environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · measurements...

151
Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution Sampling System during March, 2011 DRI Contract Number: T113-10 Submitted to: Drs. Kevin E. Percy and Kenneth R. Foster Wood Buffalo Environmental Association #100 – 300 Thickwood Boulevard Ft. McMurray, AB, Canada T9K 1Y1 Prepared for: Wood Buffalo Environmental Association By: John G. Watson, Ph.D. Judith C. Chow, Sc.D. Xiaoliang Wang, Ph.D. Steven D. Kohl, M.S. Steven Gronstal, M.S. Barbara Zielinska, Ph.D. Desert Research Institute Nevada System of Higher Education 2215 Raggio Parkway Reno, NV 89512 Finalized March 31, 2013

Upload: others

Post on 16-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution Sampling System during March, 2011

DRI Contract Number: T113-10

Submitted to:

Drs. Kevin E. Percy and Kenneth R. Foster

Wood Buffalo Environmental Association #100 – 300 Thickwood Boulevard

Ft. McMurray, AB, Canada T9K 1Y1

Prepared for: Wood Buffalo Environmental Association

By:

John G. Watson, Ph.D. Judith C. Chow, Sc.D. Xiaoliang Wang, Ph.D. Steven D. Kohl, M.S. Steven Gronstal, M.S.

Barbara Zielinska, Ph.D.

Desert Research Institute Nevada System of Higher Education

2215 Raggio Parkway Reno, NV 89512

Finalized March 31, 2013

Page 2: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

i

Table of Contents Page List of Abbreviations ...................................................................................................................... ii List of Tables ................................................................................................................................. iv List of Figures ................................................................................................................................ ix Executive Summary ...................................................................................................................... xii 1 Introduction ................................................................................................................... 1-1

1.1 Background ............................................................................................................. 1-1 1.2 Study Objectives ..................................................................................................... 1-3 1.3 Report Overview ..................................................................................................... 1-4

2 Experimental Methods .................................................................................................. 2-1 2.1 Overview ................................................................................................................. 2-1 2.2 Dilution Sampling System ...................................................................................... 2-1 2.3 Stack Information.................................................................................................... 2-7 2.4 Test Procedure ........................................................................................................ 2-7 2.5 Laboratory Analysis ................................................................................................ 2-7

2.5.1 Particulate Acidity Analysis ............................................................................. 2-10 2.5.2 Particle Hygroscopicity and Evaporation Analysis .......................................... 2-10 2.5.3 Nitro-PAH Analysis ......................................................................................... 2-10 2.5.4 Hg Analysis ...................................................................................................... 2-11

3 Data Validation ............................................................................................................. 3-1 3.1 Laboratory Data Validation .................................................................................... 3-1

3.1.1 Mass Closure ...................................................................................................... 3-1 3.1.2 Anion and Cation Balance .................................................................................. 3-1 3.1.3 Calculated versus Measured NH4

+ ..................................................................... 3-4 3.1.4 Hygroscopicity and Volatility ............................................................................ 3-4 3.1.5 SO4

= versus Total S ............................................................................................ 3-9 3.2 Real-time Data Validation ...................................................................................... 3-9

4 Pollutant Concentrations and Emission Rates .............................................................. 4-1 4.1 Emission Rate Calculation ...................................................................................... 4-1 4.2 Data Reduction........................................................................................................ 4-2 4.3 NMHC and Carbonyl Concentrations and Emission Rates .................................... 4-2 4.4 Stack Concentrations and Emission Rates of Inorganic Gases and PM ................. 4-9 4.5 PM Chemical Concentrations and Emission Rates ............................................... 4-23 4.6 Stack Concentrations and Emission Rates of Hg Species .................................... 4-45

5 Source Profiles .............................................................................................................. 5-1 5.1 NMHC Source Profiles ........................................................................................... 5-1 5.2 Inorganic Gases and PM2.5 Source Profiles ............................................................ 5-1

6 Summary of Major Findings ......................................................................................... 6-1 7 References ..................................................................................................................... 7-1

Page 3: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

ii

List of Abbreviations ΔP: differential pressure ρi : density for emittant i. σ: uncertainty AAS: atomic absorption spectroscopy AC: automated colorimetry AgNO3: silver nitrate AOSR: Athabasca Oil Sands Region AP42: U.S. EPA Compilation of Air Pollution

Emission Factors Ar: argon ARB: California Air Resources Board ARD: Arizona road dust ASTM: the American Society for Testing and

Materials ATN: optical attenuation babs: light absorption coefficient BC: black carbon BrCl: bromine monochloride Ca++: calcium ion CAC: criteria air contaminants CaCl2: calcium chloride CFR: Federal Register CH4: methane Cl-: chloride CMB: chemical mass balance Ci: concentration of emittant i CO: carbon monoxide CO2: carbon dioxide CPC: condensation particle counter Cs: pitot tube constant (0.84) CSA: stack cross section area CTM: Conditional Test Method CVAFS: cold vapor atomic fluorescence

spectrometry DELCD: dry electrolytic conductivity detector DR: dilution ratio DNPH: 2,4-dinitrophenylhydrazine DRI: Desert Research Institute EAF: DRI’s Environmental Analysis Facility EC: elemental carbon EF: emission factors ER: emission rate ESP: electrostatic precipitators EV: effective variance FCCU: fluidized catalytic cracking unit FGD: flue gas desulfurization FID: flame ionization detector FRM: Federal Reference Method GC-FID/MS: gas chromatography-flame ionization

detector/mass spectrometry GEM: gaseous elemental mercury GHG: greenhouse gases

H2O: water H2O2: hydrogen peroxide H2S: hydrogen sulfide H2SO4: sulfuric acid HCl: hydrogen chloride He: helium HEPA: high efficiency particulate air Hg: mercury HPLC: high performance liquid chromatograph HULIS: humic-like substances ICP/MS: inductively coupled plasma/mass

spectrometry IC: Ion chromatography ID: inner diameter IMPROVE: Interagency Monitoring of Protected

Visual Environments IR: infrared K+: potassium ion K2CO3: potassium carbonate KCl: potassium chloride Kp: stack velocity constant (34.97), LEL: lower explosive limit Mg++: magnesium ion MDL: Minimum detection limit MeCl2: methylene chloride Mi: atomic or molecular weight of species i MMD: mass median diameter MW: molecular weight N2: nitrogen Na+: sodium ion NAAQS: U.S. National Ambient Air Quality

Standards NDIR: nondispersive infrared NH3: ammonia NH4

+: ammonium (NH4)2SO4: ammonium sulfate NH4Cl: ammonium chloride NH4HSO4: ammonium bisulfate NICI: negative ion chemical ionization NMHC: non-methane hydrocarbon NO: nitrogen oxide NO2: nitrogen dioxide NO2

-: nitrite NO3

-: nitrate NOx: nitrogen oxides O2: oxygen O3: ozone OAL: DRI’s Organic Analytical Laboratory OAQPS: U.S. EPA’s Office of Air Quality Planning

and Standards OC: organic carbon

Page 4: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

iii

OC1, OC2, OC3, and OC4: organic carbon evolved at 140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere

OES: optical emission spectrometry OP: pyrolyzed carbon OPC: optical particle counter OPS: optical particle sizer P: pressure PAH: polycyclic aromatic hydrocarbon PAMS: photochemical assessment monitoring

stations Pb: lead PDS: phenoldisulfonic acid PHg: particle-bound mercury PID: photo ionization detector PM: particulate matter PM2.5: particles with aerodynamic diameter < 2.5 µm PM10: particles with aerodynamic diameter < 10 µm PM25: particles with optical diameter < 25 µm PMF: positive matrix factorization PO4

≡: phosphate PSL: polystyrene latex spheres R: universal gas constant RH: relative humidity RGM: reactive gaseous or gaseous oxidized mercury RMSE: root mean square error SEM: scanning electron microscopy SO2: sulfur dioxide SO3: sulfur trioxide SO4

=: sulfate SRM: standard reference method SVOCs: semi-volatile organic compounds T: temperature TC: total carbon TD-GC/MS: thermal desorption-gas

chromatography/mass spectrometry TOC: total organic carbon analyzer TOR: thermal-optical reflectance TOT: thermal/optical transmittance TSP: total suspended particles UFP: ultrafine particles U.S. EPA: United States Environmental Protection

Agency UV: ultraviolet UVC: ultraviolet light-absorbing carbon V: volume of air sampled VIS: visible VOCs: volatile organic compounds VSt: average stack velocity WBEA: Wood Buffalo Environmental Association WSOC: water-soluble organic carbon XRF: X-ray fluorescence

Page 5: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

iv

List of Tables Page Table 1-1. Emission rates (EF) of criteria air contaminants measured in summer 2008. ............ 1-2 Table 2-1. Real-time gas analyzers applied to the stack emission testing at AOSR in

March 2011. ......................................................................................................... 2-4 Table 2-2. Real-time particulate analyzers applied to the stack emission testing at AOSR

in March 2011. ..................................................................................................... 2-5 Table 2-3. Procedure for field testing of stack emission with the dilution sampling

system. ................................................................................................................. 2-8 Table 2-4. Summary of experimental parameters for each run at Facility A. The ambient

temperature during the sampling period ranged -14.1–4.7 °C with an average of -4.7 °C. ............................................................................................... 2-9

Table 3-1. PM mass on Teflon®-membrane filter as originally weighed after conditioning in the lab, drying in a desiccator for 72 hrs, re-equilibrated for 24 hours after desiccator drying, and after x-ray fluorescence (XRF) analysis. ................ 3-7

Table 3-2. Potassium (K+) and sulfate (SO4=) ions and pH measured from selected

K2CO3-impregnated filters. ................................................................................ 3-14 Table 4-1. Stack velocity, temperature, and flow rate under standard conditions (25°C,

and 101,325 Pa). The ambient temperature ranged 9.0–32.7 °C with an average of 18.7 °C during the 2008 sampling period, and ranged -14.1–4.7 °C with an average of -4.7 °C during the 2011 sampling period. .................. 4-3

Table 4-2a. Stack A wet basis concentration and emission rate of 55 PAMS compounds and other identified non-methane hydrocarbons (NMHC). The 10 species with highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold and warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) .......................................................................... 4-5

Table 4-2b. Stack B wet basis concentration and emission rate of 55 PAMS compounds and other identified non-methane hydrocarbons (NMHC). The 10 species with highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold dilution and eight runs of warm dilution. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) .......................................................................... 4-7

Table 4-3a. Stack A wet basis concentration and emission rate of halocarbons. Three species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold and warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................................ 4-10

Page 6: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

v

List of Tables, continued Page Table 4-3b. Stack B wet basis concentration and emission rate of halocarbons. Three

species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold and eight runs of warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................ 4-11

