief description on the project, the scope of work and also the main activities that the

author has participated.

The second part of the report will cover the details of the literature review that the author

has undergone. The first study being carried out is the process requirements, which

encompass mechanical principles of the GDC system that is very important in designing

Electrical Load Analysis (ELA). ELA is then evaluated to calculate maximum demand

and peak load. Equipment sizing, power flow study using Newton-Raphson method and

short circuit study using Per Unit method based on comprehensive study has also been

conducted.

The third section will focus on the methodology that has been taken by the author

throughout her final year period in UTP. Consequently, this section will highlight

procedures and tools that have been utilized in

SKM® Power Tools [4]. SKM® Power Tools [4] have been extensively used in industry

as it usually has the simplest solution for most cases. The aim of this project is to

understand how the system works by creating a software simulation that represents

electrical power utilization. Prior to this, there is a need in understanding an electrical

system response with presence of a disturbance and interruption.

This next slot represents results and discussion that has been covered especially on short

circuit and load flow studies. The main intention is to develop a model for load flow and

short circuit studies to validate the accuracybased on the relevant data obtained from the

plant.

The last section will outline some recommendations and will represent as conclusion of

the report. This chapter is focusing on the relevancy of this study and the achievement of

this project according to the objective and mile stone set that can be made out of this

project for the next project's development.

n

ACKNOWLEDGEMENT

Sir Isaac Newton once said, "If I have seen farther from other men, it is because I have

stoodon the shoulders of giants." I am most grateful to all personnel whose works I have

drawn from them. They are the giants on whose shoulders I stood while working for my

final year project. Upon completing the two semesters of my final year project, I would

like to express my deepest appreciation, first and foremost to ALLAH, The Al-Mighty,

for giving me the strength andperseverance to undertake all the tasks assigned.

Millions of thanks are specially dedicated to my supervisor, Mr. Zuhairi bin Haji

Baharudin, for his support and enthusiasm throughout my final year semesters. I have

discovered that a major project like this is a formidable task. Whenever I stumbled on

problems during the course, he gave me the chance to think out of the box and assist me

in solving the problems critically. My utmost gratitude aptly is also dedicated to the

management of Electrical Department in Oil, Gas & Petrochemical Technical Services

Sdn. Bhd, for helping me in obtaining all the data required for my project especially Ir.

Zakariya Ibrahim, Electrical Manager of Engineering Division and my training

supervisor, Puan Adita JoharaMat Husin for their unfailing assistance.

Last but not least, I wish to pay tribute to my family, especially my parents, Tn Dr. Haji

Mohd Taib bin Haji Hashim and Mrs. Hajah Mazhariah binti Mansor for their

encouragement and tolerance in many ways during my final year project period. And also

to my friends, who shared their ideas, experiences and encouragement.

Thank you

May ALLAH SWT bless all ofyou.

in

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The emphasis is on the consideration of the system as a whole rather than on the

engineering details of its constituents. According to S.Mattson (1998), modern electric

power systems are themost complex large-scale technical systems developed bymankind

since its main goal is providing continuous power supply to the facility with little or no

interruptions [1]. The power supply for GDC Plant is obtained from llkV feeder of

Tenaga Nasional Berhad (TNB) supply for Phase 1. The computation for various buses

and interconnecting lines are as follows, starting from down-stream loads at 415V

Switchgear/MCC buses A andB that are supplied from 11/0.415-TxlAand 11/0.415-

TxlB respectively. These ll/0.415kV transformers are supplied at llkV from the llkV

Switchboard buses. Similarly, the 3.3kV Switchgear/MCC buses A and B are supplied by

1l/3.3kV power transformers; 11/3.3-TxA and 11/3.3-TxB respectively, which in turnare

fed from the llkV Switchboard buses. 33kV feeder is going to be tapped during

development of Phase 2 onwards due to the additional of future loads. The study analysis

that has been carried out is based on the power intake taken at llkV to cater for the

present estimated loads. Distributions of electrical power to various loads of the plant via

different buses are as follows: -

• 1IkV Switchboard Bus A and B (Phase 1)

• 3.3kV Switchgear/MCC Bus A and B (Phase 1 to Phase 4), as the ll/3.3kV step

downtransformers has to be purchased at Phase 1 of the project

• 415V Switchgear/MCC Bus A and Bus B (Phase 1)

The anticipated maximum demand for all phases of the plant is approximately 7.5MVA

during basic engineering design. Additional equipment during detail engineering design

leads to increment in load demand up to 9.0MVA. Phase wise approximate load demand

estimated is as shown below: -

Table 1: Load Demand Estimation

Description Year Basic EngineeringDesign

Detail EngineeringDesign

Phase 1 2004 3.4 MVA 4.8 MVA

Phase 2 2007 1.7 MVA 1.8 MVA

Phase 3 2008 1.4 MVA 1.4 MVA

Phase 4 2012 1.0 MVA 1.0 MVA

1.2 Problem Statement

"Electrical Power System Modeling and Simulation"

"Electrical Power System" defines a set of complete electrical network that consists of all

the electrical distribution panels and loads at certain level of voltage rating. "Modeling"

here refers mathematical representation of electrical motor and non-motor various loads.

"Simulation" is defined as generation of tests on a virtual-time basis to predict the short

circuit behavior and load flow analysis of the real system. Computer-aided tool that will

be used is SKM® Power Tools [4]; an electrical engineering software.

1.2.1 Problem Identification

Electrical Engineers need to perform specific study to avoid fault current from occurring

and load flow study to determine power consumption. Accurate load flow and short

circuit is of great importance for power system operation to be stable under any

circumstances and conceivable disturbances. Disturbances in industrial power systems

are large in magnitude and the typical duration of a fault i s t enths of a second. Right

assumptions need to be obtained especially in short circuit and load flow analysis to

simplify calculation. [2]

1.2.2 Project Significance

The results of the analysis can conclude on how much electricity needed by the plant,

how big the equipment will be and what type of protective devices required. The project

can serve as a baseline for modelling of more advanced and complex power systems.

Further expansion plans for the power system in the plant can be facilitated more easily

with the help of the model and simulation. It serves as a starting point for future

undergraduates to acquire more knowledge on power systems and expand the models

developed for further refinement and extended studies.

1.3 Objectives and Scope of Study

• To develop the GDC plant power system model in the SKM® Power Tools [4]

environmentto simulate comprehensive short circuit and load flow studies

• To specify losses for all busses

• To obtain the switchgear rating and size of capacitor banks

The scope of study will be narrowed to a specific section in the GDC Plant where the

electrical loads are concern. Continuous loadwill be the major type of load to be studied

followed by Intermittent Load and Stand-by Load. The power system that covers all

important elements andcomponents will be modelled and simulated to predict the system

performance and manners. Comprehensive studies based on per unit method for short

circuit simulation and Newton-Raphson method for load flow analysis is the major

concern involved.

1.4 Feasibility of Project

Supported data on electrical power system obtained from the engineering consultant

company should be adequate to view general concept of the electrical components of the

system and to impart all the required data for the analysis. The availability o f S KM®

Power Tools [4] software in the laboratoryproved to be helpful and the project is feasible

to be carried out within the given time and scope.

CHAPTER 2

LITERATURE REVIEW / THEORY

2.1 Per Unit Method Short Circuit

2.1.1 Objectives

The fault current study canbe evaluated by circuit simplification when all data ratings are

collected and all the impedances are converted to per unit values. Per unit system is

convenient to normalize system variables due to computational simplicity by eliminating

units and expressing system quantities as dimensionless ratios. The objectives of short

circuit currents can be summarized as follows: -

• Determination of short circuit duties on switching devices, i.e., high-, medium- and

low voltage circuit breakers and fuses.

• Evaluations of adequacy of short-circuit withstand ratings of static equipment like

cables, conductors, bus bars, reactors and transformers.

2.1.2 Per Unit (PU) Notation

1) For utility contributions:

ZpU = kVABase/kVAutiiitypuQ Equation 1

Where

• kVA Base = The system three-phase power base specified for the study

• kVA utility = The utility system three-phase short circuit capability

2) For motor and generator contributions:

Zpu =X"d (kVMotor / kVBaSe f (kVABase / kVAMotor) puQ Equation 2Where

• X"d = Motor subtransient reactance

• kV Motor = Line-to-linemotor rated voltage

• kV Base - Line-to-line bus nominal system voltage at the point of the motor

3) For feeders:

Zpu - Zcabie / (kVBase2*1000 / kVABase)puO Equation 3Where

• Zcabie ~ ^er Pnase feeder impedance in ohms

4) For transformers:

Zpu = (^Transformer %)*(kYTransformer) *{kYABase) puQ Equation 4

(100) (kVease)2 (kVATransformer)Where

• Z-rransformer= Transformer % impedance on its self-cooled

The three-phase fault current base is:

Ishort circuit = (V / ZjheveniTi) puA Equation 5

Expressed in Amperes:

Ishort circuit = Ishort circuit pU*lBase Equation 6

Where the base current is defined as:

We=kVABase / 31/2*kVBase Equation 7

2.2 Load Flow Studies

The load flow study is intended to:

• Determine the steady-state loading of the various buses and lines (cables) in the GDC

Plant to ensure that they are operating within their performance ratings

5

• Determine the voltages at the various buses to ensure voltage drops do not exceed

+5% and -10%, consistent with the tap-changer range at the distribution transformers

• Evaluate the amount of capacitive reactive power compensation necessary to bring

the power factor level to 0.93 lagging

The modelling of loads is complicated because a typical load bus is composed of a large

number of devices such as pumps. Consider a simple system as shown in Figure 1. [2]

Source ^•— -*. Busl

Load

Bus 2

P+jQS El R+jX E2

Figure 1: Radial System Losses

The equations relating the above diagram are as follows: -

I = P+jQ/ E2* Equation 8

Where E2 is the voltage conjugate at bus 2. The voltage drop along the line is:

Vd - I(R+jX) Equation 9

Therefore,

E2 = (En - IR) + JCBii - IX) Equation 10

Putting Equations 8 and 10 in another form, three unknowns are existed as follows:

I = Ir+ jlj, E2 = Er2 + jE2i and (E2* = Er2 + jE2i)

Equations above can be solved by iterative technique, Newton-Raphson.

2.3 Overview of SKM® Application Software

SKM® Power Tools [4] offers a full spectrum of analysis capabilities such as: -

• I*SIMTransient Stability - to evaluate performance and stability of power system

• HarmonicAnalysis - to simulate harmonic content and distribution

• DAPPER balanced system studies - to simulate load flow and short circuit studies.

The sub-tool that will be concentrated is DAPPER Balanced System Study.

Single line diagrams drawn in SKM® Power Tools for basic and detail engineering

design of Putrajaya Precinct 5 GDC Plant are as shown in Figure 2 and Figure 3.

llk

VS

to

ard

I1

/D

.41

5T

xlA

41

5V

Bu

s1

41

5V

Ph

ase

1

GD

CP

RE

CIN

CT

5D

IS

TR

IC

TC

OO

LIN

GP

LA

MT

TN

B1

1k

V(P

hase

1-

Ph

ase

2)

3.3

kV

Ph

asel

3.3

kV

Fu

tu

re

3.3

kV

Bu

s2

Fig

ure

2:Si

ngle

Lin

eD

iagr

amfo

rB

asic

Eng

inee

ring

Des

ign

1I

A)

.41

5T

jcIB

11

/4

15

b2 4

15

VB

us2

41

SV

Ph

asel

-S—- -©5

HHi'

-=«r

HHi.

& -a—- -®5

§ I--© •

-©5

HB' 2

-©I

-Gl

-Q3

-H3g

-®3

-©s

-© =

~© =

-05

HHm

-©E

-®=

~-®s

-©I

360

• i—•

«

Qbog

00a

wo

• 1—1

ffl

&

fl• i—i

s,"Bo

oo

CHAPTER 3

METHODOLOGY/PROJECT WORK

Literature reviews on books and journals are accomplished throughout the early stage.

Apart from that, the author has chosen a case study for a better understanding in real

application. The next step is to simulate the electrical power system using appropriate

power analysis software. Suggested milestone forwhole year is shown in APPENDIX 1.

3.1 Load Flow Analysis Method

Load flow steps in SKM® Power Tools [4] are illustrated as below: -

Define System DataDefine system topology and connectionsDefine utility connections (swing bus)

Define individual loads

Define feeder and transformer sizes

Define generator sizes

Run Load Flow Study

Saved in Database

For each branch

Voltage dropPower flow

Study Setup For each bus

Cable LibraryTransformer Library

VoltageVoltage anglew

Demand Loads Voltage dropConnected Loads Power flow

Study Setup Power factor

i

,-^rir-ti

x^g^^fii

*fe=£«

Figure 4: Load Flow Analysis Flow Chart

Report

In order to come out with ELA, process and mechanical equipment data need to be

analysed first since it plays myriad roles to meet the required demand and conditions of

the GDC Plant. The absorbed load for all equipments will be converted to electrical load

using certain formulas. Overall process flow diagram is as shown in APPENDIX 2.

Demand load and connected load can be determined from ELA, shown in APPENDIX 3

for both basic and detail engineering design.

3.2 Short Circuit Analysis Method

Figure 5 below shows procedures in SKM® Power Tools [4] .to develop comprehensive

short circuit study.

•>

;lio-$

semis awtyc&rmecilon i>w!ng b«3<

Dafhis %d\ coairbuiior

•"•d.^iiiirj3**g:;;^

!un Short Circuit Study

Saved in Database

leal ftuilt currents

Figure 5: Comprehensive Short Circuit Study Flow Chart

10

Comprehensive short circuit study models the current that flows in the power system

under abnormal conditions and determines the prospective fault currents in an electrical

power system. [3]. Comprehensive short circuit analysis procedure involves reducing the

network at the short circuit location to a single Thevenin equivalent impedance,

determining the associated fault point R/X ratio calculated using complex vector algebra

and defining a driving point voltage (assuming the effect of the transformer taps on bus

voltage).

3.3 Developing Model in SKM® Power Tools [4]

In developing model for analysis in SKM® Systems Analysis [4], design specifications

and descriptions of all major equipments need to be verifiedfirst as depicted below: -

3.3.1 Switchboard

The switchboard is designed for each voltage rating. An example of switchboard buses

component editor that displays essential data to be entered is as shown in Figure 6.

Component Sub"iew;

Hatmonic SoMfce

3.3RV busl

•33kVS*boa;dA

•415V Bus1

»41$VE*$ent!sS

""SUS-0030

"•BUS-Q031

tlWJtSwdA

' :• fU\ •:::»'

Figure 6: Switchboard Component Editor

11

3.3.2 TNB Utility

TNB Utility is designed based on Tenaga Nasional Berhad's (TNB's) requirement.

Supplymay be provided at any of the declared voltages: -

Low Voltage

1. Single-phase, two-wire, 240V, up to 12kVAmaximum demand

2. Three-phase, four-wire, 415V, up to 45kVA maximum demand

3. Three-phase, four-wire, C.T. metered, 415V, up to 1500kVAmaximum demand

Medium Voltage andHigh Voltage

1. 3-phase, 3-wire and 1lkV for load of 1.5MVA maximum demand and above

2. 3-phase, 3-wire, 22kV and 33kV for load of 5MVA maximum demand and above

3. 3-phase, 3-wire, 66kV, 132kV and 275kV for exceptionally large load of above

20MVA maximum demand

Data from TNB that has been included in SKM® Power Tools [4] is 3-phase, 3-wire and

1lkV as shown in utility component editor in Figure 7.

Component Subviem.

Harmonic lmp@<Reliable Data

« Manager.,,_

Name: TN8

r InWai 3peratingCortcKom—

Voit§ge: 1.000 pu

» Enter

Utility Contribution

iins to Ground:

-Per Unit Contribution

Base/RatedMoitage (L-LJ;

ft. ... X100.0 gositive

2ero

0.327861 0.010819

11000 1000000 1000000 '

Bus: BUS-004S

Figure 7: Utility Component Editor

12

3.3.3 Transformer

Transformers shall be connected in parallel, where each transformer capacity shall be

adequate to carry all the loads connected via bus-tie in case of failure or maintenance of

either of transformers (100% redundancy). All the data required to be entered for

transformer is as shown in 11/0.415kV transformer component editor in Figure 8 to

Figure 11. Pop-menu windows for component sub views as listed below will not be

shown since all the data need not to be entered as it is automatically calculated by SKM®

Power Tools [4]: -

• Reliability Data

• User-Defined Fields

• Datablock

j3usVoitage:

11000 V(L-L3

VMJ

433

1 \ UD0 415

•84,0 l2f3£T0.00 0.00

Full Load Amps: -B4.0

VMJ

Pos. Seq. Pri. Voltage;ieads Sec.

• Bus Qsnnection ••—"'••-,"™"™"*™s

30.0 Link Phas« SWft

| From: BUS-0050

i To: BUS-005?

Mid Tap

L4L-&

Ts jL'0.-j!5 A

lCB!

Figure 8: Transformer Component Editor (2-Winding Transformer)

13

2-WJndingTransformef

icLTC

Go To j£_ Jump... j

£ero:

0,0060 6.0Q0Q

0,0060 aoooo

R(Ohffns) XtOhms)

O00000 0.00000 Cafe...

0,00000 aoaooo Calc.

•No Loadtoss in Percent en Transformer Bass

0.0000 jo.ooea

IEC Format 2-..

