emitter degenerated

Upload: le-sy-hau

Post on 07-Aug-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Emitter Degenerated

    1/41

    Lecture 06 - 1ELE2110A © 2008

    Week 6: Small Signal Analysis forSingle Stage BJT amplifiers

     ELE 2110A Electronic Circuits

  • 8/20/2019 Emitter Degenerated

    2/41

    Lecture 06 - 2ELE2110A © 2008

    Topics to cover …

    Family of single-stage BJT amplifiers

    Small signal analysis – Common-Emitter Amplifier 

    Common-Emitter Amplifier with Emitter R

    Common-Base Amplifier 

    Reading Assignment:Chap 14.1 – 14.5 of Jaeger and Blalock , or Chap 5.7 of Sedra & Smith

  • 8/20/2019 Emitter Degenerated

    3/41

    Lecture 06 - 3ELE2110A © 2008

    Signal Injection

    Transistor is a VCCS:

    To cause changes in current, vBE must bechanged

     –  Base or emitter terminals can be used as i/p

    terminal

     – Collector is not used as an i/p terminal because

    even if Early voltage is considered, collector

    voltage has negligible effect on terminal

    currents

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    =T 

    V  BE 

    v

    S  I 

    C i exp

  • 8/20/2019 Emitter Degenerated

    4/41

    Lecture 06 - 4ELE2110A © 2008

    Signal Extraction

    Large changes in iC or iE create large

    voltage drops across collector and emitter

    resistors

     –  Collector or emitter can be used as o/p

    terminal

     – Base terminal is not used as o/p terminal due to

    small iB

  • 8/20/2019 Emitter Degenerated

    5/41

    Lecture 06 - 5ELE2110A © 2008

    BJT Amplifier Family

    Constraints for signal injection and extraction yield three

    families of amplifiers

    Input Output

     – Common-Emitter (C-E): Base Collector 

     – Common-Base (C-B): Emitter Collector 

     – Common-Collector (C-C): Base Emitter 

     – All circuit examples in the following slides use the four-resistor

    bias circuits to establish Q-point for the various amplifiers.

  • 8/20/2019 Emitter Degenerated

    6/41

    Lecture 06 - 6ELE2110A © 2008

    Topics to cover …

    Family of single-stage BJT amplifiers

    Small signal analysis – Common-Emitter Amplifier 

    Common-Emitter Amplifier with Emitter R

    Common-Base Amplifier 

  • 8/20/2019 Emitter Degenerated

    7/41

    Lecture 06 - 7ELE2110A © 2008

    Using Small Signal Models in BJT ckt Analysis

    Steps for using small-signal models:

    Determine the DC operating point of the BJT

     – in particular, the collector current

    Calculate small-signal model parameters gm, r π, & r e forthis DC operating point

    Eliminate DC sources – Replace DC voltage sources with short circuits

     – Replace DC current sources with open circuits

    Replace BJT with an equivalent small-signal model

     – Choose most convenient one depending on surrounding circuitry  Analyze

  • 8/20/2019 Emitter Degenerated

    8/41

    Lecture 06 - 8ELE2110A © 2008

    Common Emitter Amplifier 

    Biased using the four-resistor network

     AC input is injected to base through a coupling capacitor   AC output is taken from collector 