Table 4-4a. Stack A wet basis concentration and emission rate of carbonyls. Species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from five runs of cold dilution (excluding Run C1) and six runs of warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ............................ 4-13

Table 4-4b. Stack B wet basis concentration and emission rate of carbonyls. Species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold dilution and eight runs of warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................ 4-14

Table 4-5a. Stack A gas and PM wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................................ 4-15

Table 4-5b. Stack B gas and PM wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and eight warm dilution, respectively. Data were reported as average ± standard error of multiple runs.) .................................................................................................... 4-16

Table 4-6a. Comparison of emission rates (ER) from compliance tests conducted in 2007 (data from the 2007 AENV Air Emission Report), dilution sampling conducted in August 2008 and March 2011, and emission limits for Stack A. ........................................................................................................................ 4-20

Table 4-6b. Comparison of emission rates (ER) from compliance tests conducted in 2007 (data from the 2007 AENV Air Emission Report), dilution sampling conducted in August 2008 and March 2011, and emission limits for Stack B. ........................................................................................................................ 4-21

Table 4-7. Comparison of Stack A particle size distribution measured from hot filters behind PM10 and PM2.5 inlets and dilution sampling. ....................................... 4-24

Table 4-8a. Stack A PM2.5 constituents (ions, carbon fractions, and elements) wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limit [MDLs]. Data were reported as average ± standard error of multiple runs.) ..... 4-25

Page 7: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

vi

List of Tables, continued Page Table 4-8b. Stack B PM2.5 constituent (ions, carbon fractions, and elements) wet basis

concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold dilution and eight runs of warm dilutions, respectively. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................ 4-28

Table 4-9a. Stack A PM2.5 Cs, Ba, rare earth elements, and Pb (measured by ICP/MS) wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) .................................................................................................................. 4-31

Table 4-9b. Stack B PM2.5 Cs, Ba, rare earth elements, and Pb (measured by ICP/MS) wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold dilution and eight runs of warm dilution. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................................ 4-32

Table 4-10a. Stack A wet basis concentrations and ERs of non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from filter samples. Retene had the highest ER in winter and is highlighted in yellow. (Data were averaged from six runs of cold and warm dilutions, respectively. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................................ 4-33

Table 4-10b. Stack B wet basis concentrations and ERs of non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from filter samples. (Data were averaged from six runs of cold dilution and eight warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ........................................................ 4-38

Table 4-11a. Stack A wet basis concentrations and ERs of carbohydrates, organic acids and WSOC from PM2.5 particles collected on the quartz filters. (Data were averaged from six runs of cold and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limit [MDLs]. Data were reported as average ± standard error of multiple runs.) ..... 4-43

Page 8: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

vii

List of Tables, continued Page Table 4-11b. Stack B wet basis concentrations and ERs of carbohydrates, organic acids

and WSOC from PM2.5 particles collected on the quartz filters. (Data were averaged from six runs of cold dilution and eight warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. The indicated uncertainty is the standard error of multiple runs.) .................................................................................................... 4-44

Table 4-12a. Stack A wet basis concentrations and ERs of nitro-PAHs. (Data were averaged from six runs of cold dilution and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) .................................................................................................................. 4-46

Table 4-12b. Stack B wet basis concentrations and ERs of nitro-PAHs. (Data were averaged from six runs of cold dilution and eight warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.) ................................................................................................ 4-47

Table 4-13. Hg wet basis concentrations and ERs of Hg from a) Stack A and b) Stack B. ...... 4-48 Table 5-1. Source profiles for non-methane hydrocarbons (NMHC) normalized by the

sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant five species are highlighted in green for Stack A and in yellow for Stack B. (Data were averaged for six runs of cold and warm dilutions from Stack A, six runs of cold dilution and eight runs of warm dilution from Stack B. Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runsa). ............................................................ 5-2

Table 5-2. Halocarbon abundances normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant species are highlighted in green. (Data were averaged from six runs of cold and warm dilutions from Stack A, six runs of cold dilution and eight runs of warm dilution from Stack B. Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) ............................................................. 5-6

Table 5-3a. Carbonyl abundances normalized to the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant species are highlighted in green. (Data were averaged from six runs of cold and warm dilutions from Stack A, six runs of cold dilution and eight runs of warm dilution from Stack B. Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) .................................................................................... 5-7

Table 5-3b. Carbonyl abundances normalized by the sum of 14 carbonyls. The most abundant species are highlighted in green. .......................................................... 5-7

Page 9: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

viii

List of Tables, continued Page Table 5-4. Average inorganic gas and PM chemical abundances (as % of PM2.5 mass) for

Stacks A and B for winter 2011 and summer 2008 samples. Winter measurements include cold and warm dilutions. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runsa.) ..................................... 5-9

Table 5-5. Abundances of ICP/MS measured Cs, Ba, rare earth elements, and Pb (% of PM2.5 mass) from: a) Stack A and b) Stack B. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) .................................... 5-21

Table 5-6. Differences in lead isotope abundances from stack emissions relative to their s between stack emissions and natural abundances. ............................................. 5-23

Table 5-7a. Stack A abundances (% of PM2.5 and OC mass) for non-polar PM2.5 organic compounds.. Retene is the most abundant PAH in winter and highlighted in yellow. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) ................................................................................................ 5-25

Table 5-7b. Stack B abundances (% of PM2.5 and OC mass) for non-polar PM2.5 organic compounds. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) ................................................................................................ 5-30

Table 5-8a. Stack A abundances (% of PM2.5 and OC mass) for PM2.5 carbohydrate, organic acids and water-soluble organic carbon (WSOC). (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) ...................... 5-37

Table 5-8b. Stack B abundances (% of PM2.5 and OC mass) for PM2.5 carbohydrate, organic acids and water-soluble organic carbon (WSOC). (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) ...................... 5-38

Table 5-9a. Stack A abundances (% of PM2.5 and OC mass) for nitro-PAHs. Data are expressed as a percentage of the Teflon® filter PM2.5 mass concentration and organic carbon (OC) concentration. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) ........................................................... 5-39

Table 5-9b. Stack B abundances (% of PM2.5 and OC mass) for nitro-PAHs. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) ...................... 5-40

Page 10: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

ix

List of Figures Page

Figure 2-1. Schematic diagram of dilution sampling system. ..................................................... 2-2 Figure 2-2. Six-channel filter pack sampling configuration for time-integrated particle

and gas samples. In addition to the four channels used in the 2008 testing, two channels were added in 2011 for particle pH and nitro-PAH measurement. ....................................................................................................... 2-6

Figure 3-1. Sum of measured species versus gravimetric PM2.5 mass concentration for: a) Stack A and b) Stack B. The sum of species includes TC, Na+, Mg++, K, Cl, Ca, PO4

≡, and SO4= and excludes OC and EC fractions, OC, EC, Na,

Mg, P, S, CO3=, K+, Cl- , and Ca++. For Stack A, data with and without

accounting for H2O and H+ are plotted. ............................................................... 3-2 Figure 3-2. Total anions versus cations for: a) Stack A and b) Stack B. ..................................... 3-3 Figure 3-3. Average soluble anion and cation concentrations (in µeq/m3) in PM2.5 from:

a) Stack A and b) Stack B. ................................................................................... 3-5 Figure 3-4. Calculated ammonium by summing ammonium ions in NH4NO3 and either

(NH4)2SO4 (0.29×[NO3-]+0.38×[SO4

=]; blue symbols) or NH4HSO4 (0.29×[NO3

-]+0.192×[HSO4-]; green symbols) versus ammonium

measured directly by automated colorimetry (AC). ............................................ 3-6 Figure 3-5. PM mass on Teflon®-membrane filter from: a) Stack A and b) Stack B as

originally weighed after conditioning at 35±5% RH in the lab, drying in a desiccator (<1% RH) for 72 hrs, re-equilibrated for 24 hours after desiccator drying, and after x-ray fluorescence (XRF) analysis. ......................... 3-8

Figure 3-6. Water-soluble sulfate (SO4=) on quartz-fiber filter by ion chromatographic

(IC) analysis versus total sulfur (S) on Teflon®-membrane filters by x-ray fluorescence (XRF) analysis for a) Stacks A and b) Stack B. ........................... 3-10

Figure 3-7. Verification data of: a) PID analyzer for isobutylene; b) Testo emission analyzer for CO, NO, and SO2; c) PP Systems CO2 analyzers for undiluted, diluted, and background CO2; d) 2B Tech NO monitor for NO; and e) Ecotech SO2 analyzer for SO2 (before and after stack test). ................... 3-11

Figure 3-8. Comparison of average NO concentration measured by the 2B Tech NO monitor and the Testo emission analyzer........................................................... 3-12

Figure 3-9. Comparison of average SO2 concentration measured by: a) Testo emission analyzer and b) Ecotech SO2 analyzer to potassium carbonate-impregnated filter. ................................................................................................................... 3-13

Figure 3-10. Particle size distributions of monodisperse polystyrene latex (PSL) particles measured by: a) TSI DustTrak DRX and b) Grimm OPC. ................................ 3-16

Figure 3-11. Comparison of average PM2.5 concentration measured by gravimetry to: a) DustTrak DRX and b) OPC. .............................................................................. 3-17

Figure 3-12. Particle mass distribution measured by the OPC from: a) Stack A and b) Stack B. The mass concentrations were scaled by the PM2.5 concentrations from Teflon®-membrane filter, and are expressed in concentrations under standard conditions (i.e., 101,325 Pa and 20 °C). The error bar represents standard error from multiple measurements. ..................................................... 3-19

Page 11: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

x

List of Figures, continued Page

Figure 3-13. Cumulative particle mass distribution measured by the OPC from: a) Stack A and b) Stack B.. .............................................................................................. 3-20

Figure 3-14. Particle mass distribution measured by DustTrak DRX and OPC for : a) Stack A and b) Stack B. PM2.5 concentration was normalized to filter mass concentration. ..................................................................................................... 3-21

Figure 3-15. Comparison of average black carbon (BC) concentration measured by micro-aethalometer AE52 with: a) BC by AE51 at 880 nm and b) brown carbon (BrC; also called UV-absorbing carbon [UVC]) by AE52 at 370 nm. ..................................................................................................................... 3-23

Figure 3-16. Comparison of: a) light transmission (babs) on Teflon®-membrane filter by densitometer and b) black carbon (BC) by AE52 with elemental carbon (EC) concentration measured by thermal/optical reflectance analysis. The error bar represents analytical uncertainties. ..................................................... 3-24

Figure 4-1. Sum of identified NMHC from: a) Stack A and b) Stack B. C denotes cold run, W denotes warm run and Blank denotes the system blank. ......................... 4-4

Figure 4-2. Carbonyl species concentration for each sample collected from: a) Stack A and b) Stack B. ................................................................................................... 4-12