P Do NotSize

Siang Criteria;

Transformer 8a

** Nomina) k'

r FullLoad!

Uit-i!

«M-

w CBL-

Figure 9: Transformer Component Editor (Transformer Impedance)

Component Sybyiews.LTC isonly available with thesingle-phase / unbalanced 3-phase IF

le Tap Bus; jf';:> Vit> jj

:ledQuantity Limits ™' •• -— - - — -••••'• >

f Tap Limit

! Max, Tap:

P-U- \" Controlled'Phase:

p.u. | |i "CjP-u. [ „_

wwmf

w CBU

Figure 10: Transformer Component Editor (Automatic LTC)

14

2-Windtng TransformerTransformer ImpedanceAutomatic LTC

Standard: jANS! C57.109"" —'•*••*•"•—"•"••—<

*2 6.0000 JS/R: 1000.0000

Inrush Eactor: 110 IniyshTime: aioo

r Damage Curve—.; I W Freguent FauStCurve

jf" 3Phase j pAgTexlLabefeIf" Unbalanced j

\& Bo\h 1 Max Ptot lime: ^00

Tsn.'0,4nA

ACB

Figure 11: Transformer Component Editor (Damage Curve)

3.3.4 Cables

Current ratings for cables shall be calculated in accordance with the cable manufacturers

declared current ratings, and rating factors derived from the laying pattern, and local

environmental conditions. A positive tolerance of 5-10% can be allowed on the overall

rating factor. Allowable voltage drop percentage during motor running and motor starting

is fixed to be 5% and 20% respectively for safety in design. All the data required for

cable is as shown in cable component editor in Figure 12 to Figure 15. Pop-menu

windows for component sub views as listed below will not be shown since all the data

need not to be entered as it is automatically calculated by SKM® Power Tools [4]: -

• Conductor and Raceway

• Reliability Data

• User-Defined Fields

• Datablock

15

Damage CurveReliability DataUser-Defined Fi

Goto "

Figure 12: CableComponent Editor (Cable)

m^-mmm

R iX

A 0,007328 10.007713

8 P.

C o.

From: BUS 0044

To: 33kVS;GA

R ' J0.

kcemT Iabo77f3" Eolio " 15

aoooooo o.

QK

TxVHJ;

•121

Figure 13: Cable Component Editor (Cable Z Matrix)

16

vcs:

C8L-2

, Tall.

C3L-*

\VC8-

*'C tt

?'JU

Conductor and IDamage Curve

Datablock

Go To »

•r-rrs

0.0738 0.0840

0.0798 0.0840

lUance-™- "'•"'-

G/2 8/2

0.000000 0.000000

0.000000 0.000000 \ ITS•

(Ms: Mhos/1000 Meiers

"Jt'iiOTUira #^12

Figure 14: Cable Component Editor (Impedance)

p Cable Plot— ^

| * Single CParafel r $\| Conductors in Parailal(,iPhase:

r CableAmpact^-"-

& C,alculaiedAmpacity

1 r Load FfDW Current

j Ampacity. 5.0 (DesignAmpadSy is 0)

gqr!«war«w»

JC2 JVC.10,

Ts\TD.i

:[oui

Figure 15: Cable Component Editor (Damage Curve)

17

C3i>

?-oi

3.3.5 Induction Machines - Motor Load

Induction motors are calculated based on maximum demand as shown below from

Figure 16 to Figure 22. Pop-menu windows for component sub views as listed below

will notbe shown since all the data need not to be entered as it is automatically calculated

by SKM® Power Tools [4]:-

• Harmonic Source

• Reliability Data

• Load Profiles

• User-Defined Fields

• Datablock

P-IUU

Figure 16: MotorComponent Editor (Induction Motor)

18

Motor Diversity!EC ContributionTCt Starting CurveTransient MotorStartirHarmonic Source

Load ProfileUser-Defined Fields

|GoTo jrj Jump...

Number ofM<3*°fs: 2

Rated Voit§ge: 415

Rated Size: 0,40

Power Factor; 0.8500

Efficiency l.POQO

Pojes: p

Figure 17: MotorComponent Editor (Induction Motor-FLA Calculator, Power Factorand

Efficiency)

TCC$i§!tiy*3tifivi i

MMni</ Data

Scenarios Manage!

jii*4» flmrf

Figure 18: Motor Component Editor (Motor Diversity)

19

EC ContributionTCC Starting CurveTransient Motor Starts?Harmonic Source

Load Factor

•J.iii.i.11,^ j, «aM.,>w.

BHR 10.482574

i- wwtgi' wwiM p-

•tfj. . . i».>j»«.^.jeL..m.

:-9wm

OSOaA 9*112 U F412IS

®p-nuA

Figure 19: MotorComponent Editor (MotorDiversity-Rated HP)

So To "* *> lit*, waited

RtGhrx) X

ISC $12630*4

?;4irB**Btar*w/Roi*Rwci«««w *1 tUtfl J

?<T [18C? #» tdc 11/3 irt.

Figure 20: Motor ComponentEditor (IEC Contribution)

20

(s

GoTo »| Aiflas..,

Figure21: MotorComponent Editor (TCC StartingCurve)

£CC0**iU*«i

> It*

Figure 22: Motor Component Editor (TCC Starting Curve)

3.3.6 Distribution Load - Non-motor Load

Distribution loads are non-motor loads such as lighting. The essential data that need to be

entered is as shown in Figure 23 and Figure 24.

21

Pop-menu windows for component sub views as listed below will not be shown since all

the data need not to be entered as it is automatically calculated by SKM® Power Tools

[4]:-

• Harmonic Source

• Reliability Data

• Load Profiles

• User-Defined Fields

• Datablock

Figure 23: Distribution Load Component Editor (General Load)

22

Figure 24: Distribution Load Component Editor (Load Diversity)

3.3.7 Protective Devices

Protective devices are used for power flow control and safe maintenance purposes.

Numbers of protective devices available in industry but only Air Circuit Breakers

(Figure 25), Vacuum Circuit Breakers (Figure 26), Capacitor Banks (Figure 27) and

Bus-Ties (Figure 28) are used in this project. Pop-menu windows for component sub

views as listed below will not be shown since all the data need not to be entered as it is

automaticallycalculated by SKM® Power Tools [4]: -

• Settings

• Reliability Data

• User-Defined Fields

• Datablock

23

Figure 25: AirCircuit Breaker Component Editor (Protective Device)

Figure 26: Vacuum Circuit Breaker Component Editor (Protective Device)

24

ComponentSubview

Figure 27: Capacitor Bank Component Editor (Protective Device)

-oces

Figure 28: Bus-tie Component Editor

25

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Electrical Equipment Sizing

Charles A.Gross (1979) wrote that attempts to model mathematically the electrical power

system for analysis is heavily dependent on circuit concepts [1], Crucial information such

as transformer rating, distribution cable impedance, generator rating is important before

designing the single line diagram in SKM® Power Tools [4].

4.1.1 Transformer Sizing

Table 2: Calculation Results for Transformers

Design Rated

kV

Phase

1

(kVA)

A

Phase

2+3+4

(kVA)

B

Maximum

Demand

Load

(kVA)C-A+B

Size

(kVA)

D=1.25C

Standard

Rated

(MVA)

Basic Engineering 11/

0.415

1253 Future

Stage1253 1563.3 1.6

11/3.3 1836.2 2328.2 4164.4 5205.5 6.0

Detail

Engineering(Without power

factor correction)

11/

0.415

1719 Future

Stage1719 2148.7 2.2

11/3.3 3082 2464 5547 6933 6.95

Detail

Engineering(With power factor

correction)

11/

0.415

1414 Future

Stage1414 1768 1.77

11/3.3 2646 2412 5058 6323 6.325

Transformer kVA size - Maximum demand oad on t le transformer + 5% loss ss + 20%

spare capacity

26

From the table, it is shown that two 11 / 3.3kV transformers at rated size of 6MVA and

two 11 / 0.415kV transformers at rated size of 1.6MVA are used for basic engineering

design. Detail engineering design is encompassed of two 11/ 3.3kV transformers at rated

size of 6.325MVA and two 11 / 0.415kV transformers at rated size of 1.77MVA since the

main focus and interestis on detail engineering designwith power factor correction.

4.1.2 Cable Rating and Sizing

The current carrying capacity is based on the assumption that the ambient temperature is

at 40°C. The cable arrangement diagrams are as shown in APPENDIX 4.

• Sample calculation in determining sizes for high voltage (3.3kV) cables: -

a) Cable ampacity

Cable ampacity derating is taken from the IEE Wiring Regulation book. Cable ampacity

shall be bigger than the motor rated current. In this case, for highest rated pump of

280kW, the rated current after diversity (100%) is 61A.

For example:

The running current of Secondary Chilled Water Pump, P-0101 shall be as follows:-

= (Rated motor) / (3 /z *voltage*power factor*efficiency) - Equation 11

- (280*1000) / (3 '/2 *3300*0.84*0.955) = 61 Ampere

Therefore, cable used shall have ampacity greater than 61A. The cable size to be used

can be as small as 25 sq mm as shown in Table 2 for 3-core cables in APPENDIX 5.

b) Fault level at load terminals

Cables used shall have short circuit (SC) withstand capacity greater than short circuit

level at cable terminal point.

27

However it is safe to use a cable having SC withstand capacity smaller than SC at cable

terminal as long as its SC withstand capacity is greater than let through energy of fuse.

SC withstand capacity of25mm2 cable for 0.2 sec = 8.5kA as shown inAPPENDIX 6.

Therefore, SC withstands energy shall be as follows:-

= 11 Equation 12

- (8.5*103)2A*0.2sec = 1.45*107 Asec

c) Fuse selection:

This is done by referring to fuse selection curves graph for motor starting as shown in

APPENDIX 7. Selection of rated current of the fuse relies on 3 criteria, which are:

• Ia = motor starting current

• Nh = number of motor starts per hour

• TA = maximum starting starting time

In our case:

• IA = 61A x 6 - 366A (Actual vendor data = 400A)

• Nh = 6

• TA = 5s (typical values for DOL started motors)

From the graph, for which the motor run-up times not exceeding 6 seconds, the fuse

rating is 160 A. The maximum let through energy of fuse rating 160A is 50xl04. Let

through energy of the fuse (50xl04 sec) must be less than cable SC withstand capacity

(1.45xl07 Asec) and SC atcable terminal (13.2kA or 1.32xl04). Ratio is as follows:-

= (Let through energy of fuse) / (Cable S.C. withstand capacity)*100% -Equation 13

= (50xl04 A2 sec) / (1.45xl07 A2 sec) * 100%

-3.45%

The ratio implies that the cable SC withstand capacity is 1/0.0345 or 29 times bigger than

the maximum let through energy of the 160A fuse. So, the 25mm cable is well protected

by the 160A fuse. Full result of proposed cables sizes can be referred to APPENDIX 8.

28

4.2 SKM® Power Tools Report

The pop up menu window that show the studies that need to be run is shown below: -

Balanced System Study Setup' *l-iTupias- RsportRie-

*>

15" Q&ffi&nrJLGiifS

r~ -2i7itifj

P7 : oHii Fow

Seiup

rJii fl

Sh*lufi..

Jt rfil

'-P- f" Appgnd

P 5£<? fJowpTo*icrstv,o

• ^ A_FAU.T

r tC9J3B3

ictup... |i

J5C.-'p' r Append |

:,cad Schcctetei rVli p.. r.fi

System I'iCLt Date. Report- Inpjrroi

DefaultRgport Pest D:\PTWV:l5\prcj5Cis\Ty;ori3l-T§*t

tle:p formes.. Header. !I Burt

r .--jjpr.ril

P Append

Cancel

Fig. 31. Study selection and setup screen.

After selecting tke studies, click on the Rim button.

Figure 29: Study Selection and Setup Screen

Comprehensive short circuit study will calculate the initial symmetrical and asymmetrical

short circuit current given the fault location R/X ratios at various times during the onset

of the fault as shown in APPENDIX 9 based on basic engineering design drawing and

APPENDIX 10 based on detail engineering design drawing. Both results are in crystal

report format. Load flow study indicates the apparent power and current at each buses

and within each branches in the electrical power system, excluding local generation and

power lost through impedance devices. Load flow study results in crystal report format

are as shown in APPENDIX 11 based on basic engineering design drawing and

APPENDIX 12 based on detail engineeringdesign drawing.

29

4.3 Data Comparison

To attain maximum power consumption at various switchgear buses, the worst but

practical operational configuration is considered for this study. According to the

consideration:-

• Only one out of two TNB supply is on and supplying all loads to the plant

• Both transformers at each voltage level is supplying power to the entire switchgear

• Bus tie breakers of all switchgear are opened

To get maximum short circuit current at various switchgear buses, the worst but practical

operational configuration is considered for this study. According to that consideration,

• Only one out of two TNB supply is on and supplying all loads to the plant

• Only one out of two transformers at each voltage level is supplying power to the

entire switchgear

• Bus tie breakers of all switchgear are closed

• All motor and non-motor loads are running

The study settings specified for both simulation analyses are as follows: -

Table 3: Parameter Setting 3for Both Simulation Analyses

Short Circuit Study Load Flow Study

• 3-phase fault • Newton-Raphson solution method

• Single-line-to-ground fault • Connected load specification

• Transformer tap and phase shift • Source impedance is included

• Faulted buses at all buses • Generation acceleration factor is 1.00

• Initial symmetrical RMS with lA • Load acceleration factor is 1.00

cycle asymmetrical • Bus voltage drop is 5.00%

• Asymmetrical fault current at time • Branch voltage drop is 3.00%

0.5s

From the simulation results obtained in SKM® Power Tools [4], the below data for both

designs is extracted,compared and summarized.

30

Tab

le4:

Dat

aC

om

par

iso

nfo

rF

ault

Con

trib

utio

nR

epo

rt

Da

taL

oca

tio

nB

asi

cE

ng

inee

rin

gD

esig

nD

eta

ilE

ng

inee

rin

gD

esig

n

Init

ials

ymm

etri

cala

mps

-3P

has

ell

kV

Sw

itch

bo

ard

A1

73

13

A1

58

19

A

llk

VS

wit

ch

bo

ard

B-

15

81

8A

3.3

kV

Bu

s1

17

61

3A

20

05

5A

3.3

kV

Bu

s2

-2

00

41

A

41

5V

Bu

s1

43

78

2A

42

57

8A

41

5V

Bu

s2

OA

42

06

4A

•;.'

"V

-^-.

;,'-

-;-;

?j-

"•,

"i,

'.''-.'

Asy

mm

etri

cala

mp

sSP

ha

sell

kV

Sw

itch

bo

ard

A2

76

41

A1

58

19

A

llk

VS

wit

ch

bo

ard

B-

15

81

8A

3.3

kV

Bu

s1

28

44

6A

24

57

1A

3.3

kV

Bu

s2

-2

45

59

A

4I5

_V

:Bu

s1.."

....

52

18

8.A

52

79

3A

41

5V

Bu

s2

OA

52

33

5A

'^"

*-,:'

--4V*

"•'"-

"4

^;^

->\-

:\-y

-r,.

Init

ials

ymm

etri

cala

mp

sSin

gle

Lin

eto

Gro

un

d(S

LG

)

llk

VS

wit

ch

bo

ard

AO

A0

A

1lk

VS

wit

ch

bo

ard

B-

0A

3.3

kV

Bu

s1

17

56

0A

16

55

9A

3.3

kV

Bu

s2

-1

65

48

A

41

5V

Bu

s1

41

13

3A

38

73

0A

41

5V

Bu

s2

OA

38

25

2A

Asy

mm

etri

cala

mps

-Sin

gle

Lin

eto

Gro

un

d(S

LG

)

llk

VS

wit

ch

bo

ard

A

llk

VS

wit

ch

bo

ard

B

3.3

kV

Bu

s1

3.3

kV

Bu

s2

41

5V

Bu

s1

41

5V

Bu

s2

31

OA

28

94

0A

47

98

4A

0A

0A

0A

23

00

1A

22

99

0A

48

93

7A

48

49

0A

Tab

le5:

Dat

aC

ompa

riso

nfo

rL

oad

Flo

wS

umm

ary

Rep

ort

Da

taB

asi

cE

ng

ineeri

ng

Des

ign

Det

ail

En

gin

eeri

ng

Des

ign

TN

BS

ou

rce

Per

Un

itV

olt

age

1.0

01

.00

An

gle

0.0

0.0

Acti

ve

Po

wer

44

51

.0k

W6

10

2.3

kW

Reacti

ve

Po

wer

34

59

.6k

VA

R1

68

1.0

kV

AR

Vo

ltag

eD

rop

1.2

1%

2.1

4%

Uti

lity

Imp

edan

ce0.

01+

J0.3

30.