    Emitter is ac-grounded

  • 8/20/2019 Emitter Degenerated

    9/41

    Lecture 06 - 9ELE2110A © 2008

    DC operating point

     All capacitors in original amplifier circuits are replaced by

    open circuits, disconnecting vI, RI, and R3 from circuit

    Q-point can be found from dc equivalent circuit by using

    DC model for BJT

  • 8/20/2019 Emitter Degenerated

    10/41

    Lecture 06 - 10ELE2110A © 2008

     AC Equivalent

    Replace all ∞ capacitors by shortcircuits, ∞ inductors by open circuits

    Set all independent DC sources to 0,i.e., replace DC voltage sources by

    short circuits and DC current sources

    by open circuits

    Replace transistor by small-signal

    model

    Use small-signal AC equivalent toanalyze AC characteristics of amplifier 

  • 8/20/2019 Emitter Degenerated

    11/41

    Lecture 06 - 11ELE2110A © 2008

    Simplified AC Equivalent

    k Ω100k Ω3.43

    k Ω30k Ω1021

    ==

    ==

     RC 

     R R

     R R B

     R

  • 8/20/2019 Emitter Degenerated

    12/41

    Lecture 06 - 12ELE2110A © 2008

    Small Signal Performance Parameters

    Voltage gain

    Input resistance Output resistance

    and sometimes

    Current gain

    Input signal range

    In AC analysis, we are interested to find

  • 8/20/2019 Emitter Degenerated

    13/41

    Lecture 06 - 13ELE2110A © 2008

    Voltage Gain

    3 R

    C  Ror  L

     R   =

     L Rm g bevov

    bvcv

    vt  A   −===

    Terminal voltage gain

    between base and collector is:

    Overall voltage gain from source vito output voltage across R3 is:

    ( )⎥⎥⎥⎥

    ⎢⎢⎢⎢

    ⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜

    ⎝ 

    ⎛ 

    +−=∴

    ===

    π π 

    r  B

     R I 

     R

    r  B

     R

     L Rm g v A

    ivbe

    v

    vt  A

    ivbe

    v

    bev ov

    ivov

    v A

  • 8/20/2019 Emitter Degenerated

    14/41

    Lecture 06 - 14ELE2110A © 2008

    Input Resistance

    The total resistance looking into the

    amplifier at coupling capacitor C1represents total resistance of the

    amplifier presented to signal source

    π π 

    π 

    r  R Rr  B

     R R

    r  B R

    21xixv

    in

    )(xixv

    ===

    =

  • 8/20/2019 Emitter Degenerated

    15/41

    Lecture 06 - 15ELE2110A © 2008

    Output Resistance

    Output resistance is the total

    equivalent resistance looking into the

    output of the amplifier at couplingcapacitor C3

    To find Rout, input source is set to 0

    and test source is applied at output

    C  Ror C 

     R R

    m g 

    or C  R

    ≅==∴

    ++=

    xi

    xv

    out

     bevx

    vxvxi But v be=0.

    As r o>> RC .

  • 8/20/2019 Emitter Degenerated

    16/41

    Lecture 06 - 16ELE2110A © 2008

    Example 1

    Problem: Find voltage gain, inputand output resistances.

    Given data:  β = 65, V A =50 V

     Assumptions: Active-regionoperation, VBE=0.7 V, small signal

    operating conditions.

    Analysis To find the Q-point, dc

    equivalent circuit is constructed.

    µA24566

    µA24165

    µA71.3

    ==

    ==

    =∴

     B I 

     E  I   B

     I 

     I  B

     I 

    5)4106.1()1(510   =×+++ B

     I 

     BE 

     B

     I    β 

    V67.3

    0)5()4106.1(4105

    =∴

    =−−×−−−

    CE V 

     E  I 

    CE V 

    C  I 

    Active region of operation is correct.

  • 8/20/2019 Emitter Degenerated

    17/41

    Lecture 06 - 17ELE2110A © 2008

    Example 1 (Cont.)

    Next we construct the ac

    equivalent and simplify it

    0.84

    in

    in)3out

    (   −=+

    −==

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

     R I 

     R

     R R Rm g 

    ivov

    v A

    S31064.9   −×==

    T V 

    C  I m g 

    k Ω64.6==

    C  I 

    T V 

    r  β 

    π 

    k Ω223=+

    =

    C  I 

    CE V 

     AV 

    or 

    k Ω23.6in

      == π r  B R R

    k Ω57.9out

      == or C  R R

  • 8/20/2019 Emitter Degenerated

    18/41

    Lecture 06 - 18ELE2110A © 2008

    Topics to cover …

    Family of single-stage BJT amplifiers

    Small signal analysis – Common-Emitter Amplifier 

    Common-Emitter Amplifier with Emitter R

    Common-Base Amplifier 

  • 8/20/2019 Emitter Degenerated

    19/41

    Lecture 06 - 19ELE2110A © 2008

    Common-Emitter Amplifier with Emitter R

    AC equivalent:

    A resistor exists at the emitter ofthe ac equivalent circuit

    Also called e m i t t e r d e g e n e r a t e d  CE amplifier

    RE provides negative feedback

    AC ground

    OutputInput

  • 8/20/2019 Emitter Degenerated

    20/41

    Lecture 06 - 20ELE2110A © 2008

    Negative Feedback due to RE

     Assume iC for any reason

    iE (=iC/α)

    vE vBE

    iC : counter act the original

    change

    More discussion on negativefeedback later in the course

  • 8/20/2019 Emitter Degenerated

    21/41

    Lecture 06 - 21ELE2110A © 2008

    Overall Voltage Gain

    Thus, the task breaks down into two steps:

    Find the terminal voltage gain

    Find the input resistance Rin.

