engineering design issues arising when applying mor to mems: … · 2006-12-12 · institute of...

44
Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann, J. G. Korvink Engineering design issues arising when applying MOR to MEMS: Three case studies

Upload: others

Post on 15-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Engineering design issues arising when applying MOR to MEMS: Three case studies

Page 2: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Outline

Microelectromechanical RF Resonator IRST RF MEMS Switch

Model Order Reduction of a Nonlinear ODE System IBM Millipede memory device

Automatic parametric MOR for MEMS Design IMEGO Butterfly Gyroscope

Small Demo

2

Page 3: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

What is design?

A registered design is a monopoly right for the appearance of the whole or a part of a product resulting from the features of, in particular, the: lines, contours, colors, shape, texture and materials of the product or its ornamentationUK design office

Design is finding the right connections or simply making things rightRalph Kaplan

Cenk Acar: Distributed-Mass Gyroscope, 1st place 2003 MEMS Design Challenge

Butterfly Gyro: www.monolitsystem.se

3

Page 4: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Specifics of MEMS Design

Restrictions by technology Materials Processes Size 2.5 D-Layout (Manhattan Design)

Scaling effects Unusual physical effects

(volume versus surface,high gradients)

Novel actuation concepts Reduced design freedom Often in contradiction to everday

experience Many repeated parts

www.zdf.de

www.rootsweb.com

4

Page 5: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

MEMS Simulation Overview

Fluidic Thermal Chemical Electrical Structural

Transient ParametricFrequency

limitNonlinear

Physical Domain

Equations

Simulation Tasks

Model Order Reduction

Compact Modelling

Transient HarmonicSteady

StateSystem Export

Error

Estimation

5

Page 6: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

IRST RF MEMS Switch

Page 7: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

MEMS RF Capacitive Switch

7

Gold membrane, suspended over electrode

Squeeze film damping, modelled using Rayleigh model

CMOS compatible process, directly on top of the electronic circuits

Membrane has ca. 30 MPa tensile stress ➔ Tunes resonance frequency

Deflection measured using an interferometric profilometer

FEM model has ca. 45000 DoF Needed is small accurate circuit

model

Page 8: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

MEMS RF Capacitive Switch

7

Gold membrane, suspended over electrode

Squeeze film damping, modelled using Rayleigh model

CMOS compatible process, directly on top of the electronic circuits

Membrane has ca. 30 MPa tensile stress ➔ Tunes resonance frequency

Deflection measured using an interferometric profilometer

FEM model has ca. 45000 DoF Needed is small accurate circuit

model

Page 9: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Model Reduction Procedure: From 45’000 DoF to 15

Simplified capacitor model yields 9 nonlinear gap

forces, distributed over the membrane

FEM model in ANSYS Includes stress stiffening

(geometrical stiffness matrix)

Block Arnoldi for MOR 15 DoF Comparison with

experiment used as stop criterion

Simulation of system response VHDL + Cadence

8

Page 10: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Model Reduction Procedure: From 45’000 DoF to 15

Simplified capacitor model yields 9 nonlinear gap

forces, distributed over the membrane

FEM model in ANSYS Includes stress stiffening

(geometrical stiffness matrix)

Block Arnoldi for MOR 15 DoF Comparison with

experiment used as stop criterion

Simulation of system response VHDL + Cadence

8

Operation Tool Computationaltime

Initial stress state & element matrices computation

ANSYS 68.1s

Reduced order model extraction Mor4fem 500s

Electrostatic forces computation (with FEM) ANSYS 59.2s

Dynamic simulation Cadence 660ms

Page 11: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Model Reduction Procedure: From 45’000 DoF to 15

Simplified capacitor model yields 9 nonlinear gap

forces, distributed over the membrane

FEM model in ANSYS Includes stress stiffening

(geometrical stiffness matrix)

Block Arnoldi for MOR 15 DoF Comparison with

experiment used as stop criterion

Simulation of system response VHDL + Cadence

8

Operation Tool Computationaltime

Initial stress state & element matrices computation

ANSYS 68.1s

Reduced order model extraction Mor4fem 500s

Electrostatic forces computation (with FEM) ANSYS 59.2s

Dynamic simulation Cadence 660ms

Page 12: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Model Reduction Procedure: From 45’000 DoF to 15

Simplified capacitor model yields 9 nonlinear gap

forces, distributed over the membrane

FEM model in ANSYS Includes stress stiffening

(geometrical stiffness matrix)

Block Arnoldi for MOR 15 DoF Comparison with

experiment used as stop criterion

Simulation of system response VHDL + Cadence

8

Operation Tool Computationaltime

Initial stress state & element matrices computation

ANSYS 68.1s

Reduced order model extraction Mor4fem 500s

Electrostatic forces computation (with FEM) ANSYS 59.2s

Dynamic simulation Cadence 660ms

Page 13: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

IBM Millipede Memory Device

Page 14: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink 10

MEMS Many-Parts Challenge

Many parts – each is complex (10many potentially nonlinear equations)

Teams develop parts

Challenge: how to test entire system?