Figure 4-3. Comparison of gas and PM emission rates from: a) Stack A and b) Stack B under cold and warm dilution conditions in winter 2011. ................................. 4-17

Figure 4-4. Comparison of gas and PM emission rate from: a) Stack A and b) Stack B in March 2011 and August 2008. ........................................................................... 4-18

Figure 4-5. Comparison of emission rates (ER) from March 2011 and August 2008 dilution tests, compliance tests, and emission limits for: a) Stack A and b) Stack B. .............................................................................................................. 4-22

Figure 5-1. Abundances of NMHC groups normalized to the sum of 55 photochemical assessment monitoring station (PAMS) compounds for: a) Stack A and b) Stack B under cold and warm dilution conditions. Error bars indicate the larger of the standard deviation or the uncertainty of average of multiple runs. ...................................................................................................................... 5-4

Figure 5-2. Averaged NMHC source profiles from Stacks A and B for species with abundances >1% of the sum of 55 PAMS compounds for at least one of the stacks. (The height of each bar indicates the averaged fractional abundance for the indicated NMHC [normalized to the total of 55 PAMS compounds], while the dot shows the larger of the standard deviation or the uncertainty of the average for multiple runs.) ................................................ 5-5

Figure 5-3. PM2.5 chemical abundances for Stack A in: a) March 2011 (winter) and b) August 2008 (summer) for species with abundance >0.1% of PM2.5 mass for either Stack A or Stack B. The height of each bar indicates the average percent abundance for the indicated chemical species normalized to PM2.5 mass concentration, while the dot shows the uncertainty (higher of standard deviation or uncertainty of the mean of multiple runs). ...................... 5-13

Page 12: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

xi

List of Figures, continued Page

Figure 5-4. PM2.5 chemical abundances from Stack B in: a) March 2011 (winter) and b) August 2008 (summer) for species with abundance >0.1% of PM2.5 mass for either Stack A or Stack B. The height of each bar indicates the averaged percent abundance for the indicated chemical species normalized to PM2.5 mass concentration, while the dot shows the uncertainty (higher of standard deviation or uncertainty of the mean of multiple runs). .................. 5-14

Figure 5-5. PM2.5 material balance for: a) Stack A in summer 2008; b) Stack A in winter 2011; c) Stack B in summer 2008; d) Stack B in winter 2011; and e) Stack C in summer. Geological material includes Al2O3, SiO2, CaO, and Fe2O3 (Geological material = 2.2 × [Al] + 2.49 × [Si] + 1.63 × [Ca] + 2.42 × [Fe] + 1.94 × [Ti]); other soluble ions include Cl-, NO2

-, NO3-, PO4

≡, Na+, Mg++, K+, and Ca++, and elements include all elements measured by XRF in Table 5-4 from P to U, excluding S, Ca, Fe, and Ti. ..................................... 5-15

Figure 5-6. PM2.5 material balance for: a) Stack A in winter 2011 and b) Stack C in summer 2008 after accounting for water associated with un-neutralized H2SO4 assuming thermodynamic equilibrium under the filter-conditioning environment. ...................................................................................................... 5-16

Figure 5-7. Abundance of carbon fractions (percentage of PM2.5) for: a) Stack A and b) Stack B. OC1 to OC4 are organic carbon fractions evolved in a 100% helium (He) atmosphere at 140, 280, 480, and 580 °C, respectively. EC1 to EC3 are elemental carbon fractions evolved in a 98% He/2% O2 atmosphere at 580, 740, and 840 °C, respectively. OP is pyrolyzed carbon by reflectance (OPR) or transmittance (OPT). Thermal analysis followed the IMPROVE_A thermal/optical reflectance analysis (TOR) protocol (Chow et al., 2007a). .......................................................................................... 5-17

Figure 5-8. Composite PM2.5 source profiles from a gas-fired boiler, a fluidized catalytic cracking unit, and a process heater at two oil refineries (API, 2002; Chang and England, 2004a; Chang and England, 2004b; England et al., 2001a; England et al., 2001b; England et al., 2001c). ................................................... 5-20

Figure 5-9. Abundance of stable lead isotopes in the stack samples vs. their natural abundances. ........................................................................................................ 5-22

Figure 5-10. Lead isotope ratios of a) 204Pb/207Pb vs 206Pb/207Pb and b) 208Pb/207Pb vs 206Pb/207Pb . ........................................................................................................ 5-24

Figure 5-11a. Stack A source profile of non-polar organic compounds as a percentage of organic carbon (OC). Only species with abundance >0.0003% of PM2.5 are plotted. ............................................................................................................... 5-35

Figure 5-11b. Stack B source profile of non-polar organic compounds as a percentage of organic carbon (OC). Only species with abundance >0.0003% of PM2.5 are plotted. ............................................................................................................... 5-36

Page 13: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

xii

Executive Summary Two major stationary sources (Stacks A and B at Facility A) in the Athabasca Oil Sands

Region (AOSR) were tests for source profiles and emission rates (ERs) using a dilution sampling system during March (winter), 2011. Results are compared with earlier tests on the same stacks during August (summer), 2008. The 2011 tests included mixing of hot stack effluents with winter-like (>8–18 °C) and summer-like (24–37 °C) dilution air. Study objectives were to: 1) quantify stack emissions under winter conditions and compare to summer emissions; and 2) quantify species that were not measured in summer 2008, including non-methane hydrocarbons, halocarbons, carbonyls, mercury, particulate nitro-PAH, particle-bound water, and particle acidity. A sample of flue gas was drawn out of the stack and diluted with filtered air to simulate rapid changes that occur when flue gas encounters ambient air. Concentrations of gaseous and particulate matter (PM) pollutants were measured in real time by continuous monitors and were also collected on sampling media for subsequent laboratory analysis. Two stacks were tested in this study. Stack A exhausts flue gas from two CO boilers that oxidize overhead gases from two fluid cokers, sour water treating units, and sometimes the sulfur recovery units. Most of the solid PM was removed by two electrostatic precipitators (ESP) before entering the stack and being vented to the atmosphere. Stack B receives CO boiler flue gas from a third fluid coker and sulfur recovery units after a portion of the primary PM is removed by an ESP and SO2 is scrubbed by an ammonia-based flue gas desulfurization (FGD) process. Criteria Air Contaminants

ERs for Criteria Air Contaminants (CACs, i.e., VOCs, CO, NO, SO2, O3, PM, and lead (Pb)) regulated by Environment Canada are compared for the 2011 and 2008 tests in Table A.

Table A. Emission rates for Environment Canada criteria air contaminants (CACsa).

CACs Unit Stack A Stack B

Winter (W) 2011

Summer (S) 2008 Ratio W/S Winter (W)

2011 Summer (S)

2008 Ratio W/S

VOCs kg/hr 6.2±3.0b NAc NAc 5.3±3.4b NAc NAc

CO kg/hr 301±47 1599±54 0.2 87±7 982±45 0.1 NOx kg/hr 1086±34 294.8±11.1d 3.7 299.2±9.7 132.5±2.5 d 2.3

SO2 kg/hr 9344±331 >1050 NAc 639±98 727±132 0.9

PM2.5 kg/hr 231.2±12.8 49.4±5.1 4.7 127.9±7.0 8.0±0.3 15.9

Pb g/hr 0.790±0.094 1.861±0.139 0.4 0.110±0.028 0.610±0.371 NAc a CACs were measured by research-type methods described in this report, and the results may not be

comparable to results from other test methods commonly used for regulatory stack emissions testing. b Sum of NMHC from canister samples c Data not available d NOx is assumed to be NO since NO2 measurement was not reliable in summer 2008.

Greenhouse Gas Emissions (GHG Among the greenhouse gases (GHGs), CO2 has the highest ERs: (4.99±0.06)×105 kg/hr

in 2011 and (2.61±0.05)×105 kg/hr in summer 2008 for Stack A, and (2.62±0.02)×105 kg/hr in winter 2011 and (1.77±0.02)×105 kg/hr in summer 2008 for Stack B. Winter ER is 91% and 48% higher than summer for Stacks A and B, respectively. ER for Stack A is 90% and 47% higher

Page 14: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

xiii

than Stack B for winter and summer, respectively. ERs of CH4 and halocarbons in winter 2011 (2008 data were not available) were relatively low: 6.4±1.9 kg/hr and 5.8±2.3 kg/hr for Stacks A and B, respectively, and 0.22±0.03 kg/hr and 0.11±0.04 kg/hr total halocarbons for Stacks A and B, respectively.

Non-Methane Hydrocarbon (NMHC) Compositions Concentrations of most non-methane hydrocarbons (NMHCs) from both stacks were

close to ambient levels, which were subtracted from stack contributions. Species with the highest ERs were ethene, propene, propane, ethane, and n-heptane for Stack A, and n-pentane, iso-pentane, n-butane, iso-butane, and toluene for Stack B. Stack A had higher carbonyl concentrations than ambient levels, and the three carbonyls with the highest ERs were acetone (5.5 kg/hr), acetaldehyde (1.9 kg/hr), and formaldehyde (0.4 kg/hr). Carbonyl concentrations in Stack B were similar to ambient levels, and the three species with the highest ERs were acetone (0.12 kg/hr), acetaldehyde (0.06 kg/hr), and propionaldehyde (0.01 kg/hr). The five most abundant NMHC species in Stack A were: ethene, ethane, propane, propylene, and n-butane, and the five most abundant species in Stack B were: trans-2-butene, 1,3-butadiene, n-nonane, cyclohexane, and benzene. Alkanes and cycloalkanes were the most abundant groups, accounting for 62% and 47% of the sum of the 55 photochemical assessment monitoring station (PAMS) compounds for Stacks A and B, respectively. Halocarbon abundances were low: the sum of all halocarbons was only 2.9% and 8.4% of the sum of Photochemical Assessment Monitoring Station (PAMS) compounds for Stacks A and B, respectively. Acetone and acetaldehyde are the most abundant carbonyls, accounting for 67% and 20% of total carbonyls for Stack A, and 71% and 24% for Stack B, respectively.

PM2.5 Chemical Composition For Stack A, the major chemical component of PM2.5 was (NH4)2SO4 in 2008 and H2SO4

droplets in 2011, accounting for 53.9% and 92.4% of PM2.5 mass, respectively, probably due to large differences in NH3. For Stack B, (NH4)2SO4 was the major PM2.5 composition both in 2008 and 2011, accounting for 91.3% of PM2.5 mass.