33+

J0.0

1

Bu

sb

ar

Ao

rB

usb

ar

1

Bu

sb

ar

Bo

rB

usb

ar

2

Bu

sb

ar

Ao

rB

usb

ar

1

Bu

sb

ar

Bo

rB

usb

ar

2

llk

VS

wit

ch

bo

ard

Bu

sb

ar

Vo

ltag

eD

rop

1.2

1%

-2

.14

%2

.14

%

Equ

ival

entt

oB

us

Vo

ltag

e1

08

66

V-

10

76

4V

10

76

4V

An

gle

Deg

ree

-0.8

-0

.26

°0

.26

°

PU

Vo

lts

0.9

9_

0.9

80

.98

Inco

min

gF

eed

erto

Bu

sA

cti

ve

Lo

ad

44

51

.0k

W-

61

02

.3k

W-

Reacti

ve

Lo

ad

34

59

.6k

VA

R-

16

81

.0k

VA

R-

Po

wer

Facto

r0

.79

-0

.96

4-

Lo

ad

Flo

wC

urr

en

t2

63

A-

33

9.2

1A

-

Ou

tgo

ing

Fee

der

fro

mB

us

Acti

ve

Lo

ad

44

50

.6k

W-

60

97

.9k

W-

Reacti

ve

Lo

ad

34

59

.3k

VA

R-

16

67

.5k

VA

R-

Po

wer

Facto

r0

.79

-0

.96

-

Lo

ad

Flo

wC

urr

en

t2

99

.50

A-

33

9.2

1A

-

32

Los

sesf

or

llk

VB

us

*0

.4k

W+

0.3

kV

AR

Bu

sb

ar

Ao

rB

usb

ar

1

Bu

sb

ar

Bo

rB

usb

ar

2

*4

.4k

W+

13

.5k

VA

R

Bu

sb

ar

Ao

rB

usb

ar

1

Bu

sb

ar

Bo

rB

usb

ar

2

3.3

kV

Sw

itch

bo

ard

Bu

sb

ar

Vo

ltag

eD

rop

2.4

7%

2.6

8%

-1.2

1%

-1.5

5%

Eq

uiv

alen

tto

Bu

sV

olta

ge3

21

8V

32

11

V3

34

0V

33

51

V

An

gle

Deg

ree

-31

.78

°-3

1.9

-1.6

-1.1

PU

Vo

lts

0.9

80

.97

1.0

11

.02

Po

wer

Facto

rC

orr

ecti

on

N/A

N/A

90

0k

VA

R7

50

kV

AR

Inco

min

gF

eed

erto

ll/3

.3k

VT

ran

sfo

rmer

Acti

ve

Lo

ad

16

01

.6k

W1

86

2.8

kW

27

18

.5k

W1

97

3.l

kW

Reacti

ve

Lo

ad

12

43

.4k

VA

R1

45

4.3

kV

AR

88

2.7

kV

AR

60

4.5

kV

AR

Po

wer

Facto

r0

.79

0.7

90

.95

0.9

5

Lo

ad

Flo

wC

urr

en

t1

07

.73

A1

25

.57

A1

53

.3A

11

0.6

8A

Ou

tgoi

ng

Fee

derf

rom

ll/3

.3k

VT

ran

sfor

mer

Acti

ve

Lo

ad

16

01

.6k

W1

86

2.8

kW

27

18

.1k

W1

97

2.8

kW

Reacti

ve

Lo

ad

12

01

.2k

VA

R1

39

7.1

kV

AR

78

2.1

kV

AR

55

2.0

kV

AR

Po

wer

Facto

r0

.79

0.7

90

.96

0.9

6

Lo

ad

Flo

wC

urr

en

t3

59

.10

A4

18

.55

A4

88

.8A

35

2.8

9A

Lo

sses

for

3.3

kV

Bu

s*

0k

W+

42

.2k

VA

R*

0k

W+

57

.2k

VA

R

Bu

sb

ar

Bo

rB

usb

ar

2

*0

.4k

W+

10

0.6

kV

AR

*0

.3k

W+

52

.5k

VA

R

Bu

sb

ar

Ao

rB

usb

ar

1

Bu

sb

ar

Ao

rB

usb

ar

1

Bu

sb

ar

Bo

rB

usb

ar

2

33

41

5V

Sw

itch

bo

ard

Bu

sb

ar

Vo

ltag

eD

rop

3.1

7%

3.1

7%

-1.4

1%

-1.0

5%

Equ

ival

entt

oB

usV

olt

age

40

2V

40

2V

42

1V

41

9V

An

gle

Deg

ree

-31

.63

°-3

1.6

-0.9

-1.8

PU

Vo

lts

0.9

70

.97

1.0

11

.01

Po

wer

Facto

rC

orr

ecti

on

N/A

N/A

25

0k

VA

R4

50

kV

AR

Inco

min

gF

eed

erto

ll/0

.41

5k

VT

ran

sfor

mer

Acti

ve

Lo

ad

49

3.l

kW

49

3.l

kW

52

4.8

kW

88

1.5

kW

Reacti

ve

Lo

ad

38

0.8

kV

AR

38

0.8

kV

AR

77

.9k

VA

R1

12

.4k

VA

R

Po

wer

Facto

r0

.79

0.7

90

.99

0.9

9

Lo

ad

Flo

wC

urr

en

t3

3.1

0A

33

.10

A2

8.4

6A

47

.66

A

Ou

tgo

ing

Fee

der

fro

mll

/0.4

15

kV

Tra

nsf

orm

erA

cti

ve

Lo

ad

49

3.lk

W4

93

.lk

W5

24

.8k

W8

81

.4k

W

Reacti

ve

Lo

ad

36

8.9

kV

AR

36

8.9

kV

AR

66

.8k

VA

R8

1.5

kV

AR

Po

wer

Facto

r0

.79

0.7

90

.99

0.9

9

Lo

ad

Flo

wC

urr

en

t8

77

.43

A8

77

.43

A7

22

.94

A1

21

0.7

8A

Lo

sses

for

41

5V

Bu

s*

0k

W+

11

.9k

VA

R*

0k

W+

11

.9k

VA

R*

0k

W+

ll.l

kV

AR

*0

.1k

W+

30

.9k

VA

R

*Not

e:L

osse

s=

Inco

min

gva

lues

-O

utg

oin

gva

lues

34

4.4 SKM® Power Tools Simulation Studies Diagram

Diesel engine generator in this GDC plant is only functional to cater essential loads for

building services, which involves small amount of load. For simplicity in simulation, the

emergency standby switchboard will not be drawn in the power system model for both

designs since its absence will not affect the study result.

4.4.1 Comprehensive Short Circuit Study Simulation Diagram

Comprehensive short circuit study simulation diagrams that indicate branch and bus fault

current for basic and detail engineering design are as shown in APPENDIX 13 and

APPENDIX 14 respectively. The voltage drops are very minimal for high voltage cables

and not a dominant factor in cable sizing for the higher voltages. However, the thermal

capacity of the cables against short-circuit fault has to be verified by use of the heat

equation:

I2t = S2k2

Where S - nominal cross-sectional area of the conductor (sq.mm)

I - fault current that can flow through the cable (A)

T- opening time of protective breakers associated with the cable (S)

including that for fuse rupturing (maximum fuse operating time)

K- factor, which takes into account the resistivity, temperature coefficient

and heat capacity of the conductor material, and the appropriate initial and

final temperatures

Full thermal capacity of cables are normally evaluated for t atl.O second (circuit breaker

operation normally within 1 second for back-up circuit breakers). As the cables selected

are mainly of XLPE insulated type, over copper conductor material, the corresponding k

value is 143 (assuming initial temperature 90°C and final temperature 250°C). For 3.3kV

cables feeding large 3.3kV motors or 3.3/0.433kV inverter transformers, the thermal

capacity is normally evaluated for at 0.2 second as these cables are p rotected b y h igh

votage fuses which have current or fault limitation capabilities.

35

4.4.2 Load Flow Study Simulation Diagram

A load flow study will be carried out based on the present estimated loads to check the

following: -

• The voltages on the 3.3kV and 415V bus are within their limits

• The proper tapping set range for the step down transformers

• The quantum of capacitor banks required to maintain the power factor at the

(temporary) TNB llkV supply point (Point of Common Coupling-PCC)

Load flow study under full load conditions is based on three criteria: -

a) Basic engineering design without any power factor correction capacitor banks shown

in APPENDIX 15

b) Detail engineering design with the adequate amount of capacitor banks to correct the

power factor (PF) at the TNB llkV incomer to 0.93 PF lagging shown in

APPENDIX 16

The load flow study is focused more on detail engineering design as it involves capacitor

bank and it may be seen that the power factor correction required is as follows: -

a) At 3.3 kV - 1650kVAR (for all phases)

b) At 415 V - 700kVAR (for Phase 1 only)

Total capacitor banks to be added at 3.3kV and 415V are 2350kVAR, so that the TNB

llkV incomer power factor is more than 0,93. Any shortfall below 0.85 will incur

penalty charges from TNB. Hence, for economic operation, the power factor level of the

GDC plant must be continuously monitored and regulated to be above 0.93 power factor

lagging. By definition, power factor, cos 0 where 0 is the phase angle between the

voltage vector and the currentvector. For a lagging power factor, the current is Tagging'

behind the voltage by a phase angle of 0. An equivalent definition for power factor is the

cosine of the phase angle between the real power flow P and the apparent power flow S

as shown in Figure 30.

36

pei

Q2

^^--J^ * iiii

si

^^"^* i Ql

Figure 30: Voltage Drop

Beforecapacitive compensation, cos 0 is equal to P/Sl.

To improve the power factor cos 01, the angle 01 must be reduced to 02. As realpowerP

is fixed, apparent power SI must be reduced to S2 such that cos 02 is equal to P divided

by S2, bigger than 0.93.

The load-flow analysis involves calculation of power flows and voltages of a

transmission network for specified terminal or bus conditions. Associated with each bus

are four quantities; active power P, reactive power Q, voltage magnitude V and voltage

angle, 0. The following types of buses (nodes) are represented and at each bus two of the

above four quantities are specified:-

• Voltage-controlled (PV) bus: Active power, voltage magnitude and limits to the

reactive power are specified depending on the characteristics of the devices.

• Load (PQ) bus: Active and reactive power are specified. Normally loads are assumed

to have constant power. If the effect of distribution transformer operation is

neglected, load P and Q are assumed to vary as a function of bus voltage.

• Device bus: Special boundary conditions associated with devices are recognized.

• Slack (swing) bus: Voltage magnitude and phase angle are specified. One bus must

have unspecified P and Q because the power losses in the system are not known a

priori.

Overall single line diagrams for basic, detail and construction engineering design are

shown in APPENDIX 17. GDC Plant Layout is shown in APPENDIX 18 as reference.

37

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

• Short Circuit Analysis

The three-phase symmetrical rms fault current (balanced circuit) is often considered the

maximum fault current and the most severe type occurred at the bus [4], The selection

short circuit rating of each bus shall be from the next available rating of bus bar obtained

from manufacturer's standard based on initial symmetrical three-phase fault. The

asymmetrical peak current is the sum of the dc decay and ac decrement components

produced by a sudden application of a sinusoidal voltage source on resistors, capacitors

and inductors.

After analyzing the study results, short circuit ratings of various switchboards for

reliability of the design are recommended as follows:

• 1lkV switchgear & accessories shall be suitable for 25kA for 3 sec

• 3.3kV switchgear & accessories shall be suitable for 25kA for 1 sec

• 0.415kV switchgear for phase 1 shall be suitable for 50kA for 1 sec

The results are verified by comparing the above to contractor's electrical equipment

selection drawing. The magnitudes of fault currents are usually important parameters and

help system engineers in determining the type of protective devices to be used to isolate

the fault at a given location safely with minimum damage to circuits and equipment and

also a minimum amount of shutdown of plant operation. Cables thermal withstand

capabilities during short circuit are also checked.

38

• Load Flow Analysis

The lesser the powerfactor thanunitythe 1arger will the apparentp owerb e than r eal

power. It can be concluded from Table 5 that the power system is efficient and well

performed since the line losses for eachbuses are considered small. These losses are the

difference between the kW and kVAR flowing into the bus from anotherbus and the

value that reaches the bus. Prior to the analysis, the magnitude of all the voltages is set to

be one per unit. Subsequently, the network elements such as lines or cables, switchboard

buses, circuit breakers and transformers have been verified against manufacturer's data

for adequate capacity to carry the loads.

Voltage drops over the transformers and lines are found to be insignificant and well

within the limit of 5% and -10%. The transformer tap setting is set at 0% for each

transformer. Power factor improvement in the system is considered to maintain the TNB

powerfactorat 1 lkV tobemorethan0.93 power factor lagging. Capacitor banks are

required to be added at 3.3kV and 415V to maintain this power factor. Power factor

improvement in the system required is as follows: -

a) At 3.3 kV = 1650WAR (for all phases)

b) At 415 V - 700kVAR (for Phase 1 only)

Total capacitor banks to be added at 3.3kV and 415V are 2350WAR, so that the TNB

1lkV incomer power factor is more than 0.93 power factor.

• Data Comparison Analysis

Based on the short circuit report in Table 4, most of the fault currents have increased in

Detail Engineering Design compared to Basic Engineering Design due to the additional

equipment as noted below. This concept is also applied to the load flow currents at every

bus namely llkV bus, 3.3kV buses and 415V buses as shown in Table 5. Real, reactive

and apparent power at every bus is larger in Detail Engineering Design rather than Basic

Engineering Design due to bigger power consumption.

39

Additional equipment in detail engineeringdesign includes:-

- Additional busbar andpie equivalent bus-tie addedto each existing busbar

- Protective devices which includes vacuum circuit breaker, air circuit breaker and

fuses

- Additional motors

- 3.3/0.415kV transformer

- Capacitor bank

• Power System Utilisation

This project is carried out in severalphases namely collection of data, calculation of short

circuit currents and load flow, development of mathematical model of each component in

the power system, and finally implementation and simulation of model on simulation tool

SKM® Power Tools [4], Based on the model developed, systembehaviour and response

to any disturbance in real-time operation should be able to be predicted.

• Case Study on GDC Putrajaya Precinct 5 Plant

In order to enhance the knowledge on electrical power system, a real application is taken

into study for further analysis. The GDC power plant of Putrajaya Precinct 5 has adopted

this scheme into implementation. A case studyhelps in widening the knowledge not only

in theory but also for real application in power plant such as GDC Plant. Dynamic studies

shall be used to verify the electrical power system. In this project, the dynamic studies are

conducted via computer-analysis simulation. SKM® Power Tools [4] is the software used

to demonstrate the power system network. A circuit is constructed using components that

are available from the software library. Using this circuit, a number of conditions are set

and the results of the simulations are analyzed. From the start, there are several stages

that need to be completed from the collection of data, calculation until the development

of the model. From the model, the author can simulate the behaviour of the system. The

accuracy of the simulation depends on the type ofparameter entered to the input file.

40

5.2 Recommendation

Apart from demonstrating the short circuit and load flow analysis through computer

simulations, one can develop a hardware prototype to represent the power system

network. A microcontroller PIC can be used as the power system CPU where all data are

processed and outputs are produced. Loss of generation can be demonstrated by

connecting a voltage regulator to the system and the voltage is varies from it. Fault can

easily be done by short-circuiting the wire to ground by a push button or a toggle switch.

This could make the project more interesting and easier to understand. Other software for

example ERACS, PSCAD, MATLAB can be used to simulate the electrical power

system. It is an advantage if the user has the basic knowledge not only in using the

existing software but also the other electrical software.

Conducting a full protection study, which will include breaker ratings and relay setting

using positive or zero sequence impedance network calculation and verifying the required

setting using SKM® Power Tools [4] is also recommended. Circuit breaker ratings are

determined by the fault MVA at their particular locations, not only has the circuit breaker

to extinguish the fault-current arc, with the substation connections it has also to withstand

the considerable forces up by short circuit currents which can be very high. License for

other tools such as harmonic analysis, transient stability and others in SKM® Power

Tools [4] should also be purchased by UTP. This is to ensure that any students who are

interested in continuing this study for future phases, Phase 2, Phase 3 and Phase 4 can

improvise the scopes of the project.