(without building it!)

Page 15: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

IBM scanning-probe data storage device

Writing

Reading

Write currentResistive heater

Scan direction

PolymerSubstrate

Read current

© IBM Research Center, Zürich11

Page 16: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Modelling issues

Tip actuated electrostatically

→ electrostatic/structural coupling

Use of transducer elements Nonlinear 1/x2 force law

(parallel plate capacitor) Coupled equation after

discretization (ANSYS):

Transient solution very time consuming

→ requires MOR Goal: Use in system

simulator→ Verilog-A Model order reduction

allows to cosimulate with circuitry

Mx+Ex+Kx = f [x,u]

12

Page 17: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Assume nonlinear stiffness matrix, convert to polynomial

Idea: Use projection on polynomial matrices:

Advantages: Form of the equations remains the same Simulation free

Open questions: How to choose V? One possibility: Use only the linear part of K

and hope that you catch all the important information How to estimate the accuracy of the reduced model? Where is

the trust region?

Nonlinear Model Order Reduction

Ci jx j +K1i jx j +K2

i jkx jxk +K3i jklx jxkxl = Bimum

Ci jVinVjoxr,o +K1i jVinVjoxr,o +K2

i jkVinVjoVkpxr,oxr,p + . . .

= BimVinum

13

Idea fromChen & White

Page 18: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Results: From 9440 DoF to 19Model order reduced versusfull solution

Model order reduced versuspolynomial approximation

14

Page 19: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Results: From 9440 DoF to 19Model order reduced versusfull solution

Model order reduced versuspolynomial approximation

14

CCIC’06

Page 20: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Automatic parametric MOR for MEMS Design

Page 21: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametrisation – Simple beam model

Stationary model 2 Materials, different

Young‘s modulus Defined displacement at

both sides Ratio of Young‘s moduli

gives shape of loaded beam -> shape(A:B)

dB

A

16

Page 22: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametrisation – Simple beam model

Stationary model 2 Materials, different

Young‘s modulus Defined displacement at

both sides Ratio of Young‘s moduli

gives shape of loaded beam -> shape(A:B)

dB

A

16

Page 23: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametrisation – physical

Equation is Parameter is Young‘s

modulus Dependencies in are

linear, do not influence mesh

Approach: Assemble elements A and

B in 2 matrices Matrix A is constant Matrix B can be scaled

BA

!g · "[Y,#] · !g = !f

Y (i!!)(1!2!)(1+!)

,Y

2(1+!)

KA KBK = KA +KB

17

Page 24: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametrisation – geometric

Parameters influence discretisation Assembly often not controllable

in commercial codes (e.g. Ansys) Approach:

Influence of parameter is known Generate set of matrices with

varying parameters [i,j] entry of matrices change

with parameter p Define mapping function:

Least squares fit finds matrices a and b

Assemble to build K[p]

Z... d!

KA,KB, ...,KN

fi j[p] = ai j + p!bi j

Eg. 2 x 2 Matrix

18

Page 25: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Butterfly Gyroscope

Gyroscope: Sensor for angular velocity Coriolis acceleration

Coupling between y- and z-Axes -> Signal(v)

„simple“ design Cheap fabrication Good performance Needs good electronics

-> system simulation Optimal parameters?

Foucault demonstrates Earth’s rotation, Paris, Pantheon, 1851

vaCor ×= ω2

19

Page 26: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Butterfly Gyroscope

Gyroscope: Sensor for angular velocity Coriolis acceleration

Coupling between y- and z-Axes -> Signal(v)

„simple“ design Cheap fabrication Good performance Needs good electronics

-> system simulation Optimal parameters?

Foucault demonstrates Earth’s rotation, Paris, Pantheon, 1851

Working principle of the Imego Butterfly Gyroscope

vaCor ×= ω2

19

Page 27: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Butterfly Gyroscope

Gyroscope: Sensor for angular velocity Coriolis acceleration

Coupling between y- and z-Axes -> Signal(v)

„simple“ design Cheap fabrication Good performance Needs good electronics

-> system simulation Optimal parameters?

Foucault demonstrates Earth’s rotation, Paris, Pantheon, 1851

Working principle of the Imego Butterfly Gyroscope

vaCor ×= ω2

Butterfly Gyro: www.monolitsystem.se

19

Page 28: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Butterfly Gyroscope

Gyroscope: Sensor for angular velocity Coriolis acceleration

Coupling between y- and z-Axes -> Signal(v)

„simple“ design Cheap fabrication Good performance Needs good electronics

-> system simulation Optimal parameters?