Major Differences between Winter 2011, Summer 2008, and 2007 Compliance Tests The differences in ERs between cold and warm dilution were statistically insignificant for

most species. However, there were significant differences between winter 2011 and summer 2008 ERs: For Stack A, the ER of CO in 2011 was ~20% of that in 2008, and NH3 was below detection limit in 2011 but was 16.6 kg/hr in 2008. ERs of other species were higher in 2011 than 2008 with 2011/2008 ratios of: 1.9 for CO2, 3.6 for NO, 5.8 for H2S, and 4.7 for PM2.5. For Stack B, the ER of CO in 2011 was ~10% of that in 2008, and 2011 NH3 was only ~4% of the 2008 value. 2011 SO2 was ~90% of the 2008 ER. ERs of other species were higher in 2011 with 2011/2008 ratios of: 1.5 for CO2, 2.0 for NO, and 15.9 for PM2.5. The coker feed rate changed by<20% between the summer 2008 and winter 2011 test periods. Therefore, the coker feed rate was not a dominant factor that caused the ER changes. The ~10% reduction in SO2 emissions from Stack B (although coker feed rate increased 16%) is probably due to higher SO2 removal efficiency in 2011 (93.6%) than 2008 (82%).

Stack A NOx, SO2, and PM25 ERs from dilution sampling in summer 2008 were 52%, >12%, and 18%, respectively, of NOx, SO2, and TSP ERs from compliance tests in 2007, while NOx and SO2 from winter 2011 sampling were 90% and 6% higher than compliance tests, and PM25 was 6% lower than TSP. For Stack B, NOx from summer 2008 dilution testing was 45%

Page 15: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

xiv

higher than compliance tests in 2007, and 2008 SO2 ERs were similar to those of the compliance tests. The PM25 ER by summer 2008 dilution sampling was only ~3% of the TSP or 21% of the filterable PM from compliance tests. The NOx ER from winter 2011 dilution sampling was 3.2 times of that of compliance tests, while SO2 was 14% lower. The winter 2011 PM25 ER from dilution sampling was 4.5 times the compliance test’s hot filter PM, and 39% lower than the TSP combining hot filter and impinger catches. Differences between the 2008 and 2011 tests are probably caused by differences in the feedstock, and stack operating conditions, rather than differences in temperature owing to summer and winter sampling.

Page 16: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

1-1

1 Introduction 1.1 Background

Emission inventories estimate that stationary sources contribute 43.9% of carbon monoxide (CO), 30.2% of nitrogen oxides (NOx), 97.6% of sulfur dioxide (SO2), nearly 100% of sulfuric acid (H2SO4) and ammonia (NH3), and 80% of PM2.5 (particles with aerodynamic diameters <2.5 µm) as fractions of total anthropogenic emissions in the region (Clearstone Engineering Ltd. and Golder Associates, 2003).

Particulate matter (PM) in stack emissions derives from incomplete combustion as well as from mineral matter and other impurities in the process or fuel (Lighty et al., 2000). Particles form during combustion by chemical transformation and condensation of inorganic and organic vapors. As emissions exit the stack, hot exhaust rapidly mixes with ambient air and cools, resulting in vapor species nucleating homogeneously and heterogeneously or condensing on pre-existing particles. Condensational growth of particles in a diluted plume depends on temperature, relative humidity (RH), aging time, mixing with surrounding air, and partitioning of species between the gas and solid phases.

Alberta Environment (1995) stationary source compliance testing for particulate matter (PM) emissions uses the hot-filter/impinger approach similar to the U.S. EPA (2000) Method 5. This method collects particles from hot stack effluent onto a heated glass-fiber filter (120±14 ˚C) and intends to account for condensable PM by passing the filtered stack gas through ice-cooled impingers. The hot filter sample underestimates real-world PM emissions because the filterable mass does not account for condensable compounds, while the impinger catch overestimates condensable PM because some gases are collected in the impinger solutions (Corio and Sherwell, 2000; England et al., 2000; 2007a; 2007b; Richards et al., 2005; Sheya et al., 2008). Method 5-based methods do not segregate mass into size fractions, such as PM2.5 and PM10 (particles with aerodynamic diameters <10 µm), that are quantified in ambient air to protect public health and welfare in the Athabasca Oil Sands Region (AOSR) (WBEA, 2011). Recently, U.S. EPA updated Methods 201A (U.S.EPA, 2010a) and 202 (U.S.EPA, 2010b) to collect PM2.5, PM10, and condensable PM.

An alternative method, commonly applied to engines used in mobile source compliance tests (Code of Federal Regulations, 2001a; 2001b), is dilution sampling, where the hot and moist stack emission is mixed with clean air in a chamber that simulates dilution and cooling when the flue gas exits the stack. This method provides a more representative estimate of PM2.5 stack emissions after the effluent is mixed and cooled with ambient air (Chang et al., 2004; 2007a; 2007b; U.S.EPA, 2004).

A dilution sampling system was applied during August, 2008 to measure emissions from three stacks (Stacks A, B, and C) at two facilities (Facilities A and B) in the AOSR (Watson et al., 2013) . Table 1-1 lists emission rates (ERs) of criteria air contaminants (CO, NOx, SO2, PM2.5, and lead [Pb]) from the three stacks. The major PM2.5 component was (NH4)2SO4 for Stacks A and B. The sulfate (SO4

=) was not neutralized by ammonium (NH4+) in PM2.5 from

Stack C, indicating particle composition of water bounded sulfuric acid (H2SO4· xH2O).

Page 17: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

1-2

Table 1-1. Emission rates (EF) of criteria air contaminants measured in summer 2008.

CACs Unit Stack A Stack B Stack C CO kg/hr 1599±54 982±45 500±73 NO kg/hr 295±11 133±2 187±11 SO2 kg/hr >1050 727±132 201±28

PM2.5 kg/hr 49.1±5.0 8.0±0.3 42.7±3.8 Pb g/hr 1.861±0.139 0.610±0.371 1.822±0.481

Page 18: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

1-3

Since stack emissions depend on the feedstock, industrial processes, and ambient conditions, it is expected that ERs will differ from test to test. Additional dilution tests during March 2011 quantified winter emissions from Stacks A and B. In addition to the species measured in 2008, mercury (Hg) and nitro- polycyclic aromatic hydrocarbons (nitro-PAHs), acidity, PM2.5-bound water, volatile organic compounds (VOCs) by canister, and carbonyl VOCs by 2,4-dinitrophenylhydrazine (DNPH) cartridge were added to the measurement matrix.

Atmospheric Hg is divided into three operationally-defined forms: 1) gaseous elemental Hg (GEM); 2) reactive gaseous or gaseous oxidized Hg (RGM or GOM, e.g., HgO, HgCl2, HgBr2, Hg[OH]2); and 3) particle-bound Hg (PHg) (Gustin and Jaffe, 2010). GEM is stable in the environment, mostly volatile and only sparingly soluble in water, and can transport over long distances. RGM is highly water soluble and therefore readily scavenged by precipitation. It has a high dry deposition rate (1-5 cm/s, comparable to that of nitric acid) (Lindberg et al., 1992; Lindberg and Stratton, 1998; U.S.EPA, 1997). Some organic RGM components, such as monomethylmercury and dimethylmercury, are toxic and can bioaccumulate by a factor of up to 105 in the aquatic food chain (Gilmour and Henry, 1991; U.S.EPA, 2006; 2008a). PHg comprises both stable condensed phases and adsorbed or dissolved gaseous and semi-volatile Hg species. It plays an important role in both wet and dry deposition to terrestrial and aquatic environments (Lynam and Keeler, 2002). In ambient air, GEM is the dominant form with RGM and PHg being typically <2% of total Hg (Gustin and Jaffe, 2010). However, emissions from combustion sources may contain higher RGM factions. For example, one study reported that Hg emissions from coal combustion contains 20-50% of GEM and 50-80% RGM, while Hg from waste incinerators contains 10-20% GEM and 75-85% RGM (Carpi, 1997). According to the National Pollutant Release Inventory, the upstream petroleum industry emitted 107.6 kg Hg in Alberta for CY2009 (Environment Canada, 2011a). Of this, 6.8 kg was estimated to derive from oil sands in-situ extraction and processing, 35 kg from oil sands mining extraction and processing, and 65.8 kg from bitumen and heavy-oil upgrading. Hg emissions from the upstream petroleum industry contributed 11.2% of the total anthropogenic Hg emissions in Alberta during 2009 (Environment Canada, 2011a).

Nitro-PAHs are a subgroup of PAH that contain at least one nitro-(NO2) functional group on the aromatic ring. Nitro-PAH levels have been related to lung cancer development, and are mutagenic in bacterial systems, causing mutations and tumors in animal models (Landvik et al., 2007; Tokiwa et al., 1983; Tokiwa and Sera, 2000). Nitro-PAHs are emitted from various combustion sources including vehicles and stationary sources. They can also form in the atmosphere through PAH nitration (Dimashki et al., 2000a; Dimashki et al., 2000b; Schuetzle and Perez, 1983; Zwirner-Baier and Neumann, 1999).

1.2 Study Objectives Specific objectives of the March 2011 stack testing were to:

• Quantify ERs from two major stacks in the AOSR under real-world winter operating conditions. Quantified pollutants included non-methane hydrocarbons (NMHC), greenhouse gases (GHG; including carbon dioxide [CO2], methane [CH4], and halocarbons), carbonyls, CO, NH3, NOx, hydrogen sulfide (H2S), SO2, Hg, and PM.

• Determine chemical source profiles for NMHC and PM2.5 for receptor modeling source apportionment and speciated emission inventories.

• Compare ER and source profile differences between August 2008 (summer) and March 2011 (winter).

Page 19: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

1-4

1.3 Report Overview Section 1 summarizes the background and states the study objectives. Section 2

documents the measurement system applied to the real-world measurements during March 2011. Experimental conditions, data reduction procedures, and laboratory analysis methods are explained. Section 3 describes consistency checks and validation of laboratory and real-time data. Section 4 summarizes particle size distributions, stack concentrations, and emission rates for different pollutants. Section 5 explains the characteristics and emission source profiles for NMHC and PM2.5. Section 6 summarizes study results. Section 7 includes full references for the literature cited.

Page 20: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-1

2 Experimental Methods 2.1 Overview

A dilution sampling system drew flue gas from the stack, diluted it with filtered ambient air, and quantified total volatile organic compounds (VOCs; isobutylene equivalent), CO, CO2, nitrogen oxide (NO), nitrogen dioxide (NO2), SO2, particle number, size-segregated particle mass, black carbon (BC), and ultraviolet light-absorbing carbon (UVC) on a continuous basis (1‒6 second averages). Integrated samples were acquired in a stainless steel canister, a DNPH cartridge, and impregnated filters over 88-124 min sampling periods for laboratory analyses of speciated VOCs, halocarbons, carbonyls, NH3, H2S, SO2, and PM2.5. PM2.5 was characterized for acidity, particle-bound water, light absorption coefficient (babs), mass, elements, Pb isotopes, water-soluble ions, OC, EC, and organic compounds (e.g., total water-soluble organic carbon [WSOC], three WSOC classes (i.e., neutral, mono-/di-carboxylic acids, and polycarboxylic acids), carbohydrates, organic acids, hopanes, steranes, alkanes, alkenes, PAHs, and nitro-PAHs). Integrated samples of Hg (including GEM, RGM, and PHg) were collected on potassium chloride (KCl)-impregnated filters and gold-coated quartz traps for quantification of total Hg.