REFERENCES

[1] E\-Ab\&&,"Calculation of Short Circuit by Matrix Methods", AIEE

[2] G.Stagg, "Computer Methods in Power System Analysis", Mc Graw-Hill

[3] J.Storry,H.E.Brown, "Improved Method ofIncorporating Mutual ",PICAProc

[4] SKM® Power Tools, "Electrical Engineering Software ", www.skm.com

41

APPENDICES

Appendix 1Suggested Milestones

Appendix 2Overall ProcessFlow Diagram• Appendix 3Electrical Load Analysis for Basic and Detail Engineering Design• Appendix 4GroupingDerating Factor• Appendix 5Cables Reference Tables

• Appendix 6Short Circuit Ratings• Appendix 7Fuse Link Type CMF• Appendix 8Proposed Cables Sizes

• Appendix 9

Crystal Report-Short Circuit Simulation for Basic Engineering Design• Appendix 10

Crystal Report-Short Circuit Simulation for Detail Engineering Design• Appendix 11Crystal Report-Load Flow Simulation for Basic Engineering Design• Appendix 12Crystal Report-Load Flow Simulation for Detail Engineering Design• Appendix 13

Simulation Diagram-Branch and Bus Fault Currents for Basic Engineering Design• Appendix 14Simulation Diagram-Branch and Bus Fault Currents for Detail Engineering Design• Appendix 15Simulation Diagram-Load Flow Studywithout PowerFactor Correction for BasicEngineering Design

• Appendix 16Simulation Diagram-Load Flow Study with Power Factor Correction for DetailEngineering Design

• Appendix 17Single Line Diagrams for Basic, Detail and Construction Engineering Design• Appendix 18Putrajaya Precinct 5 GasDistrict Cooling PlantLayout

42

APPENDIX 1

Suggested Milestones

Su

gg

este

dM

iles

ton

efo

rth

eF

irst

Sem

este

ro

f2S

emes

ter

Fin

alY

ear

Pro

ject

No

.D

eta

il/W

eek

12

34

56

7S

91

01

11

21

31

4

1S

elec

tion

of

Pro

ject

Top

ic

-Pro

po

seto

pic

-To

pic

assi

gned

toth

est

uden

t

2L

ogbo

ok-

Wee

k3

-Stu

dyon

proc

ess

requ

irem

ent

for

GD

CP

lant

-Stu

dyon

mec

hani

cal

requ

irem

entf

orG

DC

Pla

nt

3S

ubm

issi

ono

fLog

book

-W

eek

3•

4P

reli

min

ary

Res

earc

hW

ork

-In

tro

du

cti

on

-Ob

ject

ive

-Lis

to

fre

fere

nces/l

itera

ture

-Pro

ject

pla

nn

ing

5S

ubm

issi

ono

fP

reli

min

ary

Rep

ort

6L

ogbo

ok—

Wee

k4

-Lit

erat

ure

rev

iew

onlo

adfl

owst

udy

for

the

syst

em

-Lit

erat

ure

revi

ewon

pow

erfl

owfo

rth

esy

stem

7S

ubm

issi

ono

fL

ogbo

ok-

Wee

k4

8L

ogbo

ok-

Wee

k5

-Ele

ctri

cal

load

anal

ysis

base

don

the

real

syst

em

-Cal

cula

tem

axim

um

dem

and

and

peak

load

9S

ubm

issi

ono

fLog

book

-W

eek

5•

10

Log

book

-W

eek

6

-Des

ign

sing

lelin

edi

agra

m

-Cal

cula

tesi

zing

for

all

maj

oreq

uipm

ents

11

Sub

mis

sion

ofL

ogbo

ok-

Wee

k6

12

Lo

gb

oo

k-

Wee

k7

-Cal

cula

tesi

zing

for

all

cabl

es

13

Sub

mis

sion

ofL

ogbo

ok-

Wee

k7

14

Sub

mis

sion

ofP

rogr

ess

Rep

ort

15

Log

book

-W

eek

8

-Lit

era

ture

rev

iew

on

sho

rtcir

cu

it

16

Sub

mis

sion

of

Log

book

-W

eek

8•

17

Log

book

-W

eek

9

-Cal

cula

tesh

ort

circ

uit

for

each

bubs

bar

man

ually

18

Su

bm

issi

on

ofL

ogbo

ok-

Wee

k9

19

Lo

gb

oo

k-

Wee

k10

-Cal

cula

tesh

ort

circ

uit

for

each

bubs

bar

man

uall

y

-Sta

rtdo

ing

soft

war

esi

mul

atio

n

20

Sub

mis

sion

ofL

ogbo

ok-

Wee

k10

8O

ral

Pre

sent

atio

n&

Inte

rim

Rep

ortP

repa

rati

on

9S

ubm

issi

ono

fInt

erim

Rep

ort

•S

ug

ges

ted

mil

esto

ne

Pro

cess

Su

gg

este

dM

iles

ton

efo

rth

eS

eco

nd

Sem

este

ro

f2

Sem

este

rF

inal

Yea

rP

roje

ct

No

.D

eta

il/W

eek

12

34

56

78

91

01

11

21

31

4

1L

ogbo

ok—

Wee

k2

-Co

nti

nu

eso

ftw

are

sim

ula

tio

n

2S

ub

mis

sio

no

fL

og

bo

ok

-W

eek

2•

3L

ogbo

ok-

Wee

k3

-Co

nti

nu

eso

ftw

are

sim

ula

tio

n

-Des

ign

SL

Dfo

rde

tail

des

ign

4S

ub

mis

sio

no

fLog

book

-W

eek

3•

5S

ub

mis

sio

no

fP

rogr

ess

Rep

ort

1•

6L

og

bo

ok

-W

eek

4

-Co

nti

nu

eso

ftw

are

sim

ula

tio

n

-Com

pari

ngsi

mul

atio

nre

sult

ofba

sic

and

desi

gn

7S

ubm

issi

ono

fL

ogbo

ok-

Wee

k4

8L

og

bo

ok

-W

eek

5

-Ch

eck

ing

sim

ulat

ion

resu

lts

with

man

ual

calc

ulat

ion

9S

ubm

issi

ono

fL

ogbo

ok-

Wee

k5

10

Log

book

-W

eek

6

-Che

ckin

gsi

mul

atio

nre

sult

sw

ithm

anua

lca

lcul

atio

n

-Ad

just

any

calc

ulat

edva

lues

ifre

quir

ed

11S

ub

mis

sio

no

fL

ogbo

ok-

Wee

k6

12

Log

book

-W

eek

7

-Che

ckin

gsi

mul

atio

nre

sult

sw

ith

man

ual

calc

ulat

ion

-Adj

usta

nyca

lcul

ated

valu

esif

requ

ired

13

Sub

mis

sion

ofL

ogbo

ok—

Wee

k7

14

Sub

mis

sion

of

Pro

gres

sR

epor

t2

15

Log

book

-W

eek

8

-Pre

pari

ngth

esis

&or

alpr

esen

tati

on

16

Sub

mis

sion

ofL

ogbo

ok-

Wee

k8

17

Log

book

-W

eek

9

-Pre

pari

ngth

esis

&or

alpr

esen

tati

on

18

Sub

mis

sion

ofL

ogbo

ok—

Wee

k9

19

Pro

ject

wo

rkco

ntin

ue

-Sim

ula

tio

nW

ork

19

Su

bm

issi

on

of

Dis

sert

ati

on

Fin

al

Dra

ft•

20

Ora

lP

rese

nta

tio

n•

21

Sub

mis

sion

of

Pro

ject

Dis

sert

atio

n•

Sug

gest

edm

iles

tone

Pro

cess

APPENDIX 2

Major Process Flow Diagram

211V-O30|

P-05CPA/B

VL SERVICESIHD.

'2003

PUTRAJAYA HOLDINGSfUTFMJMA HnOIMPI KM. Mi.nul PDI1UHIUH "TMiMJt KRSCKUTIMMWRAJM*

seuwmwu. qsjw.pel : oi-skrh

w*. oi-tzEzus/x

GAS ^"*cooling K^3PUTRHJAIA ^•'^

OS DiSTRKT COOLING (PUTRAJAYA) C3M. BHD.pctwas tvin raws"wi urn* cirr ffMiirsowkwla tww.wt.ns,*.Tel. W. s Ol-Jtai 7579f«. H»i 01-JX6I 7600.

&mll_t i

cgi level j i. u_t«r ?fiS^* remans Twin roios•£_ kuju lww cm com*.

Tel. *. , CO-ZOSI Urn

fi* Iheto'cW Mt

Un.Wfjsd %Mcia>l«j<nl

fi» IWOnf tB»

:

Tib *•>•) u Gsrti^il.Cabactvi «l cm* ill driaiMI at i>lc 0,1,f%Hl l«niu »t I. be»rt Hkieomk, Hit

tnoHHne.

PUffiAJAYA

PBEONCT5 .

DBJftlCT CO&JNG PLANT PROJECT

Qr«*»J-,.l. ,i f

OVERALL PROCESSFLOW DIAGRAM

-WS; c-fin f

Oni,*. i • 5 .*

" HA? i

oa. 09.M

pjps-BRa-oi-oooi

F" ^'W*™ COC ^ojEct^flFC-rV^

APPENDIX 3

Electrical Load Analysis for Basic and Detail

Engineering Design

LO

AD

LIS

TF

OR

3.3

kV

SW

ITC

HG

EA

R

EQ

UIP

.

TA

GN

O.

DE

SC

RIP

TIO

N

QU

AN

TIT

YC

ON

DIT

ION

o u 2a.

°a

ao

3:

MO

TO

RS

PE

CIF

ICA

TIO

NC

ON

TIN

UO

US

INT

ER

MIT

TE

NT

ST

AN

D-B

Y

LU % w U

LU

o V)

•o C

UJ % t/i

3 s

1c 2 W

°O

ZO

2=

MO

TO

R

RA

TIN

G

<kW

)E

FF

I.P

.F

MO

TO

R

LO

AD

(kW

)

TO

TA

L

LO

AD

(kW

)k

VA

Rk

VA

TO

TA

L

LO

AD

(kW

)k

VA

Rk

VA

TO

TA

L

LO

AD

(kW

)k

VA

Rk

VA

RE

SW

RK

P-0

20

1A

-FC

OO

LIN

GW

ATE

RPU

MP

FOR

DFC

].,

••

65

1A

IM1

60

0,8

00

0.0

31

0.8

30

13

7.8

68

7.4

46

2.0

82

8.2

13

7.5

92

.41

65

.60

.00

.00

.0L

oad

IsC

on

firm

ed

P-0

10

1A

-0C

UST

OM

ER

TR

AN

SF

ER

ING

PUM

P(S

EC

ON

DA

RY

PUM

P)4

31

AIM

25

00

.80

00

.93

80

.64

62

13

.26

39

.74

03

.17

56

.12

13

,21

34

.42

52

.00

.00

.00

.0L

oad

IsC

on

flrm

od

Ph

ase

1G

RA

ND

TO

TA

L1

00

00

82

13

27

.18

65

,11

58

4.3

35

0.7

22

8.8

41

7.7

0.0

0.0

0.0

EQ

UIP

.

TA

GN

O.

DE

SC

RIP

TIO

N

QU

AN

TIT

YC

ON

DIT

ION

o 2cl

o<

3

2

MO

TO

RS

PE

CIF

ICA

TIO

NC

ON

TIN

UO

US

INT

ER

MIT

TE

NT

ST

AN

D-B

Y

w o w n c

LU

CD

v>

LU I (fl

£

C

c 01

c

O0

2O

25

MO

TO

R

RA

TIN

G

(kW

)E

FF

I.P

.F

MO

TO

R

LO

AD

(KW

)

TO

TA

L

LO

AD

(kW

)k

VA

Rk

VA

TO

TA

L

LO

AD

(kW

)

kV

AR

kV

A

TO

TA

L

LO

AD

(*W

)

kV

AR

kV

AR

EM

AR

K

P-0

20

1G

-NC

OO

LIN

GW

AT

ER

PU

MP

FO

RD

FC

33

2e

eIM

16

00

.60

00

.93

10

.83

01

37

.61

09

9.9

73

9.1

13

25

.20

.00

.00

.00

.00

.00

.0L

ou

dIt

Co

nfU

mo

d

P-0

10

1E

-HC

UST

OM

ER

TR

AN

SFE

RIN

GPU

MP

(SE

CO

ND

AR

YPU

MP)

21

14

BIM

25

00

.BO

00

.03

60

.64

62

13

.26

02

.98

37

.61

00

8.1

0.0

0.0

0.0

0.0

0.0

0.0

Lo

ad

liC

nn

flrm

od

Ph

ase

2to

Ph

ase

4G

RA

ND

TO

TA

L0

54

31

20

19

52

.S1

27

6.7

23

33

.30

.00

.00

.00

.00

.00

.0

GDCP

SPr

elim

Load

UsL

_rev

O_b

acku

pLO

AD

IJST

3.3K

Y

EQ

UIP

.

TA

GN

O.

DE

SC

RIP

TIO

N

Kit

dm

s^

mw

^m

^^

^M

^^

^^

WS

CT

-02

01

A-L

CO

OL

ING

TO

WE

R(F

AN

SX

2N

OS

).'(

P-0

30

1A

.BM

AK

E-U

PW

AT

ER

PU

MP

FO

RC

OO

LIN

GW

AT

ER

P-0

30

2A

.BM

AK

E-U

PW

ATE

RPU

MP

FOR

CH

ILLE

DW

ATE

R'

•'l'

\

P-0

10

3A

.BS

IDE

ST

RE

AM

FIL

TE

RP

UM

P

DF

C-0

10

1A

-FD

IRE

CT

FIR

ED

CH

ILL

ER

/No

.1A

bsor

bent

pum

p'

IN

o.2

Ab

sorb

ent

pu

mp

/R

eWg

eran

lp

um

p

/P

urg

ep

um

p

'.'

//

bu

rner

blo

wer

P-01

02A

-FC

HIL

LE

DW

AT

ER

PUM

PFO

RD

FC(P

RIM

AR

Y)

mm

m?

mm

mm

P-0

40

1A

.BD

IES

EL

TR

AN

SF

ER

PU

MP

P-0

40

2A

.BO

ILS

UP

PL

YP

UM

PF

OR

DF

C

P-O

40

3A

.BO

ILS

UP

PL

YP

UM

PF

OR

GE

NE

RA

TO

R

ti^

jbm

^M

^^

m^

^^

Bui

ldin

gse

rvic

es

MO

V

UP

Ssy

slem

s

CC

SD

islr

ibu

tio

nB

oard

Rem

ote

I/O

Cab

inet

Ph

ase

1G

RA

ND

TO

TA

L

CDCP

SPr

elim

Load

Lis

Lje

vO-b

icku

p

IM.

Q-T

Y

12

24

87

LO

AD

LIS

TF

OR

41

5V

SW

ITC

HG

EA

R

CO

ND

ITIO

N

10

24

75

12

O O 50

.

ao

2

IM IM IM IM IM IM IM IM IM IM IM IM IM IM

MO

TO

RS

PE

CIF

ICA

TIO

N

MO

TO

R

RA

TIN

G

(kW

)

30

0,5

5

3.7

7.5

3.7

0.4

0:7

5

15

00

0.5

5

0.7

5

0.7

5

15

0

0.3

80

27

3.5

EF

FI.

P.F

0.8

00

0,9

29

0.8

69

0.8

00

o.e

oe

0.7

88

0.8

00

0.7

48

0.8

71

0.8

00

0.8

57

0.8

09

0.B

00

0.8

82

0.7

89

0.8

00

0.8

57

0.8

09

0.8

00

0.7

23

0.6

64

0.6

00

0.7

48

0.6

71

0.8

00

0.9

15

0.7

95

0.8

00

0.9

36

0.6

61

0.8

00

0.7

48

0,6

71

0.8

00

0,7

48

0.6

71

o.e

oo

0.7

48

0.8

71

1.0

00

1.0

00

1.0

00

0.8

00

0.7

23

0.6

04

1.0

00

1.0

00

1.0

00

1.0

00

1.0

00

1.0

00

1.0

00

1.0

00

1.0

00

MO

TO

RL

OA

D

(kW

)

25

,92

9.7

1

0.5

9

3.4

5

6.8

0

3.4

5

0.4

4

0.6

0

13

.11

78

.92

0.5

9

0.8

0

0.8

0

15

0.0

0

0.3

3

80

.00

27

.00

3.5

0

CO

NT

INU

OU

S

TO

TA

L

LO

AD

(kW

)

25

0.2

9.7

0.6

3.5

34

.0

17

.3

2.2

4.0

65

.6

36

4.6

0.6

0.6

0.8

15

0.0

8.0

80

.0

27

.0

7.0

10

54

.9

WA

R

14

7.6

7.6

0.7

2.8

26

.5

12

.6

2.5

4.4

50

.0

22

7.2

0.7

0.9

0.9

0.0

0.0

0.0

0.0

0.0

40

3.0

kV

A

29

8.3

12

.4

0.9

4.3

43

.1

21

.3

3.3

6.0

82

.5

44

8.7

0.9

1.2

1.2

15

0.0

12

.0

60

.0

27

.0

7.0

11

96

.0

INT

ER

MIT

TE

NT

TO

TA

L

LO

AD

(kW

)

51

.8

0.7

0.0

0.0

8.8

3.5

0.4

0,8

13

.1

76

.9

0.6

0.8

0.8

0,0

0,0

0.0

0.0

0.0

16

5.3

kV

AR

29

.5

7.8

0.0

0.0

5.3

2.5

0.5

0.9

10

.0

45

.4

0.7

0.9

0.9

0.0

0,0

0.0

0.0

0.0

10

4.2

kV

A

59

.7

12

.4

0.0

0.0

B.f

l

4.3

0.7

1.2

16

.5

89

.3

0.9

1.2

1.2

0.0

0.0

0.0

0.0

0.0

19

5.9

ST

AN

D-B

l'

TO

TA

L

LO

AD

(kW

)k

VA

Rk

VA

RE

MA

RK

m.

Lo

ad11

Co

nfi

rmed

Lo

ad

IsC

on

firm

ed

mm

®L

oad

IsC

on

firm

ed

Lo

adIs

Co

nfi

rmed

Lo

ad

IkC

on

firm

ed

Lo

adIs

Co

nfl

rmo

d

Lo

ad

llC

on

fVm

od

Lo

ad

IsC

on

firm

ed

Lo

ad

liC

on

flrm

od

Lo

ad

ItC

'.onf

lrm

ed

Lo

9d

IsC

on

flrm

od

Loa

dIst

jonf

lrmed

Lo

adIs

Co

nfl

rmed

LOAD

IJ5T

05V

(A)

LO

AD

LIS

TF

OR

41

5V

SW

ITC

HG

EA

R

CDCP

5Pr

elim

Load

UsL

-rer

CLb

acV

upLO

ADIJ

ST41

6V

B)

MA

XIM

UM

LO

AP

NO

DE

SC

RIP

TIO

Nk

Wk

VA

rk

VA

1T

OT

AL

CO

NT

INU

OU

SL

OA

D3

27

9.8

6"

21

41

.75

39

17

.22

23

0%

OF

TO

TA

LIN

TE

RM

ITT

EN

TL

OA

D1

05

.21

68

12

5.2

9.1

LA

RG

ES

TIN

TE

RM

ITT

EN

TL

OA

D2

13

.22

13

4.3

82

53

.f\3

MA

XIM

UM

I,O

AIJ

(R

EF

ER

NO

TE

1)

34

93

.08

22

76

.13

41

69

.12

PF

.AK

LO

AD

_Q_

NO

DE

SC

RIP

TIO

Nk

Wk

VA

rk

VA

1M

AX

IMU

ML

OA

D3

49

3.0

82

27

6.1

34

16

92

2

21

0%

OF

TO

TA

LS

TA

ND

BY

LO

AD

0.0

00

.00

0.0

0

3L

AR

GE

ST

ST

AN

DB

YL

OA

D"

....