Foucault demonstrates Earth’s rotation, Paris, Pantheon, 1851

Working principle of the Imego Butterfly Gyroscope

vaCor ×= ω2

Butterfly Gyro: www.monolitsystem.se

19

Page 29: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Butterfly Gyroscope - parametrisation

Modelling (IMS): ~1’000 quadratic elements ~18’000 DoF

5 Parameters: Physical parametrisation:

• Angular velocity ω• Material density ρ • Raleigh damping

parameters α, β Geometric parametrisation:

• Width of bearing d• Param. error: 10-21

Gyroscope model generated with the Imtek Mathematica Supplement: http://www.imtek.de/

simulation/mathematica/IMSweb/

M[!,d]x+D[",d,#,$]x+S[d,1/d]x = Bu20

Page 30: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Butterfly Gyroscope - parametrisation

Max deflection is 0.1 - 1 µm Output is difference signal Value range of output is

10-7 - 10-4 µm

21

d

Page 31: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Butterfly Gyroscope - parametrisation

Max deflection is 0.1 - 1 µm Output is difference signal Value range of output is

10-7 - 10-4 µm

21

d

Page 32: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametric MOR - overview

Requirements: Multi-variable Padé – type

moment matching approach Implicit moment matching

Approach: discard mixed moments Error will increase rapidly

with distance from expansion point

Use several expansion points to cover complete parameter space

How many expansion points? How many expansions at

each point?

22

Page 33: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametric MOR - overview

Requirements: Multi-variable Padé – type

moment matching approach Implicit moment matching

Approach: discard mixed moments Error will increase rapidly

with distance from expansion point

Use several expansion points to cover complete parameter space

How many expansion points? How many expansions at

each point?

22

Page 34: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametric MOR - overview

Requirements: Multi-variable Padé – type

moment matching approach Implicit moment matching

Approach: discard mixed moments Error will increase rapidly

with distance from expansion point

Use several expansion points to cover complete parameter space

How many expansion points? How many expansions at

each point?

22

Page 35: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink 23

Parametric MOR – Local stop criterion

stop criterion – convergence check: define output compute output near

expansion point when:

change < threshold value ➔ converged

Mproj global

expansion point

Expansion direction

add next moment

Mproj local

add next moment

Mproj global

check convergence

NoYes

Page 36: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink 24

Parametric MOR – Global stop criterion Find next expansion point Stop expansions

compute supporting points & solutions

set 1st exp. point

for all expansion directions: perform

expansion at selected point with convergence

check

compute solution & error of reduced model

parametric reduced System

new exp. point

> Limit

< Limit

Page 37: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink 24

Parametric MOR – Global stop criterion Find next expansion point Stop expansions

compute supporting points & solutions

set 1st exp. point

for all expansion directions: perform

expansion at selected point with convergence

check

compute solution & error of reduced model

parametric reduced System

new exp. point

> Limit

< Limit

Mproj global

expansion point

Expansion direction

add next moment

Mproj local

add next moment

Mproj global

check convergence

NoYes

Page 38: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink 24

Parametric MOR – Global stop criterion Find next expansion point Stop expansions

compute supporting points & solutions

set 1st exp. point

for all expansion directions: perform

expansion at selected point with convergence

check

compute solution & error of reduced model

parametric reduced System

new exp. point

> Limit

< Limit

Page 39: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink 25

Parametric MOR of Gyro

Raleigh damping built from stiffness and mass not needed in reduction

Parameterized ODE in Laplace space (no DRaleigh) 7 separate matrices but 6

parameter combinations ➔ expand along 6 directions

Alternative approach: only expand along s and ω use „snapshots“ for d to

build projection matrix project completely

parameterized system

System1

Parametric SystemMproj

Reduced Parametric System

System2 System3 System4

DRaleigh = ! M +" K

! s2 (Mb +d Mv) · x+! s (Db +d Dv) · x+

(Kb +1d

Kv,1 +d Kv,2) · x = B · u

Page 40: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametric MOR of Gyro: From 18’000 DoF to 196

expansion along all directions reduced system size:

196 DoF 360 supporting points

solution

error(Arg) error(Abs)

26

Page 41: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Parametric MOR of Gyro: From 18’000 DoF to 92

“snapshot” approach reduced system size:

92 DoF 4 snapshots

(d = 1, 1.33, 1.66, 2) 4x200 supporting

points

solution

error(Arg) error(Abs)

27

Page 42: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Conclusion

MOR works well for IBM’s millipede tip & the IRST MEMS Switch Still too much hand tuning, e.g., nonlinear force, stop criterion

Algebraic parametrisation allows for geometric parametrisation enables parametrisation of commercial software models

Parametric MOR semi-automatic tested up to 6 terms

Snapshot technique reduces number of parameters for expansion

Open questions remain28

Page 43: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink 29

Page 44: Engineering design issues arising when applying MOR to MEMS: … · 2006-12-12 · Institute of Microsystem Technology Laboratory for Microsystem Simulation C. Moosmann, J. Lienemann,

Institute of Microsystem TechnologyLaboratory for Microsystem Simulation

C. Moosmann, J. Lienemann, J. G. Korvink

Small Demo: Realtime Solving