2.2 Dilution Sampling System The dilution sampling system is illustrated in Figure 2-1. This system is an enhancement

of the 2008 configuration (Watson et al., 2013) that can be more easily adapted to a wide-range of real-world emission testing (Wang et al., 2012a; 2012b). A sample of ~6 L/min flue gas was drawn isokinetically from the stack with a buttonhook sampling probe similar to that used by Alberta Stack Sampling Code Method 5 (Alberta Environment, 1995). The 2.4 m-long sampling line was heated to ~5 °C above the stack flue gas temperature to minimize condensation and thermophoretic deposition. A portion of the flue gas (1 L/min) passed through a water trap and a dryer to remove water vapor before the CO2 concentration in the flue gas was measured. The remaining ~5 L/min flue gas was diluted by ambient air blown through an activated charcoal bed followed by a high efficiency particulate air (HEPA) filter to remove volatile gas species and particles, respectively. The dilution air flow rate was controlled by a mass flow controller and its CO2 concentration was measured. The sample and dilution air were turbulently mixed before entering a spiral residence chamber to age for ~20 seconds, nearly twice of the minimum aging time (10 seconds) required to achieve stable gas/particle equilibrium (Chang et al., 2004). A portion of the diluted sample (10.05 L/min) was drawn through the real-time PM measurement instruments. The remaining flow passed through a Bendix 240 PM2.5 cyclone (113 L/min) into a conical plenum where it was split into multiple streams for quantification by real-time gas instruments and integrated samplers. The dilution ratio (DR; 17–47) was determined from the CO2 concentrations in the undiluted, diluted, and background streams and was controlled by varying the dilution and makeup flows.

Particle losses through the dilution system without the 2.4 m-long sampling line were evaluated prior to the field measurement using monodisperse polystyrene latex spheres (PSL) of five sizes (0.5, 1.0, 2.5, 5.0, and 10.0 µm) entrained in sample flow heated to 70 °C and diluted by a factor of ~20. The measured transmission efficiencies were ~100% for 0.5‒5 μm PSL and 86.2±18.6% for 10 μm PSL. Particle losses through the 2.4 m sampling probe were estimated for

Page 21: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-2

Explanation of abbreviations: Abbreviation Parameter Abbreviation Parameter/Instrument ΔP differential pressure nitro-PAH nitro- polycyclic aromatic hydrocarbons AgNO3 silver nitrate NO nitrogen oxide babs light transmission, surrogate for black carbon (BC) NO2 nitrogen dioxide BC black carbon NOx oxides of nitrogen BrC brown carbon O2 oxygen CH4 methane OC organic carbon CO carbon monoxide OPC optical particle counter CO2 carbon dioxide PHg particle-bound mercury CPC condensation particle counter PM2.5 particles with aerodynamic diameter <2.5 µm DNPH 2,4-dinitrophenylhydrazine PM10 particles with aerodynamic diameter <10 µm EC elemental carbon RGM reactive gaseous mercury GC gas chromatography SO2 sulfur dioxide GEM gaseous elemental mercury T temperature H2S hydrogen sulfide TIGF Teflon® impregnated glass fiber K2CO3 potassium carbonate VOCs volatile organic compounds KCl potassium chloride WSOC water-soluble organic carbon NH3 ammonia

Figure 2-1. Schematic diagram of dilution sampling system.

ΔP

Grimm 1.108 OPC(Size distribution

0.3-25 µm)

PP Systems CO2 sensors

2B Tech NOx Monitor

(NO and NO2)

Quartz + K2CO3 (OC/EC, Ions, and SO2)

Quartz + AgNO3 (WSOC, carbohydrates, organic acids,

HULIS, organic markers, and H2S)

Teflon+Quartz(Lichen study and organic

artifacts assessment)

Pump

FilterPacks

Stack

Thermocouple(Stack T)

Heated SamplingProbe

Type S Pitot Tube

High Efficiency Particulate Air(HEPA) Filter

Activated Charcoal Capsule

Compressed Air

DilutionAir

Flow MixerSprial

ResidenceChamber

Mass FlowController

BallValve

Emissions

National Instruments

CompactDAQ

3 L/min

0.05 L/minMagee AE51

(BC)

0.7 L/minTSI CPC 3007

(Concentration 0.01-1 µm)

1.2 L/min

TSI DustTrak DRX(PM1, PM2.5, PM4, PM10, and PM15)

Testo 350(CO, CO2, NO, NO2, SO2, O2,

and T, P)PID 102+

(Total VOCs)

1 L/min

1 L/min

0.16 L/min

1 L/min

1 L/min

Stac

k C

O2

Bac

kgro

und

CO

2

Diluted CO2

1 L/

min

Canister(CH4, CO, CO2,

and C2-C12)

DNPH Cartridge(Carbonyl)

Dryer

Teflon + Citric acid (mass, particulate water,

babs, element, isotope, and NH3)

Teflon + K2CO3 (mass, pH, andacidic gases)

PM2.5 Cyclone

1 L/

min

0.01

L/m

in

Excess Flow

16.7

L/m

in x

6

118 L/min

5.05 L/min

TeflonFilter

Dryer

Pump

Heated Inlet (140 °C)

KClImpregnated Quartz Filter (PHg, RGM)

Gold-coated Quartz Trap

(GEM)

Valve

Ecotech EC9850

SO2 Analyzer

Real-time GasModule

Real-time PM Module

MercuryModule

Thermocouple(Dilution Air T)

Thermocouple(to Diluted Air T)

10 L/min

9.5 L/min

0.5

L/m

in

TIGF(nitro-PAH)

MultifoldPlenum

10.05 L/min

5.17 L/min

113 L/min

Integrated SampleModule

7.63 L/min

0.1 L/minMagee AE52

(BC, BrC)

Sample Conditioning Module

Water Trap

6.05 L/min

Makeup Flow5 L/min

Page 22: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-3

Brownian diffusion and gravimetric setting under stack sampling conditions (Kulkarni et al., 2011). The overall transmission efficiencies are estimated to be ~100% for 0.1‒1 µm, 96‒98% for 2.5 µm, 46‒56% for 10 µm, and 0% for ≥18 µm.

Dilution was carried out under cold and warm conditions. In cold dilution, the dilution air compressor was placed outside of the stack enclosure to send outside air through a 2-m long and 11-mm inner diameter (ID) stainless steel tube that was cooled by outdoor air to dissipate the heat from the compressor. Due to the low temperature of the dilution air, condensation was observed inside the residence chamber. In warm dilution, the compressor was placed inside the stack enclosure and the heat added by the compressor was not intentionally dissipated. The residence chamber was heated to 24–37 °C to reduce condensation.

Specifications for real-time gas and particulate monitoring instruments are provided in Table 2-1 and Table 2-2, respectively. Since the magnitudes of stack concentrations were not known, NO, NO2, and NOx were measured by different instruments in different concentration ranges: the 2B NO/NO2 monitor for 2-2000 ppb and the Testo emission analyzer for 1–500 ppm. Similarly, SO2 was measured by the Ecotech SO2 analyzer for 0.3–20,000 ppb and the Testo emission analyzer for 1–5000 ppm. SO2 was also collected on cellulose-fiber filters impregnated with ~700 µmol potassium carbonate (K2CO3).

Parallel to the sampling probe, a type S Pitot tube measured the pressure difference (ΔP) between two openings, from which the stack flow velocity and flow rate were calculated according to U.S. EPA Method 2 (2011). Temperatures of stack gas, dilution air, and diluted sample were measured by type K thermocouples.

Flow into the canister for CH4 and VOCs (C2-C12) was controlled by an orifice (Model K4LP-1E-SS, O’Keefe Controls Co., Trumbull, CT) with a nominal aperture diameter of 0.038 mm and critical flow rate of 15 cm3/min. A flow of 1 L/min was drawn through the DNPH cartridge for carbonyls. Figure 2-2 depicts the filter pack configurations and analysis parameters for PM and inorganic gases. Two channels were added to the four filter channels used for the 2008 tests for acidity (pH) and nitro-PAH analysis. The pH channel was motivated by a lack of mass closure for Stack C in summer 2008 which was attributed to water associated with H2SO4. Nitro-PAHs were added owing to their potential toxicity. The nominal flow rates through filter packs were set to 16.7 L/min. The flow rates were set at the beginning of the experiment by adjusting the valves while referencing a calibrated rotameter, and were measured again after sampling. The average of flow rate readings at the beginning and ending of sampling were used to calculate sample volumes and concentrations. Particles collected on the filters were subject to laboratory analysis as illustrated in Figure 2-2 and described by Chow and Watson (2012).

Hg sampling was based on U.S. EPA (1999a) Method IO-5. Flue gas was drawn into a glass-coated stainless steel probe heated to 140 °C at a flow rate of 10 L/min. A KCl- impregnated quartz-fiber filter collected RGM and PHg. The KCl coating allowed nearly 100% penetration of GEM with nearly 100% capture of RGM and PHg (Landis et al., 2002; Xiao et al., 1997). The flow was split downstream of the quartz-fiber filter with 0.5 L/min passing through a gold-coated quartz trap (Part No. 35-26510-00, Tekran Instruments Corp., Toronto, Canada) in a heated cartridge (Model 2030, Tekran Instrument Corp.) to collect GEM and RGM passing

Page 23: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-4

Table 2-1. Real-time gas analyzers applied to the stack emission testing at AOSR in March 2011.