0.0

00

.00

0.0

0

PE

AK

LO

AD

(RE

FF

.RN

OT

E2

)3

49

3.0

82

27

6.1

34

16

9.1

2

LV

DB

A)

SU

MM

AR

Y

NO

DE

SC

RIP

TIO

NC

on

lin

uo

uj

Inte

rmit

ten

tS

tan

db

yk

Wk

VA

rk

VA

kW

kV

Ar

kV

Ak

Wk

VA

rk

VA

1T

OT

AL

LY

BO

AR

D2

30

6.9

51

26

1.3

12

62

9.2

51

65

.28

10

4.2

21

95

.39

0.0

00

,00

0

B)

MA

XIM

UM

LO

AR

NO

DE

SC

RIP

TIO

Nk

Wk

VA

fk

VA

1T

OT

AL

CO

NT

INU

OU

SL

OA

D2

30

6,9

51

26

1.3

12

62

9.2

32

30

%O

FT

OT

AL

INT

ER

MIT

TE

NT

LO

AD

49

.58

31

.26

58

.61

iL

AR

GE

ST

INT

ER

MIT

TE

NT

LO

AD

76

.92

45

.44

S9

J-J

MA

XIM

UM

LO

AD

(R

EF

ER

NO

TE

1)

23

83

.88

13

04

.75

27

18

.34

QP

EA

KL

OA

D

NO

DE

SC

RIP

TIO

Nk

Wk

VA

rk

VA

IM

AX

IMU

ML

OA

D2

38

3.8

81

30

6.7

52

71

8.5

*2

10

%O

FT

OT

AL

ST

AN

DB

YL

OA

D.

..._

-.

0.0

0_

0.0

01

1.0

0

3L

AR

GE

ST

ST

AN

DB

YL

OA

D0

.00

0.0

0O

.Od

PE

AK

LO

AD

(RE

FE

RN

OT

E2

)2

38

3.8

81

30

6.7

32

71

8.3

4

TO

TA

LL

OA

DT

OC

AT

ER

Max

imu

mL

oad

3.3

KV

+M

ax

imu

mL

oad

41

5V

58

76

.96

kW

68

87

,78

kV

A

NO

TE

S:

1.M

AX

IMU

ML

OA

D

3.P

F.A

KL

OA

D

GDCP

IiPr

elim

Load

Lis

U-e

vO-b

ecku

p

TO

TA

LC

ON

TIN

UO

US

LO

AD

*(3

0%

OF

INT

ER

MIT

TE

NT

LO

AD

OR

LA

RG

ES

TIN

TE

RM

ITT

EN

TL

OA

DW

IIIC

ItE

VE

RIS

CR

EA

TE

R)

MA

XIM

UM

LO

AD

+(1

0%

OF

ST

AN

D8

VL

OA

DO

RL

AR

GE

ST

STA

ND

BY

LO

AD

WH

ICH

EV

ER

ISC

RE

AT

ER

)

LOAD

SUMM

ARY

(«ll)

PJP5 District Cooling Plant Project - 3.3 kV Tran:

Equip. NO Serial No Equipment Name

ConUououi Load (WA> Rerun t

Sll Phase

P-0101 A lo E Secondary ChinedWaier Pumps

<F1» Speed)628

P-0102 A to C

EC-0121

P-0231 A to M

Secondly Cndled Water Pumps

(VARIABLE FREQUENCY DRIVE)

Electrical Chiller

Coolin? Water Pump for DFC

453

:ondib'on for Transformer Capacity Selection.i.oat

270

^352

1 For General Oration,

t.1 Status for Transformer Operation- Individual operation condition, each transformer to s—:ply t.^°-Air cooled fan (AF) for transformer NOT lo be operated during

.2 11/3.3kV Transformer Load Estimation (AN Operation):Minimum required transformer capacity WITHOUT forced air cc~-ForPhase 1only = 2750kVA (with 3.3k) kVA ,AM, ._-ForAJIPhases(1,2.3&4> = 5100 kVA (mil). J f******1***1^™** ^ffPritT "inft Wrr]

453

767

192

959

3.081

314

302

616

154

770

Total

1.571

990

1.023

1.963

5,547

1.387

6.333

8.933

(kVA)

Uncorrected kVA

PF before correction a q a;

The above AN rating is selected with PF correction capacitor bP*** Continuous Load (kvA)Remark i

2 For Urgent or Maintenance Operation fas Back-no nppr.tm, ".1 Status for Transformer Operation

- During either one (1) transformer isfail orunder maintenance,electricity toboth busbars ofthe 3.3 kV switchgear (with 16501 —

-The 5100 kVA (AN rating) transformer is still capable of supply

2 Transformer LoadEstimation forSpare Load of 25%-For Phase 1only = 3800 kVA AF (with PF «r- For Phase 1and Future = 6325 WA AF (withPFco

CONCLUSION '

Proposed Selection for 11/3.3 kV Transformer rating (AN/AF) sh;Dynlt. ±5% in 2.5 step. Z% =6.0% on 5.1 MVA, where AF ratin<

Hoia

AF rating of 7140 kVA >maximum toaad of 6993 kVA (uncorrectiatAF rating can supply total load WITHOUT powe'r factor correct!

enam* •11-3.3kVTransform*. Setectfo* Rev , edited bvZul.xls

503

3015

Total

5,058 PF after correction » 0.95

1,265

6,323

Rev. 1

PJP5 District Cooling Plant Project -11 / 0.433 kV Transfon

Equip. No Serial Ne Equipment N«H

Phaw

t 2 1

311 SI 2 Total

)FC-0I31 A la N

Tnot

USFcl

Oicd-Ficd Alxarptiori CN*« 2 3 5 3 3

;r-02ci A lo M Cooling Tdwm k* OFC-OtOI 3 3 6 3 3

—'-0J21 Cooling Wji« Pump for EC t 0 1 0 0

'•013t A to H OiJVefl Water Pump k» DFC 2 3 5 3 3

'0121 CWftefl W«« Pump fw EC 1 0 1 0 a (—

'-1 i ! i •\ ID 3 Ma*e up #mer Pump Id* CjweG Water

(t lUndhyl

2 0 2 0 a

i'1121 A to C Make up wafer pump lor a>o*r>g rraler

(t lUndbf)2 0 2 1 0

1

'-oi o* aid e GrculMina; Pump toi Swi S»eam Pfler

{1 Itandby)

2 0 2 0 0 a

:u-o«'o Chcmtca* doling unrt lor Owiec Water 1 0 1 0 0 <r

:u-a*zi Otemcal ooimg unn tor CooW>g Water I 0 1 0 0 q

IIMUS CftemtcaJ doling unr lor Cookni) Water 1 0 1 0 0 a

'•0501 A-S Oi!!u9p*y p-jrre lor T-05C1 2 a 2 a 0 o—

'-osaz A-B Oi supply puma tor T-0S01 0 0 0 2 0

'-0503 A-B Oil Hippty pump lor T-0503 2 0 2 Q 0 o'—

:ire Ftghtzng 1,, 0 0 0 0 a—

Win

CoM Water 1 0 1 0 0 0;

Suiting Savkxx 1 0 1 0 0 0;—

ACMVEqu*™*

1 0 1 0 0 a

Eusa

1 • 1 0 i

Condition for Transformer Capacity Selection"VS*

1 For General Operation

1.1 SUtu* for Transformer Operation r"

- Individual operation condition, each transformer losupply theetecfricity for each bu- **" cooledfan(AF) fortransformer NOT to be operatedduring this status n

1.2 11/ 0.433kVTransforrnerLoad Estimation (AN Operation): —Minimum Required Transformer Capacity WITHOUT Forced Air Cooled fanoperatioi• For Phase 1 onfy =: 1500 kVA (with 415Vpower'factorcorrection

- For Phase 1.2.314 * 1600 kVA x 2 (estmaied fromuncorrected KVA) —

The aOoveANrating is selected with PF correction capacitor banks to improve the

2 For Urgentor MaintenanceOperation (as Back-upoperation,

L1 Status for Transformer Operation• Ouring eitherone (1)transformer is tailor undermaintenance, the alternative transt '

to supply the electricity to both Ousoar in 415V svrichoear / MCC- The 1600kVA (AN rating)transformer ts stHt capable of supplyingthe total load

L2 Transformer Load Estimation for Spare Load of 25%- For Phase 1 only =1770 kVA & (with PF correctioncapac- ForPhase 1* Future =1770kVAx2 ** (with PF correction capa<

CONCLUSION

Proposed Selection for 11 / 0.433 kVTransformer rating (AN/AF) shalDyrt 11,* 5% in"2.5 STEP, ZV. = G.Q %on 1S00 kVA. where AF rating i:

Haw

AF rating of22*0WA>m*OTUTi loud of21*9kVA (uncorrected), tnerekxeone(1

Ver. 1

APPENDIX 4

Group Derating Factor

JNSIALLATION ON CAR. F ;annrpc

ENO

TJMETHOD tTLADDER

TRAY

TOUCHING

SPACED

| TREfOH. FORMATION

X CORE CABLES IN TREFOIL FORMAT.™

NGEUENTABLES

NjJMKR OF INSTALLATION IN TREFOILCABLE

LADDERS(LAYERS)

CLEARANCE = 2dDCTA^fTOMWALL'220mm

g£ CABLES - SPACED

:ment£S W**OF ^ARArCE =CABtED(A«ETERd

^ | ^n^KAIL;>20rnrn(LAYERS)

NUMBER OF CABLES PER LADDER

1.00 Q.98 0.S6 0.93 0.92

'•00 0.95 0.93 0.90 0.89

3><45 1.00 I 0.94 0.92 0.89 0.88

1-00 0.93 0.90 0.87 0.86

CABLES - TOUCHING

NT NUMBER OF s«OE BY SJOE WITHOUT aEARANCE«^ (AND TOUCH.NG WALL ""**(UYERS)

NUMBER Of CABLES PER LADDER

0.95 0.84 0-80 0.75 2&0.95 0.80 0.76 0.71 0.69

3, A & 5 0.95 0.78 0-74 070 0.68

0.95 0.76 0.72 0.68 0.66

kL-alA.

|a •Q fti

ssmaszm.

U 11

- SINGLE CORE- TREFOIL- SPACING

Mn-LD-ifVTPr-cp

u u

- MUITI CORE- SPACING

MTI-LD-.y-qp

ssmsse^jiU 11

- MULU CORE- SINGLE LAYER- TOUCHING

Mn-LD-.Wrr

I. t

IIi

APPENDIX 5

Cables Reference Tables

IftUKAlUfi MfiUSVSI

3LE 1: SINGLE-CORE 600/10OOV (CVWAZV)XLPE/PVC/SWA(AL)/PVCSTRANDED COPPER CONDUCTOR

Jen&fication : Natural

BLE 2: TWO-CORE 600/1000V (CVWAZV)XLPE/PVC/SWA/PVC

STRANDED COPPER CONDUCTOR

ien&atron ; Red arxj K>*

unuKmun mnuwsi IEC 60502-2

bie 1 3.6/6(Max. 7.2) KV THREE-CORE CABLESCopper conductor

Sfwpeof

strand

Approx.outer

da.

Thidc.

of

XLPE

irtsuiafjon

PVC separatorShaath

Thrdc Approxouter

kcSa.

{mm}

Cia.

of

jarYarizecsteel

*wre

Thick,

of

PVC

outer-

sbeath

Approx.overaJI

cSa.

Approx.-rei.

weight

electrical charadertstia?

Ojrrert rating Cooduclof resistance Capacitance

Reactance Shorta150Hi

{mm)

4.7

5.97.0

8.1

{mm) (mm)

TT1.2

1.2

1.3

1.4

1.4

1.5

1.5

{mm) (mm) (mm) (kfjAm)

lr. air

at 40°C

(A)

in the

groundat2S°C

"Tib-140

170

200

O.C.

at20°C

(fl/km)

50Hz

at90°C

(11/km) (rf/Vm) (Q/km)

dtaA

current

(or

Isec

(kA)

Ciraiar

compact

9.7

11.4

12.8

14.3

16.0

18.4

20.6

23.3

263

25

2.5

2.5

25

2S

2,5

2.5

2-5

2.5

26

2.83.0

3.2»nt»fiGBicrt : i»d. ys4ow & &o«

1.6

1.7

1.8

2.0£1

31.6

34.2

37.0

39.6

43.7

47.3

50.6

53.8

57.7

63.5

69.3

76.3

83.9

20

2.0

20

2.5

2.5

15

25

2.5

2.5

2.5

3.153.15

22

23

23

2.5

26

2.7

28

29

3.0

32

3.5

3.8

3.15 4.0

40.5

43.0

46.0

50.0

54.0

58.0

61.5

65.0

69.0

75.083.0

90.5

98.5

2.8303,3303,8404,870

5.9107.0208.0809.210

10.71013,09016.41019.88023,820

105

13?

195

245

300

340

385

440

515585

665

745 i 650

245

290

330

365

1.15

0.727

0.524

0.387

0.268

0.193

0.1530.124

415 0.0991

475530

0.07540.0601

0.0470

1.47

0.927

0.668

0.494

0.342

0.2470.196

0.160

0.128

0.0988

;o.osoo0.0643

0.0366 0.0522

0.21

0.24

0.28

0.31

0.350.40

0.43

0.47

0.520.56

0.57

J1600.62

0.117

0.109

0.105

0.100

0.0949

0.0914

0.0885

0.08600.0837

0.0817

0.0805

0.07900.0779

2.41

3.725.18

7.36

10.2

13.8

17.4

21.8

26.8

34.7

43.4

57.7

72.1

ble 2 6/10 (Max. 12) KV THREE-CORE CABLES

irlicaiion ; rod. j-eoow 4 Dh>e

16,38,7/15 (Max. 17.5) KV THREE-CORE CABLESper conductor Trie*.

Of

XLPE

insulation

PVC separationsheath

Shapeof

strand

Approx.outer

(mm) (mm)

5.9 4.5

7.0 4.58.1 4.5

9.7 4.5

Circular 11.4 45

12.8 4.5

:ompacl 14.3 4.5

16.0 4.5

18.4 4.5

20.6 I 4 5| 23.3 ; .* fi

I 26 2 : •1 :>

Thick.

1.4

1.4

1.5

1.5

1 6

1.7

1.7

1 8

1 9

2 0

Approx.outer

ola.

(mm)

43.3

46.1

48.7

52.6

56.4

59.7

62.9

66 7

72-i i

Dia.

of

galvanizedsteel

wire

2.5

2.5

2.5

2.5

2.5

2.5

2.5

3.15

3.15

3.15

3 15

3 15

Thick,

of

PVC

outer-

sheath

(mm)

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.4

36

3.7

40

42

Approx.overall

dia.

54.0

57.0

59.5

63.5

67.5

71.0

74.5

80.0

86.0

91.0

97.5

104 5

Approx,net

weight

(kcykm)

4,790

5,4206,0807,160

8,350

9,46010.640

13,090

15.550

17.950;

21.300-25 HO

Ourrerf rating

In air

at 4frC

(A)

M0

170

200

250

305

350

395

,150520"590

665

In the

ground3t2S°C

(A)

140

170

200

245

290

330

370

J 10

"47?530

^90

Electrical characteristics

CorirJudof resistance

D.C.

ai20°C

(0./km)

0.727

0.524

0.387

0.268

0.193

0.153

0.124

0_0_9910.0754

0.0601

0 04 70

o o.3f.f;

50Hz

at90°C

(n/km)

0.927

0.663

0.494

0.342

0.247

0.196

0 159

0.126

0.09830 0791

0 0536,

Capacitance

li£/tm)

0.16

0.18

0.20

0.22

0.25

0.27

0.29

0.31

0.35

0 38

0-52

Reactance Shortat50Hz

(n/km)

0.131

0.124

0.118

0.112

0.107

0.103

0.0994

0.0962

0.0924

0 0896

0 08680OHJ?

droit

currer*

(or

1 sec

(kA)

3.72

5.18

7.36

10.2

13.8

17.4

21.8

26.8

34.7

43 4

57 7

72 1

•GC

c

APPENDIX 6

Short Circuit Ratings

<Vp da*- &eqcU*

srtcircuit ratingsPPER CONDUCTORS

FIGURE 2 m

'alues of fault current given in the graph Figure 2ased on the cable being fully loaded at the staiti short circuit (conductor temperature 90°C) andilconductor temperature of 250°C. and itshould

be ensured that the accessories assoctated with thecable are also capable of operation at these values oifault current and temperature.

o-i 0-2 0-3 0-4 0-5 0-6 0-8 1"0 2-0

OURATION OF SHORT CIRCUIT IN SECONDS

Y!>e IsmrV IrtA.*fOjf>rn? COn'VCiOrs (ttis;cjdo! IhC ccvnp,eswi type) 'SnofICCCVTimcna-X i-VCf-V" L'OC «w,'.c si'.tc™

Djrj fcv stitntlsdakjtrvniijn) cofdunln/s a'c a.ailatifc on icguesr

3-0

APPENDIX 7

Fuse Link Type CMF

Fuse link type CMF Appe<*Ac-*. 5-

Ken 2000 30C0

motor starting current (A)

WOO 2000

motor storting current ( A ,

mole* staring current IA)

3UO0

3000

10. Choice of fuse links

Choice of rated voltage U^:

The rated voltage of the .use linksmust beequal to,or higher than the operating linevoltage. By choosing (uselink rated voltageconsiderably higher than the linevoltage,the maximum arc voltage mustnot exceedthe insulation level of the network.