    Overall voltage gain from vi to vocan be expressed as:

    b

    ovt 

    vv A   ≡

    )||(

    ||

    in B I 

    in B

    i

    b

     R R R

     R R

    v

    v

    +=

    Define terminal voltage gain as:

     And it can be observed that:

    ⎟⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    =≡i

    vb

    v

    bvov

    ivovv A

  • 8/20/2019 Emitter Degenerated

    22/41

    Lecture 06 - 22ELE2110A © 2008

    Terminal Voltage GainUse hybrid-π model (neglecting r o):

    for gmr π = β >> 1

    ( ) E  E b

     Rr i

    iRir v

    )1(

    )1(

    ++=++=

     β 

     β 

    π 

    π 

     Lo

      iRv   −=

     β π    =m g r 

     E  Rr 

     L R

    bv

    ov

    vt  A)1(   ++

    −=≡ β 

    π 

     β 

     E  R

    m g 

     L R

    m g 

     E  Rr 

    m g r 

     L Rr 

    m g 

    vt  A+

    −≅++

    −=1)1(

    π π 

    π 

    Using , we have

    Effect of RE:

    For RE=0, – Upper limit of Avt

    For gmRE>>1,

     – Avt becomes less dependent on gmwhich varies widely

    Increasing RE decreases voltage gain!

     Rm g vt    −≅

     E  R

     L Rvt  /−=

  • 8/20/2019 Emitter Degenerated

    23/41

    Lecture 06 - 23ELE2110A © 2008

    Input Resistance

    To find Rin to find Vb/i:

    )1(

    )1(

    )1(

     E  Rm g r 

     E  Rr m g r 

     E  Rr ib

    v

    in R

    +≅

    ++=++==

    π 

    π π 

     β π 

    ( ) E b   Rr iv )1(   ++=   β π 

    for gmr π = β >> 1

    Increasing RE increases input resistance!

  • 8/20/2019 Emitter Degenerated

    24/41

    Lecture 06 - 24ELE2110A © 2008

    Output Resistance

    0ixi0i   ==⇒=∴  ∞==∴

    xixv

    out R

    To find Rout:

    Set vi to zero

     Apply a test source at output

    Rout = vx/ix

     E  )iR(  β ev 1+=

      B I th   R R R //=

    KVL at left mesh:

    ( )

    ( )

    0

    0

    )1(

    0

    =⇒

    =++

    +

    =++

    e

    eth

     E 

    e

    eth

    v

    vr  R

     R

    v

    vr  Ri

    π 

    π 

     β 

  • 8/20/2019 Emitter Degenerated

    25/41

    Lecture 06 - 25ELE2110A © 2008

    Output ResistanceNow, we also include r o in our analysis:

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    +++≅≡∴

    π r th R

     E  R

     E  β  R

    or 

     xi

     xv

    out  R 1

    KVL along loop 1:

    evo β i)r  x(ievr v xv   +−=+=

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  += E 

     Rπ r th R xiev //

    Voltage at E:

    Current division at Emitter:π r th

     R E 

     R E 

     R

     xii ++−=

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟

    ⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎜⎜⎜

    ⎝ 

    ⎛ 

    ++

    ++

    +=∴ E 

     R

    π 

    th

     R xi

    π r th R E  R

     E  R

     x

    i

     x

    ior  xv // β 

    Put 2nd and 3rd equations into 1st equation:

    for large value of r o

  • 8/20/2019 Emitter Degenerated

    26/41

    Lecture 06 - 26ELE2110A © 2008

    Output Resistance

    π  β    r m g =Assuming and , withth R

     E  Rr    >>+ )( π    E  Ror   >>

    or )1(out   +=

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    +++≅ π  β 

    r th

     R E 

     R E  R

    or  R 1out

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ +=

    ++≅ )//(11

    out   E  Rr m g or r 

     E  R

     E  Rr m g or  R π 

    π 

    π 

    Effect of RE:

    For RE = 0, Rout = r o For RE = ∞, upper limit of 

    Rout is obtained:

    Increasing RE increases Rout!