Instrument Parameter of Interest and Measurement Principles

Measurement Range

Time Resolution Nominal Precision/Accuracy

PID analyzer Model 102+ (PID Analyzers, Pembroke, MA, USA)

Total VOC (as isobutylene equivalent) by photoionization detection

0.1–3000 ppm 1 s ± 1% of reading

Emission analyzer Model 350 S (Testo, Inc., Sparta, NJ, USA)

• CO (electrochemical) • CO2 (nondispersive infrared) • NO (electrochemical) • NO2 (electrochemical) • SO2 (electrochemical) • O2 (electrochemical)

• 0–500 ppm • 0–50% vol • 0–300 ppm • 0–500 ppm • 0–5,000 ppm • 0–25% vol

1 s

CO: < 2 ppm (0–39.9 ppm) < 5% of reading (40–500 ppm) CO2: ± 0.3% or 1% of reading (0–25%) ± 0.5% or 1.5% of reading (> 25%) NO: < 2 ppm (0–39.9 ppm) < 5% of reading (40–300 ppm) NO2: < 5 ppm (0–99 ppm) < 5% of reading (>99 ppm) SO2: < 5 ppm (0–99 ppm) < 5% of reading (100–2,000 ppm) < 10% of reading (2,001–5,000 ppm) O2: <0.2% of reading

CO2 analyzers Model SBA–4 (PP Systems, Amesbury, MA, USA)

CO2 (nondispersive infrared) • Stack gas stream • Diluted sample stream • Dilution gas stream

• 0–100,000 ppm • 0–5,000 ppm • 0–5,000 ppm

~2 s <1% of span concentration

NO/ NO2 Monitor Model 400 and 401 (2B Technologies, Boulder, CO, USA)

NO, NO2, and NOx (O3 reduction after reaction with NO) 2–2000 ppb 10 s Higher of 3 ppb or 3% of reading

SO2 analyzer Model EC9850 (Ecotech, Cincinnati, OH, USA)

SO2 (ultraviolet fluorescence) 0.3–20,000 ppb 1 min Higher of 0.5 ppb or 0.5% of reading

Page 24: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-5

Table 2-2. Real-time particulate analyzers applied to the stack emission testing at AOSR in March 2011.

Instrument Parameter of Interest and Measurement Principles Measurement Range Time Resolution Nominal Precision/Accuracy

Condensation Particle Counter (CPC) Model 3007 (TSI Inc., Shoreview, MN, USA)

Particle number concentration by condensation growth and optical counting

Size: 10 nm–2.5 µm Number: 0–100,000 particles/cm3

1 s ±20%

DustTrak DRX Model 8534 (TSI Inc., Shoreview, MN, USA)

PM mass concentration (PM1, PM2.5, PM4, PM10, and PM15) by photometry and optical sizing

Size: ~ 0.1–15 µm Mass: 0.001–150 mg/m3 1 s ±20% (for calibration aerosol)

Optical Particle Counter (OPC) Model 1.108 Grimm Aerosol Technik GmbH & Co., KG, Ainring, Germany)

Particle size distribution by light scattering

Size: 0.3–25 µm Number: 0.001–2,000 particle/cm3 Mass: 0.0001–100 mg/m3

6 s ±2.5%

Micro-aethalometer Model AE51 (Magee Scientific, Berkeley, CA, USA)

Black carbon (BC) concentration by light attenuation through particle loaded filter (wavelength 880 nm)

0–1 mg BC/m3 for 15-min average at 50 cm3/min flow rate

1 s ±0.1 μg BC/m3 for 1-min average at 150 cm3/min flow rate

Micro-aethalometer Model AE52a (Magee Scientific, Berkeley, CA, USA)

Black carbon (BC) and UV-absorbing carbon (UVC) concentrations by light attenuation through particle loaded filter (wavelengths 880 nm and 370 nm)

Not available 10 s Not available

aThis is a prototype instrument loaned from Magee Scientific. A commercial version was not yet available at the time of testing.

Page 25: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-6

Figure 2-2. Six-channel filter pack sampling configuration for time-integrated particle and gas samples. In addition to the four channels used in the 2008 testing, two channels were added in 2011 for particle pH and nitro-PAH measurement.

Mass, light transmission,

rare-earth elements, elements, isotopes

Channel 1(16.7 L/min)

Citric acid-impregnated

cellulose-fiber filter

NH3 as NH4+

OC, EC, carbon fractions, carbonates, ions (Cl-,NO2

-, NO3-,

PO4Ξ, SO4

=, NH4+,

Na+, Mg++, K+, Ca++),

Channel 2(16.7 L/min)

Potassium carbonate-

impregnated cellulose-fiber filter

SO2 as SO4=

~113 alkanes, alkenes, PAHs,

hopanes, steranescarbohydrates, organic acids, total WSOC,

WSOC classes

Channel 3(16.7 L/min)

Silver nitrate-impregnated

cellulose-fiber filter

H2S as S

Teflon-membrane filter

Quartz-fiber filter Quartz-fiber filter

Lichen study mass and elemental

analysis or morphological

analysis

Channel 4(16.7 L/min)

Teflon-membrane filter

Quartz-fiber filter

Organic artifacts

Mass and pH

Channel 5(16.7 L/min)

Potassium carbonate-

impregnated cellulose-fiber filter

Acidic gases

Teflon-membrane filter

Nitro-PAH

Channel 6(16.7 L/min)

Teflon-impregnated glass fiber (TIGF)

filter

Four channels used in summer, 2008 Two channels added in winter, 2011

PM2.5 Cyclone

Page 26: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-7

through the filter. Both the filter pack and gold-coated quartz trap were heated to 140 °C during collection to prevent moisture condensation and wall losses. This pilot Hg study aims to obtain emission rate of total Hg, with a semi-quantitative speciation between RGM+PHg and GEM.

2.3 Stack Information Source emissions were sampled from Stacks A and B in Facility A during March 2011.

These were the same two out of the three stacks tested in August 2008. These stacks were identified by Clearstone Engineering Ltd. (2006) as among the largest stationary source emitters in the AOSR. Stack A exhausts flue gas from two CO boilers that oxidize overhead gases from two fluid cokers, sour water treating units, and sometimes the sulfur recovery units. Most of the solid PM was removed by two electrostatic precipitators (ESP) before entering the stack and being vented to the atmosphere. Stack B receives CO boiler flue gas from a third fluid coker and sulfur recovery units after a portion of the primary PM is removed by an ESP and SO2 is scrubbed by an ammonia-based flue gas desulfurization (FGD) process. Stacks A and B were tested during March 16–19 and March 21–24, 2011, respectively. Facility A records indicate that the coker feed rates were 8% lower during the sampling period in 2011 than in 2008 for Stack A, while it was 16% higher in 2011 for Stack B. The SO2 recovery efficiency for Stack B increased from 82% in the 2008 testing period to 93.6% in the 2011 test period. The lower FGD recovery efficiency in 2008 was due to increased SO2 loading caused either by lower efficiency of the sulfur recovery plants or an increase in the coker feed rates. The coker connected to the FGD stack operated at higher burner/reactor temperatures in 2008, causing increase in SO2 production. The higher SO2 loading increased the amount of ammonium sulfite [(NH4)2SO3] in the ammonium sulfate [(NH4)2SO4] slurry in the FGD sump and reduced SO2 recovery.

2.4 Test Procedure The test protocol is summarized in Table 2-3. Zero and span checks were performed on

each of the continuous instruments before and after the field study to verify calibration within the specified ranges listed in Table 2-1 and Table 2-2. Field blank concentrations were quantified for subtraction. Flow rates for unexposed and exposed filter packs were verified before and after sampling, respectively. Filter packs along with the field data sheet were packaged individually in airtight containers and stored cold in a cooler. A total of 26 stack effluent sample, two dilution sampling system blanks (as shown in Table 2-4), and two field blanks were collected. Sample durations ranged from 88 to 124 minutes and dilution ratio ranged from 17:1 to 47:1 with an average of 23:1 for Stack A and 34:1 for Stack B. In addition to these samples, eight Hg filter and quartz trap samples were collected from both Stack A and Stack B, with sampling time ranged 60–120 minutes.

Compliance stack sampling typically requires traversing multiple sampling points across the stack cross section (Alberta Environment, 1995). The sampling point was fixed at a radial location in this study. A velocity traverse measurement in Stack A showed that the velocity at the sampling point (1.5 m from the stack wall) was only 3% different from the average stack velocity. Since PM2.5 disperses with flow due to its low inertia, it is assumed that velocity and concentrations at the sampling point represent the average values.

2.5 Laboratory Analysis Canister samples were analyzed for NMHC using gas chromatography-flame ionization

detector/mass spectrometry (GC-FID/MS) following U.S. EPA (1999b) Method TO-15. DNPH

Page 27: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-8

Table 2-3. Procedure for field testing of stack emission with the dilution sampling system. Procedure Beginning of the Day • Recharge the isopropyl alcohol (IPA) cartridge on the CPC.

• Connect all tubing. • Make electrical connections and turn on instruments. • Set the dilution flow to 113 L/min, and close the excess flow valve so that no stack flue gas is sampled

into the system. • Heat the sampling probes. • Heat the dilution tunnel if testing for warm dilution. • Synchronize time stamps of DRX, AE51, and AE52. • Check flow rates of all continuous instruments. • Perform zero and ambient concentration checks of all continuous instruments. • Measure the dilution factor of the dilution bridge upstream of the CPC.

Before Run • For cold dilution, place the dilution air compressor outside the sampling platform and cool the flow after the pump; for warm dilution, place the compressor close to the dilution system, and heat the dilution tunnel.

• Verify that the excess flow valve is closed so that no stack flue gas is sampled into the system. • Verify that the water trap in the stack CO2 line is free of water. • Install unexposed filters on the filter sampler and set flow rate of the filter packs to the specified 16.7

L/min. • Install the critical orifice on the canister inlet, and place the canister in the sampling line with inlet valve

closed. • Install a dummy DNPH cartridge in the sampling line. • Start the LabView data acquisition and control program; type in date, site, and Run ID. • Initiate the real-time instruments from the LabView program; ensure all instruments are communicating

with the data acquisition computer, and concentrations are in reasonable range for filtered dilution air. • Open the excess flow valve to ~7.6 L/min (~6 turns) and record the starting time. • Monitor the diluted CO2 concentration and fine tune the excess flow until the CO2 is in the 3000-5000

ppm range. • Replace the dummy DNPH cartridge with a test cartridge, open the inlet valve to the canister, and record

the DNPH and canister starting time. During Run • Inspect the file directory to verify that data from every instrument is being logged.

• Examine the measured values to ensure that they are within the limits of specified operating ranges. • Monitor the diluted CO2 concentration. If it drops below 2000 ppm due to reduced flow as filters are

loaded, open the excess flow valve to adjust it back to ~4000 ppm. • Drain excess water when the water trap is 2/3 filled. • At the end of the run, close the inlet valve of the canister and replace the DNPH cartridge with dummy. • Close the excess flow valve so that only the dilution flow is pumped into the system. • Record the stop time.

After Run • Record final flow rates for each filter pack • Store the six filter packs. • Download data from instruments and clear internal memory if necessary. • Replace the AE51 and AE52 filters if needed. • Drain the water trap. • Check dilution factor of the CPC. • Check soda lime and dryers on CO2 analyzer lines.

End of the Day • Download data and verify data validity for each of the real-time instruments. • Clear internal memory in real-time instruments. • Replace the Teflon® filter in the gas sampling line. • Clean the sampling probe, sampling line, and cyclone. • Power down all instruments and heaters.

Page 28: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-9

Table 2-4. Summary of experimental parameters for each run at Facility A. The ambient temperature during the sampling period ranged -14.1–4.7 °C with an average of -4.7 °C.