Choice of rated current 1^:

The minimum permissible currentratingofthe fuse link for motor protection may bedetermined from the selection charts I, IIand III.The three different charts are for

run-up times of6,15 and 60 secondsrespectively. Eachchartcontains differentcharacteristics, dependingon the number ofstarts per hour. Ofthisspecific numberofstarts per hour, the first two areinimmediate succession; the rest being evenlyspacedinthe 1 hourperiod. The number ofstarts per hour indicatesthe timeintervalbetween seperate starts. For example,4 starts in 15 minutes are represented by 16starts per hour.

On the horizontal axis of the selection chart,the motor starting current is given, andalong the vertical axis thecurrent rating ofthe fuse link is found.

Selection procedure:

- Select the charts which are appropriatefor the run-up time of the motor. .

- select the starting current along thehorizontal axis,

- depending on the number of starts perhour, select the correct characteristic(2.4,8, 16.32),

- read of the correct rating of the fuse linkon the vertical axis.

Example: A B

Starting current of the motor

Run-up time

Number ol starts per hour

Chart number

Rated current ol fuse.1 link

850A

6 sec.

2

1

250A

250A

15 sec.

16

2

160A

ABB Kraft

xise link type CMF

—?M r r— ] [,.......

•*<' —

--v-x-^-*

I ~^T v _L\ ' .

?V * k \

>T1 \

) : — '.-.

H±^

\ N\* \ s \ \\

' .3 V.-i-4-ft y. \ ' \I w — --V *--v* V L... _ •

Tj 7ft -^—s-^-iv—

:? S3 t 0 160X0 so as

••si \ \-\l_^__. 1 •

c tt*

—=S=-Jr^r-\V-A \ \ * ' 0

ai

n,-Vvv-i-* —- - A--V-JA^

\v \ \

\ 1V ^ )*V" 2 J 1

Current /

> > t

Strom in A ——^

i j * • i t?

Kraft

/\z_

/?

T // + ••'

\ • ^<<

1 > •>*p*i •**-'' **•'-'-'-

~£ ^/ ^-"" T' ^^

^^^^

1

S 13 20 SO IM

Pro^Mtlivr curitr* kA |rms)

7. Pre-arcinn times

The characteristics are equal for all rated

voltages and are recorded from coldcondition.

In the uncertain interrupting zone the curvesare dotted.

8. Current limitation

CMF fuse links are current limiting. A large

short circuit current will therefore not reach

its full value. The diagram shows the relationbetween the prospective short circuit currentand the peak value og the cut off current.

9. Overvoltages

In orderlo be currentlimiting, the fuse links'must generate an arc voltage exceeding theinstantaneous value of the operatingvoltage. Theovervoltage generated by theCMF fuse link is below the maximum

permissible value ace to IEC282-1.CMFfuse links can safely be used if thesystem line voltage is 50-100% of the rated(use link voltage.

]Q

Fuse link type CMF

11. Replacement of melted fuse links

The fuse link cannot be regenerated.

According to IEC. Publication 282-1, all 3fuse links should be replaced, even ifonry 1or 2 of the fuse links in the threephase

12. The K-factor

According to the IEC 644, the K-factor is afactor {less than unity) d.eftning an overloadcharacteristic to which the fuse link may be

repeatedly subjected under specified motorstarting conditions without deterioration. Theoverload characteristic is obtained by

13. Data and dimensions CMF

system have operated. Exceptions areallowed when it can be verified that the fuse

link(s) have not experienced anyovercurrent

multiplyingthe currenton the prearcingcharacteristic (melting time characteristics)by K.The Value of K given in the data tableis chosen at 10 seconds melting time, and isvalid for melting times between 5 and 60

seconds.

UN •n e D K* '1 '3 Ro PNMinimum Maximum

IM

. kV A mm mm -KA A mohm Watt

Pre-arc

Aas

Interruption

A*s

•Q? \ 292 65 0,75 50' 275 3,25 49 1,4-104 (17-104 )\

292 65 0,7 50 -400 1,94 75 3,8 '104 L50-104 J

3,6 200 292 87 0,7 50 500 1,42 75 7,6'104 71 -104

^250^ 292 87 0,6 50 760 1.03 90 14-104 v?:10**?315 292 87 0,6 50 900 0,85 122 21*10"* 180-104

63 442 65 0,75 50 175 8,63 45 0,48 • 104 6,5-104

100 442 65 0,75 50 275 4,93 67 1,40* 104 18 • 104

7,2160 442 65 0,7 50 400 2,96 119 3,8 *104- 54-104

200 442 87 0,7 50 500 2,15 118 7,6-104 75-104

250 442 •87* 0,6 50 800 1,56 142 14- 104 120* 104

315 442 87 0,6 50 950 1,30 193 21 • 104 220-104

63 442 65 0,75 50 190 13,3 77 0,48 • 104 11 -104

12100 442 87 0,75 50 275 6,72 103 1,4- 104 20 "104

160 442 87 0.7 50 480 4,04 155 3,8-10" 70 • 104

200 442 87 0,7 50 653 2.89 173 9,3- 104 91 • 104

c CMF 3 s

*) The K-lactor is relened to the

average value of current.

ABB Kraft

Legends:

e = see figureD = see figure

K = K-factor ace. to IEC 644

Ij = max. short circuit current testedl3 - minimum breaking currentRq = resistance at room temperaturePN = power loss at rated current

Nil sna'Si-i* C:

APPENDIX 8

Proposed Cable Sizes

SHINRYO(M)SDNBHDPROJECT: PUTRAJAYA PRECINCT 5POWER CABLES SCHEDULE SUMMARY -41.S\>

"Group Derating Factor = 0.73

iV SWGR.xls

SHINRY0(M)SDN8HDPROJECT: PUTRAJAYA PRECINCT 5POWER CABLE SCHEDULE SUMMARY -3 3kV Swit

Cabfe Schedule Rev l.xis

3.3 kv swot

SHINRYO (M)SON BHDPROJECT : PUTRAJAYA PRECINCT 5POWER CABLE SCHEDULE SUMMARY - 415V VSD Los

From To

Transformer A

Transformer B

Transformer C

-#B*-AVFDB

VEQ.C

VFDA

VFDB

VFDC

Variable Frequ"Variable Frequf

P-0102A

P-0102B

Variable FrequSecondary Chille

P-0102C^Secondary Chille-,^Secondary Chute

Cable Schedule Rev t.xls

No of

Core type Or Cable

JC/S/P (Cu)jusrp (Cu)JC/S/P (Cu)

JCS/R(CuTX/S/P(Cu).

JO§/P.(Cu)

Proposed Cable

Size(sq.mm)

500

500

500

400:

'WQ.-&:

400.:^

Ampacity ofcable at 40

deg.C

870

870

870

"n&Tsd^s?^SZOTKSJSilS©

Remarks

%^P-J

3.3 KVSWGR (415V VSD Load)

APPENDIX 9

Crystal Report-Short Circuit Simulation for Basic

Engineering Design

Pro

ject:

Basi

c_

f=n

gin

eeri

ng

_5

r

DA

PP

ER

Fa

ult

Co

ntr

ibu

tio

nC

om

ple

teR

ep

ort

Da

te:

2D

ecem

ber

20

04

Tim

e:

4:0

2:5

4P

M

Co

mp

reh

en

siv

eS

ho

rtC

ircu

itS

tud

yS

ett

ing

s

Th

ree

Ph

ase

Fau

ltY

es

Sin

gle

Lin

eto

Gro

un

dY

es

Lin

eto

Lin

eF

au

ltN

o

Lin

eto

Lin

eto

Gro

un

dN

o

Mo

tor

Co

ntr

ibu

tio

nY

es

Tra

nsf

orm

er

Tap

No

Xfo

rmer

Ph

ase

Sh

ift

Yes

-In

itia

lS

ym

metr

ical

Am

ps-

Bu

sN

am

e

llk

VS

'bo

ard

ll/3

.3a

11

/3.3

b

11

/41

5a

11

/41

5b

11

a

3.3

kV

Bu

s

3.3

a

3.3

b

3.3

kV

Fu

ture

3.3

kV

Ph

ase

1

41

5V

Bu

sl

ll/4

15

a2

41

5V

Ph

ase

1

41

5V

Ph

asel

InC

ab

le

Ou

Cab

le

InC

ab

le

Ou

Cab

le

InC

ab

le

InC

ab

le

Ou

Cab

le

InIn

dM

a

inIn

dM

a

inC

ab

le

InIn

dM

a

inIn

dM

tr

3P

hase

17

,31

3

1,0

61

29

6

15

,95

8

17

,61

3

13

,19

1

2,3

84

2,0

50

43

,78

2

33

,96

8

4,9

73

4,9

73

SL

G 0 0 0 0

17

,56

0

14

,62

0

1,5

85

1,3

62

41

,13

3

34

,97

9

3,1

15

3,1

15

LL

G 0 0 0 0

Fau

lted

Bu

s

Bu

sV

olt

ag

es

Bran

ch

Cu

rren

ts

Ph

ase

or

Seq

uen

ce

Fau

ltC

urr

en

tC

alc

ula

tio

n

Asy

mF

au

ltC

urr

en

tat

Tim

e

AH

Bu

ses

Fir

st

Bu

sF

rom

Fau

lt

Fir

stB

ran

ch

Fro

mF

au

lt

Rep

ort

ph

ase

quan

titi

es

Init

ial

Sym

met

rica

lR

MS

(wit

h1/

2C

ycle

Asy

m)

0.5

0

-Asy

mm

etr

ical

Am

ps-

—In

itS

ym

Neu

tral

Am

ps-

LL 0 0 0

3P

hase

27

,64

1

1,6

94

47

3

25

,47

8

SL

G 0 0 0

28

,44

62

8,9

40

21

,30

52

4,0

95

3,8

51

2,6

12

3,3

11

2,2

46

52

,18

84

7,9

84

40

,49

04

0,8

05

5,9

28

3,6

33

5,9

28

3,6

33

LL

G 0 0 0

LL 0 0 0

SL

G

17

,56

0

41

,13

3

LL

G

—in

itsy

mN

eu

icra

iA

mp

s—

Bu

sN

am

e3

Ph

ase

SL

GL

LG

LL

3P

ha

se

SL

GL

LG

LL

SL

GL

LG

41

5V

Bu

s2

00

00

00

00

ll/4

15

b2

InC

ab

le0

00

00

00

0

41

5V

Ph

ase

2In

Ind

Mtr

2,2

56

1,4

80

00

2,6

37

1,7

09

00

41

5V

Ph

ase2

InIn

dM

tr2

,25

61

,48

00

02

,63

71

,70

90

0

HkV

No

deB

us4

17

,26

00

00

27

,29

50

00

11

/41

5a

InC

ab

le1

6,9

66

00

02

6,8

29

00

0

11

/0.4

15

Tx

lAIn

Xfo

rmer2

29

60

00

46

80

00

HkV

No

deB

us7

00

00

00

00

11

/41

5b

Ou

Cab

le

11

/0.4

15

Tx

lBO

uX

form

er2

HkV

No

deB

us9

17

,27

10

00

27

,45

60

00

ll/3

.3a

InC

ab

le1

6,2

10

00

02

5,7

70

00

0

1l/

3.3

kV

Tx

AIn

Xfo

rmer2

1,0

61

00

01

,68

70

00

3.3

kV

No

de4

17

,63

51

7,5

90

00

28

,59

42

9,1

44

00

3.3

aIn

Cab

le4

,43

12

,94

60

07

,18

44

,88

10

0

H/3

.3k

VT

xA

InX

form

er2

13

,21

81

4,6

52

00

21

,43

22

4,2

76

00

17

,59

1

HkV

No

deB

us3

17

,35

40

00

27

,86

00

00

11

aIn

Cab

le1

,35

70

00

2,1

78

00

0

TN

B1

InU

til.

16

,00

00

00

25

,68

60

00

HkV

No

deB

us2

00

00

00

00

ll/3

.3b

Ou

Cab

le

11

/3.3

kV

Tx

BO

uX

form

er2

3.3

kV

No

de5

00

00

00

00

3.3

bO

uC

ab

le

11

/3.3

kV

Tx

BO

uX

form

er2

Bu

sN

am

e

41

5V

No

de

Bu

s4

ll/4

15

a2

11

/0.4

15

Tx

lA

41

5N

od

eB

us5

11

/41

5b

2

11

/0.4

15

Tx

lB

InC

ab

le

InX

form

er2

InC

ab

le

Ou

Xfo

rmer2

-In

itia

lS

ym

metr

ical

Am

ps-

3P

hase

SL

GL

LG

LL

51

,36

04

9,5

90

00

9,4

27

6,0

68

00

42

,04

24

3,5

87

00

-Asy

mm

etr

icalA

mp

s—

—In

itS

ym

Neu

tral

Am

ps-

3P

hase

SL

GL

LG

LL

SL

G

82

,92

28

2,0

43

00

15

,22

01

0,0

39

00

67

,87

87

2,1

12

00

49

,59

0

LL

G

APPENDIX 10

Crystal Report-Short Circuit Simulation for Detail

Engineering Design

rro

jeci:

ueta

n_

cn

gin

een

ng

_o

r

DA

PP

ER

Fa

ult

Co

ntr

ibu

tio

nC

om

ple

teR

ep

ort

Date

:2

Decem

ber

20

04

Tim

e:

4:1

0:3

5P

M

Co

mp

reh

en

siv

eS

ho

rtC

ircu

itS

tud

yS

ett

ing

s

Th

ree

Ph

ase

Fau

ltY

es

Sin

gle

Lin

eto

Gro

un

dY

es

Lin

eto

Lin

eF

au

ltN

o

Lin

eto

Lin

eto

Gro

un

dN

o

Mo

tor

Co

ntr

ibu

tio

nY

es

Tra

nsf

orm

er

Tap

Yes

Xfo

rmer

Ph

ase

Sh

ift

Yes

-In

itia

lS

ym

metr

ical

Am

ps-

Bu

sN

am

e

Hk

VS

'bo

ard

B

11

/3.3

M

ll/4

15

bl

PI-

1

llkV

S'b

oa

rd

A

ll/3

.3al

ll/4

15

al

11

a

PI-

1

3.3

kV

Bu

s2

11

/3.3

b2

Tx

VF

DB

PI-

2

P-0

10

1D

-E

P-0

23

1C

-E

Ou

Cab

le

Ou

Cab

le

InP

i

InC

ab

le

InC

ab

le

InC

ab

le

InP

i

Ou

Cab

le

InX

form

er2

InP

i

InIn

dM

tr

InIn

dM

tr

3P

hase

15

.81

8

15

,81

8

15

,81

9

1,4

50

32

0

15

,48

7 0

20,041

590

17,258

836

593

SL

G 0

16,548

325

15,016

460

326

LL

G 0

Fau

lted

Bu

s

Bu

sV

olt

ag

es

Bran

ch

Cu

rren

ts

Ph

ase

or

Seq

uen

ce

Fau

ltC

urren

tC

alc

ula

tio

n

Asy

mF

ault

Cu

rren

tat

Tim

e

All

Bu

ses

Fir

st

Bu

sF

rom

Fau

lt

Fir

st

Bra

nch

Fro

mF

au

lt

Rep

ort

phas

equ

anti

ties

Init

ial

Sym

met

rica

lR

MS

(wit

h1/

2C

ycl

eA

sym

)

0.5

0

-Asy

mm

etr

ical

Am

ps-

—In

itS

ym

Neu

tral

Am

ps-

LL 0

3P

hase

15

,81

8

15

,81

8

15

,81

9

1,4

50

32

0

15

,48

7 0

SL

G 0

24,559

22,990

723

451

21,149

20,860

1,024

639

727

453

LL

G 0

LL 0

SL

GL

LG

16,548

wa.

E<

30)

z

E>>

(3

C3

0

o

EE

inoSO

OssoOS

oOSr-

oooooooo

oooooooo

O 00oo CN

r~-"

M r> m o on m r>m cn ro o oOs rn so m so

c-1so"

O CN

<n VI

•* so r-iM 00 >O ^f C

oooooooo

oooooooo

Os SO fi so o o oin r-i o ->3- oo m ^oin 00 N in \D N t

so' of —<"

co r>

lOWM«MlOhtsosoo** — roososcNmootN'tf,ooror>

g 43 fc 43 43 43

•S (£ T3 13 -O 73 13

c c e c c c c .=

3Gfl <

£y Qf!