  • 8/20/2019 Emitter Degenerated

    27/41

    Lecture 06 - 27ELE2110A © 2008

    Current Gain

    Terminal current gain:

    Overall current gain:

     β −=≡ i Li

    it  A

    ii

    in B

     Bit 

     s

     L

     s

     Li R R

     R Ai

    i

    i

    i

    i

    i A +==≡

  • 8/20/2019 Emitter Degenerated

    28/41

    Lecture 06 - 28ELE2110A © 2008

    Input Signal Range

    {

    321

     AC 

    be

     DC 

    T beC 

    V v

    C C 

    vV 

     I  I 

    V v I e I i   T be

    +=

    +≅= )/1(/

    Remember, in deriving the linear small signal model,

    we assumed vbe

  • 8/20/2019 Emitter Degenerated

    29/41

    Lecture 06 - 29ELE2110A © 2008

    Input Signal Range

    π  β π 

    π π 

    r  E  R E  Rm g 

    bv

     Rr 

    bv

    r ir be

    v

    /1)1(   ++

    =

    ++

    ==

    V)1(005.01005.0 E 

     Rm g  E 

     R

     E  Rm g b

    v   +≅++≤⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

     β 

    1>> E 

     RmIf , v b can be increased beyond 5 mV limit.

    ( ) E b   Rr iv )1(   ++=   β π 

    V025.0

    1

    =>>∴

    >>≅=

    T V 

     E  R

     E  I 

    T V 

     E  E  I 

    T V 

     E C  I 

     E  Rm g 

    Condition for gmR E >>1 :

    Increasing RE

    increases input signal range!

  • 8/20/2019 Emitter Degenerated

    30/41

    Lecture 06 - 30ELE2110A © 2008

    Summary of Emitter DegeneratedCommon-Emitter Amplifier 

    Terminal voltage gain: Inverting and Large

    Overall voltage gain: Inverting and Large

    Input resistance: Large

    Output resistance: Large

    Terminal Current gain: Large

    Effects of the resistor at Emitter: – Voltage gain decreased, but more stabilized (less sensitive to gm)

     – Input signal range increased

     – Input and output resistance increased

    )1( E 

     Rm g r    +π 

    ⎟⎟

     ⎠

     ⎞

    ⎜⎜

    ⎝ 

    ⎛  + )(1 E 

     Rr m g or  π 

     Rm

     g 

     L Rm g 

    +−

    1

    ⎥⎥

    ⎥⎥⎥

    ⎢⎢

    ⎢⎢⎢

    ++

    in //R B R I  R

    in //R

     B R

     E  Rm g 

     L R

    m g 

    1

  • 8/20/2019 Emitter Degenerated

    31/41

    Lecture 06 - 31ELE2110A © 2008

    Topics to cover …

    Family of single-stage BJT amplifiers

    Small signal analysis – Common-Emitter Amplifier 

    Common-Emitter Amplifier with Emitter R

    Common-Base Amplifier 

  • 8/20/2019 Emitter Degenerated

    32/41

    Lecture 06 - 32ELE2110A © 2008

    Common-Base Circuits

    AC/Small-signal equivalent:

    73 || R R R L =

    Output

    Input

    AC ground

    Load

    SignalSource

  • 8/20/2019 Emitter Degenerated

    33/41

    Lecture 06 - 33ELE2110A © 2008

    Terminal Voltage Gain

    Non-inverting!

    Magnitude same as the CE

    amplifier with RE=0.

     L Rm g 

    ev

    ov

     ACBvt    +=≡

     Apply test source to input (E)

     And use BJT small signal model:

  • 8/20/2019 Emitter Degenerated

    34/41

    Lecture 06 - 34ELE2110A © 2008

    Input Resistance

    m g m g 

    m g r 

    i

    ev

     RCBin

    1)

    1//(

    1

    ≅=

    +

    == π π 

    π 

    eme v g r 

    vi   +=

    π 

    KCL at emitter:

    Rin is small (as gm is usually large)!