Run ID Dilution Date Filter Sampling Time

Filter Sample Duration (min)

Canister ID

DNPH ID

Filter ID

Dilution Flow Temperature (°C)

Diluted Flow Temperature (°C)

Dilution Ratio

Stack A-C1 Cold 3/16/2011 16:18–18:05 107 49 36 102 13.6 8.2 36.5 Stack A-W1 Warm 3/17/2011 10:11–12:02 111 48 37 103 15.4 25.6 25.0 Stack A-W2 Warm 3/17/2011 12:32–14:09 97 47 38 104 16.7 27.2 27.0 Stack A-W3 Warm 3/17/2011 14:30–16:01 91 50 39 105 18.5 29.2 30.1 Stack A-C2 Cold 3/17/2011 16:32–18:00 88 52 40 106 21.2 18.5 25.3 Stack A-C3 Cold 3/18/2011 09:20–11:04 104 51 41 107 14.0 11.5 23.3 Stack A-C4 Cold 3/18/2011 11:25–13:08 103 43 42 108 10.0 12.6 24.8 Stack A-CB Blank 3/18/2011 13:33–15:03 90 46 43 109 10.3 10.8 NA Stack A-W4 Warm 3/18/2011 15:22–17:23 121 42 44 110 17.4 27.1 21.2 Stack A-C5 Cold 3/19/2011 09:35–11:05 90 38 45 111 8.4 11.2 19.2 Stack A-C6 Cold 3/19/2011 11:30–13:05 95 39 46 112 9.2 12.8 16.7 Stack A-W5 Warm 3/19/2011 13:26–15:00 94 35 47 113 17.0 26.5 17.1 Stack A-W6 Warm 3/19/2011 15:26–17:00 94 36 48 114 26.6 30.3 20.0 Stack B-W1 Warm 3/21/2011 10:48–12:48 120 44 49 115 25.4 27.5 33.9 Stack B-W2 Warm 3/21/2011 13:26–15:30 124 45 50 116 29.5 30.8 23.0 Stack B-W3 Warm 3/21/2011 15:57–17:32 95 40 51 117 27.2 29.3 24.2 Stack B-W4 Warm 3/22/2011 09:56–11:30 94 41 52 118 21.8 24.3 35.6 Stack B-W5 Warm 3/22/2011 11:58–13:30 92 37 53 119 22.2 23.9 32.4 Stack B-W6 Warm 3/22/2011 13:50–15:25 95 26 54 120 24.8 28.1 36.3 Stack B-C1 Cold 3/22/2011 16:00–17:30 90 25 55 121 10.8 14.1 32.5 Stack B-C2 Cold 3/23/2011 10:00–11:30 90 24 56 122 8.0 15.5 31.2 Stack B-C3 Cold 3/23/2011 11:59–13:30 91 28 57 123 10.5 12.0 33.6 Stack B-C4 Cold 3/23/2011 13:50–15:26 96 23 58 124 11.8 13.6 27.8 Stack B-W7 Warm 3/23/2011 15:55–17:25 90 29 59 125 28.8 36.1 27.4 Stack B-WB Blank 3/24/2011 09:20–11:00 100 32 60 126 21.8 28.6 NA Stack B-W8 Warm 3/24/2011 11:47–13:17 90 34 61 127 23.3 36.8 46.5 Stack B-C5 Cold 3/24/2011 13:48–15:20 92 27 62 128 12.7 16.8 45.1 Stack B-C6 Cold 3/24/2011 15:46–17:19 93 33 63 129 9.3 10.9 42.9

Page 29: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-10

cartridges were analyzed for carbonyls using high-performance liquid chromatography (HPLC) according to Compendium Method TO-11A (U.S.EPA, 1999c; Zielinska et al., 2001). Chemical analyses for the four-channel filter samples used in both 2008 and 2011 stack tests were previously described (Chow and Watson, 2012; Watson et al., 2013). This section describes the analysis methods for measurements added in this study, including: 1) particulate acidity from Teflon®-membrane filter, 2) particulate hygroscopicity and evaporation potential from Teflon®-membrane filter, 3) nitro-PAH from Teflon® impregnated glass-fiber (TIGF) filter, and 4) Hg from KCl-impregnated quartz-fiber filter and gold-coated quartz trap.

2.5.1 Particulate Acidity Analysis Particulate acidity analysis was based on U.S. EPA (1999d) Method IO-4.1. The

Teflon®-membrane filter was extracted with 10 ml of a perchloric acid, KCl, water, and ethanol solution in an NH3-free environment and the pH of a 2 ml aliquot of this extract was measured with a calibrated pH electrode (Model SB70P symphony Meter, VWR, Radnor, PA). PM acidity was calculated with reference to pH standards made with H2SO4.

2.5.2 Particle Hygroscopicity and Evaporation Analysis H2SO4 particles can retain water (H2O) under the filter conditioning environment (21.5 ±

1.5 °C and 35 ± 5% RH) in the weighing laboratory. The following procedure was used to estimate the mass of particle-bound water and volatile species:

• Exposed Teflon®-membrane filters were equilibrated for 24 hours under the standard conditions prior to weighing (original mass).

• After re-weighing, these filters were placed in a desiccator loaded with silica gel that maintained RH<1%. After 72 hours, the filters were immediately re-weighed. It was observed that the weight of desiccated filters from Stack A continuously increased as they were being weighed in the 35 ± 5% RH laboratory conditions .

• Filters were conditioned in the laboratory for another 24 hours and then re-weighed. • After XRF elemental analysis in a vacuum, the filters were equilibrated under standard

conditions for 24 hours followed by another re-weighing.

2.5.3 Nitro-PAH Analysis Seven deuterated internal standards were added to each TIGF filter sample prior to

extraction for nitro-PAH analysis: 1) 2-nitrodiphenyl-d9, 2) 2-nitrofluorene-d9, 3) 9-nitroanthracene-d9, 4) 3-nitrofluoranthene-d9, 5) 1-nitropyrne-d9, 6) 9-nitrochrysene-d11, and 7) 6-nitrobenzo[a]pyrene-d11. Filters were extracted with 120 ml dichloromethane using the Accelerated Solvent Extractor (Model ASE300, Dionex Corp., Sunnyvale, CA). The extracts were then concentrated by rotary evaporation at 35 °C under gentle vacuum to ~1 mL and filtered through 0.2 µm PTFE disposal syringe filters (PuradiscTM 25 TF, Whatman Inc., Piscataway, NJ). The flask was rinsed three times with 1 ml dichloromethane to obtain all of the material. The extracts were further pre-cleaned by the solid-phase extraction technique, using Aminopropyl (NH2) SPE cartridges (Waters, Milford, MA) and sequential elution with hexane/dichloromethane (98%/2% volume) and hexane/dichloromethane (80%/20% volume). The fractions were combined, concentrated to ~100 µl, and analyzed by negative ion chemical ionization (NICI) GC/MS, using a triple quadrupole GC/MS/MS system (Model 1200, Varian Inc, Palo Alto, CA) with a CP-8400 autosampler. NICI offers a high sensitivity for the analysis

Page 30: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

2-11

of nitro-PAH (approximately 100 times higher than electron impact ionization or positive chemical ionization). The minimum detection limits (MDLs) for nitro-PAHs are generally in the range of 1–10 pg/µl. The sample extracts are usually concentrated down to 100 µl for analysis; thus the MDLs in pg/µl are multiplied by 100 to obtain the MDLs in the range of 0.1–1 ng/sample.

2.5.4 Hg Analysis Hg collected on the KCl impregnated quartz-fiber filters and gold-coated quartz traps

were analyzed by dual-amalgamation cold vapor atomic fluorescence spectrometry (CVAFS; Model 2600, Tekran Instruments Corp.) based on U.S. EPA Methods IO-5 (U.S.EPA, 1999a) and 1631 (U.S.EPA, 2002). The following steps were followed quantify Hg on KCl-impregnated quartz-fiber filter:

1. Each KCl-impregnated quartz-fiber filters was extracted with 10% hydrochloric acid (HCl).

2. Bromine monochloride (BrCl) was added to the extract to oxidize all forms of Hg to Hg++.

3. Stannous chloride (SnCl2) was added to reduce the Hg++ to volatile GEM. 4. GEM was liberated from the extract by purging with argon (Ar) and collected on a gold-

coated bead sample trap. 5. The sample trap was heated to release the collected Hg, which was carried into an

analytical trap where it was amalgamated to the gold surface. 6. The analytical trap was heated to release the GEM which then flowed into the CVAFS

detector cell. 7. The GEM in the detector cell absorbed UV light and the resulting fluorescence was

converted to a voltage proportional to the amount of GEM detected by a photomultiplier tube. Analysis of Hg collected on the gold-coated quartz traps uses Steps 5-7. Detection limits

achieved using Method IO-5 are 29 pg/filter for Hg collected on filters and 2.54 pg/trap for Hg collected on the trap.

Page 31: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-1

3 Data Validation 3.1 Laboratory Data Validation

Laboratory data validation evaluates the internal consistency of PM2.5 mass and chemical composition (Chow et al., 1994). Physical consistency is tested for: 1) mass closure, 2) anion and cation balance, 3) calculated versus measured NH4

+, 4) hygroscopicity, volatility, and 5) SO4=

versus total sulfur (S).

3.1.1 Mass Closure The sum of species should be less than or equal to the corresponding gravimetric PM2.5

mass loading, since unmeasured species such as oxygen (O) and hydrogen (H) are not included. Figure 3-1a shows that the regression between the sum of species and gravimetric mass had a low slope (0.54) for Stack A, indicating that important amounts (~46%) of PM2.5 mass might be associated with water that was not directly measured. Non-neutralized SO4

= from Stack A could be in the form of H2SO4•5.48 H2O under the filter conditioning conditions (21.5 ± 1.5 °C and 35 ± 5% RH). Liquid water has a mass of 1.03×[SO4

=], and H+ has a mass of 0.021×[SO4=]. Adding

contributions from H2O and H+ to the sum of measured species results in a slope of 1.0. For Stack B, the sum of species and gravimetric mass had a higher regression slope of

0.88 (Figure 3-1b), which is more typical for aerosol samples. The gravimetric mass from sample B-W4 (indicated as a red symbol in Figure 3-1b) was ~40% lower than neighboring samples with similar dilution ratios. This Teflon®-membrane filter was wet at the point of unloading before conditioning and weighing, so it was flagged as an outlier and excluded from regression analysis, and the mass calculated from the sum of species and the regression equation in Figure 3-1b was used to calculate PM2.5 emission factors and source profiles for this run.