£fO

Kro r-. i-

c-ro o

< X

(N olO OU

PL, W Oh Oh Oh Oh

OOOOOOOOOOO

O OOOOOOOOOOO

r>in

r-f

(Nr^m^©0'-'**r--mrNy3•—' ^- so ^t m n « (NOsr- cn 'Jj- O m

o * ~ -* -

molooommoor^co^soosr-so — oooomtN m in^T c» ro so —-^ -hos" so" ri t-T f\f

ooooooooooo

ooooooooooo

<N \o mW ro —i

oo in mtS *tf

i© m -^- co ^©

o

c-4 m os oo r-- r- r-im ^r o m so -*too in Os ro r-

tN r- os soCN N M

U cu

43 43

243

243 43 43 43 43

243

IT3

cT3

CT3

e c13 T3

C13

c c

cccccccacpic:

CN —u

I "*• /<f

=3 < $5pa •3 _: o o

> in CN ^9 9

o

Ui H D Uh

Tf — Oh u u u

z < <kO rn

o o

<:<<:< m

o om mo o

Oh Oh Oh 0-1 Oh Oh Oh

O O O O

O O O O

oCs^r

\o oo inOSlO

oo ^•*

inm

mso

r4 so

CN in fN —'

o o o o

o o o o

in oOs

oo so OS

in

oo

SOO

OSoCs

oOOs

Ol-*

so —'

<u

43 43

243 43

2

nt-a T3 t3

3

o n £ a c3

O

IX ffl

M Q3 rN

J3

(Jo-l m

oa

>if) 5 ro

o o

3

oi

Uo

o

•* i— Oh U U u Oh

rs

Bu

sN

am

e

P-0

12

1A

P-0

13

1D

-E

P-0

22

1

P-0

50

1B

P-0

50

2A

-B

P-0

50

3B

P-1

11

1B

HkV

No

deB

usl

ll/3

.3al

Tx

ll/3

.3k

VA

3.3

kV

No

del

ll/3

.3a2

Tx

11

/3.3

kV

A

HkV

No

deB

us2

ll/3

.3b

l

Tx

ll/3

.3k

VB

3.3

kV

No

de2

ll/3

.3b

2

Tx

ll/3

.3k

VB

HkV

No

deB

us3

11

a

TN

B

HkV

No

deB

us4

ll/4

15

al

Tx

11

/0.4

15

A

Hk

VN

od

eB

usS

11

/41

5M

InIn

dM

tr

InIn

dM

tr

InIn

dM

tr

InIn

dM

tr

InIn

dM

tr

InIn

dM

tr

Ou

Ind

Mtr

InC

ab

le

InX

form

er2

InC

ab

le

InX

form

er2

Ou

Cab

le

Ou

Xfo

rmer2

Ou

Cab

le

Ou

Xfo

rmer2

InC

ab

le

InU

til.

InC

ab

le

InX

form

er2

Ou

Cab

le

-In

itia

lS

ym

metr

ical

Am

ps-

3P

hase

58

0

1,1

61

91

8

22

43 7

15

,64

2

15

,35

8

1,4

51

20

,12

9

6,8

46

13

,35

6 0

16,292

1,764

16,000

15,610

15,521

320 0

SL

G

35

2

70

4

55

7

13

26 4

16

,63

5

3,7

72

12

,89

8 0

LL

G 0 0 0 0 0 0

LL 0 0 0 0 0 0

3P

hase

72

2

1,4

44

1,1

43

27

54

15

,64

2

15

,35

8

1,4

51

24

,69

4

8,3

98

16

,38

4 0

16,292

1,764

16,000

15,610

15,521

320 0

-Asy

mm

etr

ical

Am

ps-

SL

G

44

6

89

2

70

6

17

33 5

23

,20

4

5,2

61

17,9

91

0

LL

G 0 0 0 0 0 0

LL 0 0 0 0 0 0

—In

itS

ym

Neu

tral

Am

ps-

SL

GL

LG

16

,63

5

Bu

sN

am

e

Tx

11

/0.4

15

B

41

5V

No

de

Bu

sl

11

/41

5a2

Tx

11

/0.4

15

A

41

5V

No

de

Bu

s2

11

/41

5b

2

Tx

11

/0.4

15

B

41

5V

No

de

Bu

s3

Tx

VF

DA

P-0

10

2A

41

5V

No

de

Bu

s4

Tx

VF

DB

P-0

10

2B

-C

Ou

Xfo

rmer2

InC

ab

le

InX

form

er2

Ou

Cab

le

Ou

Xfo

rmer2

InX

form

er2

InIn

dM

tr

InX

form

er2

InIn

dM

tr

-In

itia

lS

ym

metr

ical

Am

ps-

3P

hase

45

,43

0

10

,51

7

34

,92

8 0

14

,14

2

10

,39

6

3,7

56

17

,88

4

10

,38

8

7,5

11

SL

G

41

,63

2

6,4

25

35

,21

6 0

12

,98

4

10

,69

1

2,2

99

14

,89

3

10

,73

0

4,1

70

LL

GL

L

-Asy

mm

etr

ical

Am

ps

3P

hase

64

,98

4

15

,04

4

49

,96

2 0

SL

G

63

,74

7

9,8

38

53

,92

2 0

22

,68

52

1,4

24

16

,67

61

7,6

39

6,0

24

3,7

93

27

,98

52

4,3

25

16

,25

61

7,5

25

11

,75

46

,81

1

LL

GL

L

—In

itS

ym

Neu

tral

Am

ps-

SL

GL

LG

41

,63

2

12

,98

4

14

,89

3

APPENDIX 11

Crystal Report-Load Flow Simulation for Basic

Engineering Design

Date

:2

Decem

ber

20

04

Tim

e:

3:5

8:0

4P

M

Lo

ad

Flo

wS

tud

yS

ett

ing

s

Inclu

de

So

urc

eIm

ped

an

ce

So

luti

on

Meth

od

Lo

ad

Sp

ecif

icati

on

Gen

erati

on

Accele

rati

on

Facto

r

Sw

ing

Gen

era

tors

So

urce

In/O

ut

Serv

ice

TN

B1

In

Bu

ses

Bu

sN

am

eIn

/Ou

tS

erv

ice

Hk

VN

od

eB

us2

In

Hk

VN

od

eB

us3

In

Hk

VN

od

eB

us4

In

Hk

VN

od

eB

us7

In

Hk

VN

od

eB

usS

In

Hk

VN

od

eB

us9

In

llk

VS

'bo

ard

In

Pro

ject:

Basi

cJE

ng

ineeri

ng

_L

c

Lo

ad

Flo

wS

um

mary

Rep

ort

Vp

u

1.0

0

Yes

Ex

act

(Ite

rati

ve)

Co

nn

ecte

dL

oad

1.0

0

An

gle

0.0

0

Desi

gn

Vo

lts

11

.00

0

11

.00

0

11

.00

0

11

.00

0

11

.00

0

11

.00

0

11

.00

0

kW

4,4

51

.0

Lo

ad

Accele

rati

on

Facto

r

Bu

sV

olt

ag

eD

rop

%

Bra

nch

Vo

ltag

eD

rop

%

kv

ar

VD

%

3,4

59

.61

.21

LF

Vo

lts

An

gle

Deg

ree

PU

Vo

lts

10

.86

6-0

.82

0.9

9

10

.86

7-0

.82

0.9

9

10

.86

6-0

.82

0.9

9

10

.86

6-0

.82

0.9

9

00

.00

0.0

0

10

.86

6-0

.82

0.9

9

10

.86

6 1

-0.8

20

.99

1.0

0

5.0

0

3.0

0

Uti

lity

Imp

ed

an

ce

0.0

1+j

0.3

3

%V

D

1.2

2

1.2

1

1.2

2

1.2

2

10

0.0

0

1.2

2

1.2

1

Bu

sN

am

eIn

/Ou

tS

erv

ice

3.3

kV

Bu

sl

In

3.3

kV

Bu

s2

In

3.3

kV

No

de3

In

3.3

kV

No

de4

In

3.3

kV

No

de5

In

33

kV

No

de

Bu

sl

In

33

kV

No

de

Bu

s2

In

33

kV

No

de

Bu

s3

In

41

5N

od

eB

us5

In

41

5V

Bu

sl

In

41

5V

Bu

s2

In

41

5V

No

de

Bu

s4

In

BU

S-3

3k

VIn

Cab

les

Desi

gn

Vo

lts

3.3

00

3.3

00

3.3

00

3.3

00

3.3

00

33

.00

0

33

.00

0

33

.00

0

41

5

41

5

41

5

41

5

33

.00

0

LF

Vo

lts

3.2

18

3.2

11 0

3.2

19

3.2

12 0 0 0

40

5

40

2

40

2

40

5 0

An

gle

Deg

ree

-31

.78

-31

.93

0.0

0

-31

.78

-31

.94

0.0

0

0.0

0

0.0

0

-31

.70

-31

.63

-31

.63

-31

.70

0.0

0

PU

Vo

lts

0.9

8

0.9

7

0.0

0

0.9

8

0.9

7

0.0

0

0.0

0

0.0

0

0.9

8

0.9

7

0.9

7

0.9

8

0.0

0

%V

D

2.4

7

2.6

8

10

0.0

0

2.4

6

2.6

7

10

0.0

0

10

0.0

0

10

0.0

0

2.3

6

3.1

7

3.1

7

2.3

6

10

0.0

0

Fro

mB

us

To

Bu

s

Co

mp

on

en

tN

am

e

In/O

ut

Servic

e

%V

DkW

Lo

ss

kva

r

Lo

ss

kV

A

Lo

ss

LF

Am

ps

Ra

tin

g%

PF

Hk

VN

od

eB

us3

llk

VS

'bo

ard

11

aIn

0.0

14

,45

1.0

0.3

3,4

59

.6

0.3

5,6

37

.4

0.4

29

9.5

0.0

0.7

9

llk

VS

'bo

ard

Hk

VN

od

eB

us2

11

/3.3

bIn

0.0

01

,86

2.8

0.0

1,4

54

.3

0.0

2,3

63

.3

0.1

12

5.6

0.0

0.7

9

llk

VS

'bo

ard

Hk

VN

od

eB

us4

11

/41

5a

In0

.00

49

3.1

0.0

38

0.8

0.0

62

3.0

0.0

33

.1

0.0

0.7

9

llk

VS

'bo

ard

11

/41

5b

In0

.00

49

3.1

38

0.8

62

3.0

33

.10

.79

Fro

mB

us

To

Bu

s

Co

mp

on

en

tN

am

e

In/O

ut

Servic

e

%V

DkW

Lo

ss

kva

r

Lo

ss

kV

A

Lo

ss

LF

Am

ps

Ra

tin

g%

PF

Hk

VN

od

eB

us7

0.0

0.0

0.0

0.0

llk

VS

'bo

ard

Hk

VN

od

eB

us9

11

/3.3

aIn

0.0

01

,60

1.6

0.0

1,2

43

.4

0.0

2,0

27

.6

0.0

10

7.7

0.0

0.7

9

3.3

kV

No

de4

3.3

kV

Bu

sl

3.3

kV

No

de5

3.3

kV

Bu

s2

3.3

a

3.3

b

In0

.01

In

0.0

1

1,6

01

.6

0.2

1,8

62

.8

0.2

1,2

01

.2

0.1

1,3

97

.1

0.2

2,0

02

.0

0.2

2,3

28

.4

0.3

35

9.1

0.0

41

8.6

0.0

0.8

0

0.8

0

41

5N

od

eB

us5

41

5V

Bu

s2

ll/4

15

b2

In0

.81

49

3.1

4.5

36

8.9

2.5

61

5.8

5.2

87

7.4

0.0

0.8

0

41

5V

No

de

Bu

s4

41

5V

Bu

sl

ll/4

15

a2

In0

.81

49

3.1

4.5

36

8.9

2.5

61

5.8

5.2

87

7.4

0.0

0.8

0

2-W

ind

ing

Tra

nsf

orm

ers

Fro

mB

us

To

Bu

s

Co

mp

on

en

tN

am

e

In/O

ut

Serv

ice

%V

Dk

W

Lo

ss

kv

ar

Lo

ss

kV

A

Lo

ss

LF

Am

ps

Rat

ing

%P

F

1lk

VN

od

eB

us

3.3

kV

No

de5

11

/3.3

kV

Tx

BIn

1.4

51

,86

2.8

0.0

1,4

54

.3

57

.2

2,3

63

.2

57

.2

12

6.0

39

.9

0.7

9

llk

VN

od

eB

us

41

5V

No

de

Bu

s

11

/0.4

15

Tx

lAIn

1.1

54

93

.1

0.0

38

0.8

11

.9

62

3.0

11

.9

33

.0

31

.5

0.7

9

llk

VN

od

eB

us

41

5N

od

eB

us5

11

/0.4

15

Tx

lBIn

1.1

54

93

.1

0.0

38

0.8

11

.9

62

3.0

11

.9

33

.0

31

.5

0.7

9

llk

VN

od

eB

us

3.3

kV

No

de4

H/3

.3k

VT

xA

In1

.25

1,6

01

.6

0.0

1,2

43

.3

42

.1

2,0

27

.6

42

.1

10

8.0

34

.2

0.7

9

APPENDIX 12

Crystal Report-Load Flow Simulation for Detail

Engineering Design

Da

te:

2D

ecem

ber

20

04

Tim

e:

4:0

7:5

4P

M

Lo

ad

Flo

wS

tud

yS

ett

ing

s

Inclu

de

So

urc

eIm

ped

an

ce

So

luti

on

Meth

od

Lo

ad

Sp

ecif

icati

on

Gen

erati

on

Accele

rati

on

Facto

r

Sw

ing

Gen

era

tors

So

urce

In/O

ut

Serv

ice

TN

BIn

Bu

ses

Bu

sN

am

eIn

/Ou

tS

erv

ice

1lk

VN

od

eB

usl

In

Hk

VN

od

eB

us2

In

Hk

VN

od

eB

us3

In

Hk

VN

od

eB

us4

In

llk

VN

od

eB

us5

In

1lk

VS

'bo

ard

AIn

1lk

VS

'bo

ard

BIn

Vp

u

1.0

0

Pro

ject:

Det

ail_

En

gin

eeri

ng

_L

c

Lo

ad

Flo

wS

um

ma

ryR

ep

ort

Yes

Ex

act

(Ite

rati

ve)