    (gm=IC /VT)

  • 8/20/2019 Emitter Degenerated

    35/41

    Lecture 06 - 35ELE2110A © 2008

    Overall Voltage Gain

     I  Rm g  L

     Rm g  R I  R

     R

     I  R Rm g 

     L Rm g 

    in R R

     I  R

    in R R

    vt  A

    ivev

    evov

    ivov ACBv

    +≅

    ++

    =

    +===

    ⎟⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    ⎥⎥⎥⎥⎥

    ⎢⎢⎢⎢⎢

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    1

    4

    4

    )//4(1

    )//4

    (

    //4

    Overall voltage gain is

    For ,

    This is the upper bound.

    For ,

    1> I 

     Rm g 

     I  R

     L

     R

     ACBv   +=

     I  R R   >>

    4for 

    For large voltage gain, a

    very small RI is required!

    Not a good candidate for

    voltage amplifier 

  • 8/20/2019 Emitter Degenerated

    36/41

    Lecture 06 - 36ELE2110A © 2008

    Example

    Problem: Find overall voltage gain.

    Given data: β=100, Q-point values: IC=245uA,VCE=3.64V, gm=9.8mS, r π=10.2k Ω, r ο=219k Ω.

     Assumptions: Small-signal operating conditions.

     Analysis:

    k Ω1873

    Ω102/1

    ==

    =≅

     R R L R

    m g  RCBin

    176=+= L

     Rm g  ACBvt 

    59.8

    4

    4

    )4

    (1+=

    ++=

    ⎟⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜⎜

    ⎝ 

    ⎛ 

     R I 

     R

     R

     R I 

     Rm g 

     ACBvt  ACBv

  • 8/20/2019 Emitter Degenerated

    37/41

    Lecture 06 - 37ELE2110A © 2008

    Input Signal Range

    For small-signal operation,

    Relative size of gm and RI determine signal-handling limit.

    V)1(005.0

     I 

     Rm g 

    b

    v   +≤

    )1(eb

    vi

    v I 

     Rm g +≅ for R4 >> R I .

    ⎟⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ 

    ++=

    +=

    4

    4

    44

    4

    )//(1//

    //

     R R

     R

     R R g 

    v

     R R R

     R Rvv

     I  I m

    i

    in I 

    inieb

  • 8/20/2019 Emitter Degenerated

    38/41

    Lecture 06 - 38ELE2110A © 2008

    Output Resistance

    ⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    ++=∴

    π 

     β 

    r th

     Rth

     R

    or  RCBout  1

    π  β    r m=

     ⎠

     ⎞

    ⎝ 

    ⎛  +≅ )//(1th

     Rr m

     g o

    r  R

    CB

    out    π 

    Using

    Rout here is equivalent to the Rout of

    CE amplifier with RE=Rth and resistance

    at base equal to zero.

    Rout is large.

  • 8/20/2019 Emitter Degenerated

    39/41

    Lecture 06 - 39ELE2110A © 2008

    Current Gain

    Terminal current gain:

    Current gain from source to load:

    1+≅==   α

    ei

    l i

     ACBit 

    i

    in R for Rit  A Rin

     R

     Rit  Aie

    i

    eil 

    i

    il 

    i

     ACBi   >>=≅+=== ⎟⎟⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜⎜⎜

    ⎝ 

    ⎛ 

    ⎟⎟⎟

     ⎠

     ⎞

    ⎜⎜⎜

    ⎝ 

    ⎛ 

    1

  • 8/20/2019 Emitter Degenerated

    40/41

    Lecture 06 - 40ELE2110A © 2008

    Summary of Common Base Amplifier 

    Terminal voltage gain: Non-inverting and Large

    Input resistance: Low

    Output resistance: High

    Current gain: close to Unity

    Input range: determined by gmRth

    Excellent for use as a current buffer 

    C t B ff

  • 8/20/2019 Emitter Degenerated

    41/41

    Lecture 06 - 41ELE2110A © 2008

    Current Buffer 

    RsRL

    Io

    Ii

    Rs Ri RLRo A=1

    Current buffer 

    VoIi

    Io

    ii

     LS 

    S o   I  I 

     R R

     R I   >

    Only a small portion of sourcecurrent is delivered to load!

    • With a buffer:

    • Without a buffer:

    for