Ist

Lev

elD

eman

dor

En

erg

yF

acto

r

1.0

0

Lo

ad

Accele

rati

on

Facto

r

Bu

sV

olt

ag

eD

rop

%

Bra

nch

Vo

ltag

eD

rop

%

An

gle

kW

kv

ar

VD

%

0.0

06

,10

2.3

1,6

81

.02

.06

Desi

gn

Vo

lts

LF

Vo

lts

An

gle

Deg

ree

PU

Vo

lts

10

.76

30

.26

0.9

8

10

.76

30

.26

0.9

8

10

.77

30

.28

0.9

8

10

.76

40

.26

0.9

8

10

.76

40

.26

0.9

8

10

.76

40

.26

0.9

8

10

.76

40

.26

0.9

8

1

11

.00

0

11

.00

0

11

.00

0

11

.00

0

11.000

11.000

11.000

1.0

0

5.0

0

3.0

0

Uti

lity

Imp

ed

an

ce

0.3

3+J

0.0

1

%V

D

2.16

2.15

2.06

2.14

2.15

2.14

2.14

Bu

sN

am

eIn

/Ou

tS

erv

ice

3.3

kV

Bu

sl

In

3.3

kV

Bu

s2In

3.3

kV

No

del

In

3.3

kV

No

de2

In

41

5V

Bu

sl

In

41

5V

Bu

s2

In

41

5V

No

de

Bu

sl

In

41

5V

No

de

Bu

s2

In

41

5V

No

de

Bu

s3

In

41

5V

No

de

Bu

s4

Cab

les

Fro

mB

us

To

Bu

s

In

Co

mp

on

en

tN

am

e

Hk

VN

od

eB

us3

11

a

llk

VS

'bo

ard

A

1lk

VS

'bo

ard

A

llk

VN

od

eB

usl

llk

VS

'bo

ard

A

Hk

VN

od

eB

us4

llk

VS

'bo

ard

B

Hk

VN

od

eB

us2

llk

VS

'bo

ard

B

Hk

VN

od

eB

us5

ll/3

.3al

ll/4

15

al

11

/3.3

M

11

/41

5M

Desi

gn

Vo

lts

In/O

ut

Serv

ice

In In In In In

3.3

00

3.3

00

3.3

00

3.3

00

41

5

41

5

41

5

41

5

41

5

41

5

%V

D

0.0

8

0.0

1

0.0

0

0.0

1

0.0

0

LF

Vo

lts

kW

Lo

ss

6,1

02

.3

4.4

2,7

18

.5

0.3

52

4.8

0.0

1,9

73

.1

0.2

88

1.5

0.0

3.3

40

3.3

51

3.3

41

3.3

52

42

1

41

9

42

3

42

2

42

9

42

0

An

gle

Deg

ree

kv

ar

Lo

ss

1,6

81

.0

3.5

88

2.7

0.3

77

.9

0.0

60

4.5

0.1

11

2.4

0.0

-3.6

8

-1.1

4

-1.6

7

-1.1

4

-0.9

7

-1.8

3

-0.9

2

-1.7

2

-3.7

1

-5.2

7

kV

A

Lo

ss

6,3

29

.6

5.6

2,8

58

.3

0.4

53

0.6

0.0

2,0

63

.6

0.2

58

.6

0.0

PU

Vo

lts

1.0

1

1.0

2

1.0

1

1.0

2

1.0

1

1.0

1

1.0

2

1.0

2

1.0

3

1.0

1

LF

Am

ps

Rat

ing

%

33

9.2

0.0

15

3.3

0.0

28

.5

0.0

11

0.7

0.0

47

.7

0.0

%V

D

-1.2

1

-1.5

5

-1.2

4

-1.5

6

-1.4

1

-1.0

5

-1.8

1

-1.7

1

-3.3

1

-1.1

4

PF

0.9

6

0.9

5

0.9

9

0.9

6

0.9

9

Fro

mB

us

To

Bu

s

Co

mp

on

en

tN

am

e

In/O

ut

Serv

ice

%V

Dk

W

Lo

ss

kv

ar

Lo

ss

kV

A

Lo

ss

LF

Am

ps

Rat

ing

%

PF

3.3

kV

No

del

3.3

kV

Bu

sl

ll/3

.3a2

In0

.03

2,7

18

.1

0.6

78

2.1

0.6

2,8

28

.4

0.8

48

8.8

0.0

0.9

6

3.3

kV

No

de2

3.3

kV

Bu

s2

ll/3

.3b

2In

0.0

21

,97

2.8

0.3

55

2.0

0.3

2,0

48

.6

0.4

35

2.9

0.0

0.9

6

41

5V

No

de

Bu

sl

41

5V

Bu

sl

ll/4

15

a2

In0

.39

52

4.8

2.0

66

.8

0.8

52

9.0

2.1

72

2.9

0.0

0.9

9

41

5V

No

deB

us2

41

5V

Bu

s2

11

/41

5b

2In

0.6

58

81

.4

5.5

81

.5

2.2

88

5.2

5.9

1,2

10

.8

0.0

1.0

0

2-W

ind

ing

Tra

nsf

orm

ers

Fro

mB

us

To

Bu

s

Co

mp

on

en

tN

am

e

In/O

ut

Serv

ice

%V

Dk

W

Lo

ss

kv

ar

Lo

ss

kV

A

Lo

ss

LF

Am

ps

Rat

ing

%P

F

llk

VN

od

eB

us

3.3

kV

No

del

Tx

11

/3.3

kV

AIn

-3.3

92

,71

8.2

0.1

88

2.4

10

0.4

2,8

57

.9

10

0.4

15

3.0

57

.3

0.9

5

1lk

VN

od

eB

us

3.3

kV

No

de2

Tx

ll/3

.3k

VB

In-3

.72

1,9

72

.9

0.1

60

4.3

52

.3

2,0

63

.4

52

.3

11

1.0

41

.3

0.9

6

11k

VN

od

eB

us

41

5V

No

de

Bu

s

Tx

11

/0.4

15

AIn

-3.9

55

24

.8

0.0

77

.9

11

.0

53

0.6

11

.0

28

.0

33

.9

0.9

9

llk

VN

od

eB

us

41

5V

No

de

Bu

s

Tx

l1

/0.4

15

BIn

-3.8

58

81

.4

0.0

11

2.4

30

.9

88

8.6

30

.9

48

.0

56

.8

0.9

9

3.3

kV

Bu

sl

41

5V

No

de

Bu

s

Tx

VF

DA

In-2

.10

28

3.8

0.0

18

2.2

13

.9

33

7.2

13

.9

58

.0

83

.3

0.8

4

3.3

kV

Bu

s2

41

5V

No

de

Bu

s

Tx

VF

DB

In0

.41

56

7.6

0.1

39

4.7

57

.9

69

1.3

57

.9

11

9.0

17

0.2

0.8

2

PiIm

ped

an

ces

Fro

mB

us

To

Bu

s

Co

mp

on

en

tN

ame

llk

VS

'bo

ard

AP

I-1

llk

VS

'bo

ard

B

3.3

kV

Bu

s2

3.3

kV

Bu

sl

41

5V

Bu

s2

41

5V

Bu

sl

PI-

2

PI-

3

%V

D

0.0

0

0.0

0

0.0

0

kW

Lo

ss

2,8

54

.5

0.0

0.0

0.0

0.0

0.0

kv

ar

Lo

ss

71

6.9

0.0

0.0

0.0

0.0

0.0

kV

A

Lo

ss

2,9

43

.2

0.0

0.0

0.0

0.0

0.0

LF

Am

ps

Rati

ng

%

15

7.9

0.6

0.0

0.0

0.0

0.0

PF

0.9

7

0.0

0

0.0

0

APPENDIX 13

Simulation Diagrams-Branch and Bus Fault Currents

for Basic Engineering Design

llk

VS

'bo

ard

11

/41

5a

-I1

Isc

3P

29

6A

4-

Isc

3P1

69

66

A

ll/0.

415T

xIA

g

-t

Isc3

PP

ri2

96

A4

Isc

3P

42

04

2A

4Is

cS

LG

43

58

7A

41

5V

Ph

ase

l

Isc

3P

49

73

A

Isc

SL

G3

11

5A

']••Is

c3

P1

06

1A

4-Is

c3

P1

62

10

A

Isc3

PP

ri

10

61

A

Isc3

P1

32

18

A

Isc

SL

G1

46

52

A

11

/41

5a2

-TIs

c3

P9

42

7A

1XIs

cS

LG

60

68

A4

Isc

3P

33

96

8A

4Is

cS

LG

34

97

9A

41

5V

Ph

asel

isc

3P

49

73

A

Isc

SL

G3

11

5A

TN

B1

lkV

(Ph

ase

1-P

hase

2)

Isc

3P

16

00

0A

1"Is

c3

P1

35

7A

4-Is

c3

P1

59

58

A

Il/

3.3

kV

Tx

A

|Is

Isc

3P44

31A

i.3.

3a4-

Isc

SLG

2946

A4

-Is

c3

P1

31

91

A4-

Isc

SL

G1

46

20

A

®!

3.3

kV

Ph

asel

Isc

3P

20

50

A

Isc

SL

G1

36

2A

11

/3.3

kV

Tx

B

03

.3k

VF

utu

re

Isc

3P

23

84

A

Isc

SL

G1

58

5A

J11

/415b

U/0

.4l5

Tx

lB

0'

41

5V

Ph

ase

2

Isc

3P

22

56

A

Isc

SL

G1

48

0A

41

5V

Ph

ase2

Isc

3P

22

56

A

Isc

SL

G1

48

0A

43

78

2A

mp

s3P

41

13

3A

mp

sS

LG

1731

3A

mps

3Pll

kV

S'b

oard 11

/415

aJ

11

/0.4

15

Tx

lA

04

15

VP

hasel

ll/4

15

a2

1761

3A

mp

s3P

17

56

0A

mp

sS

LG

TN

B1

lkV

(Ph

ase

1-P

has

e2}

(i)

H/3.3

kVTx

A

03

.3k

VP

hase

l

!1

/3.3

b

11/3

,3kV

TxB

fgs,

3.3

b

03

.3k

VF

utu

re

li/4

15

b

S)

11/0

.415

Txl

B

ill

/41

Sb

2

04

15

VP

hase

2

APPENDIX 14

Simulation Diagrams-Branch and Bus Fault Currents

for Detail Engineering Design

-as

-a*

-GUI

•H31

—a——--© g)

-®s

HSISS

.-©3

-®IE| -®m

^i||

3 I-H---

!S-

9g!

•*£«

5 2r=

ia

-®Ies

--©gas

BJ3

! ra-

-«t§S^ ^\_i-

-HB-- HB'

s"-@—-

-Eh—

V

H®i

-^

S J,

~©>E

9—®2

—^—-©»

43*

-©?

^

-®|

HSS

-©=

3

-©5

H^

— -— -Si

H3i

APPENDIX 15

Simulation Diagrams-Load Flow Study without

Power Factor Correction for Basic Engineering

Design

LF

VD

%1

.21

%

llk

VS

'bo

ard

11

/41

5a

]1

/0.4

15

Tx

lA

44

93

.1k

W

43

80

.8k

VA

R

PctV

D1

.1%

41

5V

Bu

sl

LF

VD

%3

.17

%^

^

4-4

93

.1k

W4

38

0.8

kV

AR

PctV

D0

.0%

LF

33

A3.

3kV

Bus

l

16

01

.6k

W

12

43

.4k

VA

R

PctV

D0

.0%

LF

10

8A

16

01

.6k

W

12

43

.3k

VA

R,

PctV

D1

.2%

'

LF

VD

%2

.47

%

Il/4

15

a2

4-

49

3.1

kW

4-3

68

.9k

VA

RP

ctV

D0

.8%

LF

87

7A

fkf

41

5V

Ph

asel

61

0.7

0k

VA

04

45

1.0

kW

34

59

.6W

AR

44

51

.0k

W

34

59

.6k

VA

RP

ctV

D0

.0%

LF

30

0A

H/3

.3k

VT

xA

16

01

.6k

W

12

01

.2k

VA

R

PctV

D0

.0%

LF

35

9A

3.3

kV

Ph

ase

l

20

01

.80

kV

A

4-

18

62

.8k

W

4-1

45

4.3

kV

AR

PctV

D0

.0%

LF

12

6A

H/3

3k

VT

xB

.

4-1

86

2.8

kW

4-1

39

7.1

kV

AR

PctV

D0

.0%

LF

41

9A

03

.3k

VF

utu

re

23

28

.17

kV

A

18

62

.8k

W

14

54

.3k

VA

RP

ctV

D1

.5%

3.3

kV

Bu

s2

LF

VD

%2

.68

%

j11

/415

b$_

-J-

493.

1kW

43

80

.8k

VA

RP

ctV

D0

.0%

LF

33

A

ll/0

.4I5

Tx

lB

44

93

.1k

W4

38

0.8

kV

AR

PctV

D1

.1%

H/4

15

b2

44

93

.1k

W

J-

36

8.9

kV

AR

PctV

D0

.8%

LF

87

7A

04

15

VP

hasel

61

0.7

0W

A

LF

VD

%3

.17

%

11

/0.4

15

Tx

lA

33.1

0Pr

iAm

ps87

7.43

Sec

Am

ps

Am

paci

ty10

5.0

A

ll/4

15

a2

877.

43A

mp

s

04

15

VP

hasel

TN

B11

kV(P

has

e1-

Ph

ase

2)

11a

29

9.5

0A

mp

s

107.

73A

mp

s

107.

73Pr

iAm

ps(2

)H

/3.3

kVTx

A33

.10A

mps

359.

10Se

cAm

pss

Am

paci

ty31

4.9A

J35

9.10

Am

ps3

.3a

3.3k

VB

usl

(

3.3

kV

Ph

ase

l

125.

57A

mp

s

3.3

kV

Fu

ture

11/3

.3k

VT

xB

kiJ

125.

57Pr

iAm

ps4

18

.55

Sec

Am

ps

418.

55A

mps

S;A

mpa

city

314.

9A\

3.3b

I3.3

kVBu

s2

11

/41

5b

33

.10

Am

ps

ll/0

.41

5T

xlB

33.1

0Pr

iA

mps

877.

43Se

cA

mp

sA

mp

acit

y10

5.0

A

U/4

15

b2

877.

43A

mp

s

04

15

VP

hasel

APPENDIX 16

Simulation Diagrams-Load Flow Study with Power

Factor Correction for Detail Engineering Design

««

.1111

—«r

@—-—-—© a !

'i—B-—-

—Eh— -© 51

-HI—

-Eh---

—H—-

-ng;

3 SPSS S SK2 J sssa

-@S-

^>%t

-©;;

-®gt

£8

-©?*

—-= ©3*

-®=i

at

Hsi!

-—HHW

-©a

P3«

^i

hSe[

I 1s HB 5

iflh iEJii

I 13* ^

S 8-05—- HHH 5

g Si-j-B—--.—

-©!

-si

~®I

—--"•—-IHW

-©?

-©g

-©I

-®J

^1

^>S

H9i

^1s

V

-©=

-©I

APPENDIX 17

Single Line Diagrams for Basic, Detail and

Construction Engineering Design

FESj

phase i equipment system is shown in firm lines.THE FUTURE EQUIPMENT SYSTEM [PHASE 2,3. 8 41IS SHOWN IN DOTTED LINES.

THE POWER FACTOR AT 33kV TNB INCOMING PANEL SHALL BEAT LEAST 0.93. IT IS CONTRACTOR'S RESPONSIBILITY TO

DETERMINE THE NEEDS OF CAPACITOR FOR EACH SWITCHBOARD.

THE TRANSFORMER QUANTITY AND RATING TO BE VERIFY BY

CONTRACTOR.

THE FEEDER AND MCC QUANTITY AND RATING FOR IIhV. 3.3KV

AND 415V SHALL BE VERIFY BY CONTRACTOR.

FOR FUTURE INSTALLATION ( SHOWN IN DOTTED LINES). FEEDERS SHALL CALL PHASES 2 10 4 WHILE MCC SHALL BE 1NTALLED IN THEIR RESPECTIV)(MODULAR)

Il-SWGR-l-OIIIKV SWITCHBOARD

r

L

!IKV BUSf-

;

£M

- V

I /4-TX2AI I /O. 433k V

•' ~" Dyn M,-H 1 AN/AF

04-SWGR-l-OI415V MCC/SWITCHBOARD PHASE I

? ATS ^NCi o-.-NC^:

a415V BUS (

NO

A

I

0 0

Ti,

I_A

J NC

0

CO

ATS

VOLTAGE TMANSFOTHER

SECONDARY SELECTIVEAUTOMATIC. TRANSFER SYSTEM

T

< L\

EfRTHING 5WITCH

CIRCUIT BREAKER

INDUCTION MOTOR

TWO WINDING TRANSFORMER

I 1/4-TX2B' I I/O. 433k V.Dyn II' AN/AF

04-SWGR-2-OI415V MCC/SWITCHBOARDPHASE 2.384

415V BUS" T

•f

I M >

BABDISTRICTCOOLINGfutfiAJATA g

GAS DISTRICT COOliNG (PUTRAJAYA) SDN. BHD.LEVEL «.TOWER I.PEIMNAS TKIN 10* RS.KUAL» LUrfUR CITr CENTRE.S008S KUALA LUMPUH.WALAYSIA.Tel No • CJ-2051 W3Fa., tk: OW05I '600.

(X? Technical Services Sdn. Bhd.LE1EL 9 lo II.IOKR 2.PETBONAS WIN TOWERS.

___ AUH.A LUHPUR CIIV CENTRE.OO WC68 KUALA LUWW.MALAYSIA.

'(t No . 03-2051 7110for. No; 0J-3C6I (Jit.

For Ih* Arid Dale

tYiftomed Atcr e$<nioi We)

Ihis *»lnfl ii G»irigM.Bidder to U)t Ihii dia-ing la deielDp technicalproposal lor bidding purpose rxilf.

ISSLED FOB I IB

ftojttl Til It :

PUTRAJAYA

PRECINCT 5

DISTRICT COOUNG PUNT PROJECT

Og.ih'] Tine

Scole

Denied

Dri*

fcpiQ.ed •

PRELIMINARY KEY

SINGLE LINE DIAGRAM

CodTils

Oii'Mi

Oierted •

Hole

.- -9 ••*/•>

fV5r2f(C-'

• IA,1>»i»V»«m

W«f Or"I • UE p- ICOm

E^*

OCP nwswrcHKifi-;

OCP 3.3 WSWirCHCe>3 / MCC

t i r

f 1.-onwmol. -11 w/u

JJLrW^le.) _, uvjw^w ..

**^. -d 7i/>

' TkV Sysier

J ;j

,r*

>t*&l?4*

-*>=--j»-

•-•*/3»*/F-< (C) _,A"*^ •JZST-J~<(=.1 ..J nrc/lu,

(4)mm

'.C-OIll

CLtCI*Oi.CV-H.LEO

•If*",""* CC)

L. J..car— I 1.

'-oiarc ».o*ai»

""6

;»•:•-•:» ;-<*«•.•.-: c/ss-/=.=i;c=?/.:/3C„;

DCP415V Sw>TC-'CLaS / vcc

.0 •.«-'

T "X/> i- it •(•

4I5V Systs

-*• IO.J f* c»*i

GA.S

s:EAr.iL:r.£ :>.••,.

CONSORT'[j*..

SMJ A«CW7=CTS SON 8HO

TCTANCCWSLAT

;A_' •;

X ;:X q-:X=-

aa

-;^=.:.3 A."0 5;S!j3«l~ ;

0.. V-C.-OT ;*:* ^ cnir"-: ;-:s*a .s^-,t u.; Mrn

*>*u sc* =:l-:^e -vf

0=;.

-^ / S-'=--i :

PMC

jOC n -

j'-sraA

PI'THaJaVa PR

i;!-TP.ia COOLING

iCH'LLFH ?ij\-

ECiNCT 5

punt ?ro;ect

" ?<.O.aCE,

'.--- . ;

J:-l'•Ta-. 3vS*£m

,'V' '[<; 'l".C-\

-v >/''jf

APPENDIX 18

Putrajaya Precinct 5 Gas District Cooling Plant

Layout