3.1.2 Anion and Cation Balance The anion and cation balance compares the sum of anions (i.e., Cl-, NO2

-, NO3-, PO4

≡, and SO4

=) to the sum of cations (H+, NH4+, Na+, Mg++, K+, and Ca++) in microequivalent mole

concentrations (µeq/m3). Species concentrations (in µg/m3) are divided by the atomic weight of the chemical species times the species’ charge:

2/98][

3/95][

62][

46][

5.35][/ 44323

=≡−−−

++++=SOPONONOClanionsformµeq (3-1)

2/1.40][

1.39][

2/3.24][

23][

18][

1][/ 43

++++++++

+++++=CaKMgNaNHHcationsformµeq (3-2)

Figure 3-2a shows that the anion and cation correlation for PM2.5 from Stack A has a

slope of 1.21, indicating that ~20% of the anions were not balanced by the quantified cations. Figure 3-2b shows that the ions were in balance for PM2.5 from Stack B with a slope near unity (1.05) and R2 ~ 1.00. Two outliers are observed in both stacks (marked as red symbols). Discrepancies of the two outliers from Stack A arose from pH measurements for [H+]. Sample A-W1 showed a much higher pH than other samples and [H+] was only 25-50% of other samples, while sample A-W5 showed much lower pH than other samples for which [H+] was 1.3-2.7 higher.

Page 32: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-2

a)

b)

Figure 3-1. Sum of measured species versus gravimetric PM2.5 mass concentration for: a) Stack A and b) Stack B. The sum of species includes TC, Na+, Mg++, K, Cl, Ca, PO4

≡, and SO4= and excludes OC and EC fractions, OC, EC, Na, Mg, P,

S, CO3=, K+, Cl- , and Ca++. For Stack A, data with and without accounting for H2O and H+ are plotted.

y = 0.54xR² = 0.73

y = 1.00xR² = 0.78

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Sum

of M

easu

red

Spec

ies

(µg/

m3 )

PM2.5 Mass Concentration (µg/m3)

Stack AMass

Accounting for H2O/H+

Not accounting for H2O/H+

y = 0.88x + 230.97R² = 0.89

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

Sum

of M

easu

red

Spec

ies

(µg/

m3 )

PM2.5 Mass Concentration (µg/m3)

Stack BMass

B-W4

Page 33: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-3

a)

b)

Figure 3-2. Total anions versus cations for: a) Stack A and b) Stack B.

y = 1.21xR² = 0.80

0

20

40

60

0 20 40 60

Anio

ns (µ

eq/m

3 )

Cations (µeq/m3)

Stack AIons

A-W1

A-W5

y = 1.05xR² = 1.00

0

10

20

30

40

50

60

70

80

0 20 40 60

Anio

ns (µ

eq/m

3 )

Cations (µeq/m3)

Stack BIons

B-W5

B-W4

Page 34: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-4

Two outliers from Stack B (W4 and W5) showing higher anions than cations were associated with higher SO4

= and lower NH4+ compared to the other samples, possibly due to

some non-neutralized SO4=.

Figure 3-3 compares average PM2.5 water-soluble ion concentrations from both stacks. SO4

= was the dominant anion for both stacks. For Stack A, [H+] was 78% of [SO4=] and [NH4

+] was only 5% of [SO4

=], indicating that the main composition of PM2.5 from Stack A was H2SO4 with a small percentage of NH4HSO4. For Stack B, [H+] was <0.5% of [SO4

=] and [NH4+] was

99% of [SO4=], indicating the main composition of PM2.5 from Stack B was (NH4)2SO4.

3.1.3 Calculated versus Measured NH4+

Figure 3-4 compares calculated versus measured [NH4+] for different degrees of acid

neutralization. Assuming full neutralization, [NH4+] directly measured by automated colorimetry

(AC) analysis of the quartz-fiber filter extract can be compared with calculated [NH4+], which is

the sum of NH4NO3 and either (NH4)2SO4 (0.29 × [NO3-] + 0.38 × [SO4

=]) or (NH4)HSO4 (0.29 × [NO3

-] + 0.192 × [HSO4-]). Figure 3-4a shows that for Stack A, the calculated [NH4

+] was ~17.5 and 8.9 times higher than the measured [NH4

+] on average when assuming (NH4)2SO4 and NH4HSO4, respectively. This is consistent with Stack A SO4

= being in the form of H2SO4, as indicated by the anion/cation balance. For Stack B (Figure 3-4b), the calculated and measured [NH4

+] had a slope slightly greater than unity (1.05) with high correlation (R2=0.99) when assuming (NH4)2SO4.

3.1.4 Hygroscopicity and Volatility Table 3-1 and Figure 3-5 compare PM mass measurements for the different equilibration

procedures described in Section 2.5.2. System and field blanks show <5 µg mass change, as expected for dilution air and un-sampled, inert Teflon filters that are not contaminated during handling and transport. Filters from Stack A lost 8.1±5.8% of their mass after drying, but returned to 98.5±1.4% of original mass after re-equilibrating. Samples submitted to XRF analysis under vacuum lost 67.3±7.3% of their mass. When Stack A filters were weighed after removal from the desiccator (<1% RH), their mass quickly increased as particles started absorbing water vapor. Therefore, the mass obtained from this step is higher than the true mass under dry conditions. For filters from Stack B, drying resulted in a 2.0±1.3% mass loss, which did not change after re-equilibration (1.9±1.2% mass loss). The mass before and after the XRF vacuum did not change (0.3±0.8%).

The Extended Aerosol Inorganics Model (E-AIM; Clegg et al., 1998) was applied to calculate the equilibrium mole fraction of H2O over a H2SO4 and H2O system. At 21.5°C, the H2SO4 and H2O system has a molecular form of H2SO4•5.48 H2O and H2SO4•1.59 H2O at 35% and 1% RH, respectively. This indicates that the mass of particle-bound water is 1.03×[SO4

=] at 35% RH. Decreasing RH from 35% to 1% would cause 35.6% loss of the particle mass at 35% RH. This estimated loss is higher than the observed loss (8.1±5.8%), probably because the dried filter quickly absorbed water while being weighed. When exposed to the vacuum in XRF (1–2 Pa), H2O evaporated due to its higher vapor pressure. The weight loss due to water evaporation from H2SO4•5.48 H2O (equilibrium at 21.5°C and 35% RH) to H2SO4•0.084 H2O (azeotrope of H2SO4 solution; 98.479% H2SO4 and 1.521% of H2O by weight) is 49.4% of its original mass, which is smaller than the observed loss after XRF (67.3±7.3%). Pure H2SO4 has low vapor pressure (Seinfeld and Pandis, 1998: p.526) and is not expected to evaporate under the XRF

Page 35: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-5

a)

b)

Figure 3-3. Average soluble anion and cation concentrations (in µeq/m3) in PM2.5 from: a) Stack A and b) Stack B.

NO2-

Cl-

NO3-PO4≡

SO4= H+

NH4+

Na+

Mg++

K+Ca++

0.01

0.1

1

10

100

1000Io

n C

once

ntra

tion

(µeq

/m3 )

Ions

Stack A

Cl- NO3-

PO4≡

SO4=

H+

NH4+

Na+ K+ Ca++

0.01

0.1

1

10

100

1000

10000

Ion

Con

cent

ratio

n (µ

eq/m

3 )

Ion

NO2-

Stack B

Page 36: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-6

a)

b)

Figure 3-4. Calculated ammonium by summing ammonium ions in NH4NO3 and either (NH4)2SO4 (0.29×[NO3

-

]+0.38×[SO4=]; blue symbols) or NH4HSO4 (0.29×[NO3

-]+0.192×[HSO4-]; green symbols) versus ammonium

measured directly by automated colorimetry (AC).

y = 17.52xR² = 0.18

y = 8.85xR² = 0.18

0

200

400

600

800

1000

0 20 40 60 80

Calc

ulat

ed A

mm

oniu

m(µ

g/m

3 )

Measured Ammonium (µg/m3)

Stack AAmmonium

NH4HSO4

(NH4)2SO4

y = 1.05xR² = 0.99

y = 0.53xR² = 0.990

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

Calc

ulat

ed A

mm

oniu

m(µ

g/m

3 )

Measured Ammonium (µg/m3)

Stack BAmmonium

NH4HSO4

(NH4)2SO4

B-W4B-W5

Page 37: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-7

Table 3-1. PM mass on Teflon®-membrane filter as originally weighed after conditioning in the lab, drying in a desiccator for 72 hrs, re-equilibrated for 24 hours after desiccator drying, and after x-ray fluorescence (XRF) analysis.

Run ID Filter ID PM m deposit on filter (µg/filter) Percentage of Original Mass Original mass After drying Re-equilibrate After XRF Original mass After drying Re-equilibrate After XRF

RH 35% <1% 35% 35% 35% <1% 35% 35% Stack A-C1 WBTCCF102 4917 4625 4739 2525 100% 94% 96% 51% Stack A-C2 WBTCCF106 5317 5037 5259 1338 100% 95% 99% 25% Stack A-C3 WBTCCF107 7459 6913 7360 2595 100% 93% 99% 35% Stack A-C4 WBTCCF108 5859 5375 5784 2060 100% 92% 99% 35% Stack A-C5 WBTCCF111 4782 3972 4631 1619 100% 83% 97% 34% Stack A-C6 WBTCCF112 6926 6543 6910 1761 100% 94% 100% 25% Stack A-W1 WBTCCF103 4576 4339 4412 1278 100% 95% 96% 28% Stack A-W2 WBTCCF104 5165 4781 5028 1558 100% 93% 97% 30% Stack A-W3 WBTCCF105 5279 4920 5230 1560 100% 93% 99% 30% Stack A-W4 WBTCCF110 6858 5311 6838 2167 100% 77% 100% 32% Stack A-W5 WBTCCF113 6312 6107 6311 2038 100% 97% 100% 32% Stack A-W6 WBTCCF114 5107 4988 5120 1469 100% 98% 100% 29% Stack B-W1 WBTCCF115 7690 7692 7675 7724 100% 100% 100% 100% Stack B-W2 WBTCCF116 6914 6750 6750 6764 100% 98% 98% 98% Stack B-W3 WBTCCF117 5054 4919 4921 4791 100% 97% 97% 95% Stack B-W4 WBTCCF118 2685 2595 2605 2584 100% 97% 97% 96% Stack B-W5 WBTCCF119 4503 4363 4368 4352 100% 97% 97% 97% Stack B-W6 WBTCCF120 3982 3847 3851 3841 100% 97% 97% 96% Stack B-W7 WBTCCF125 4039 3928 3921 3891 100% 97% 97% 96% Stack B-W8 WBTCCF127 1944 1941 1941 1946 100% 100% 100% 100% Stack B-C1 WBTCCF121 3508 3414 3416 3408 100% 97% 97% 97% Stack B-C2 WBTCCF122 4587 4479 4478 4462 100% 98% 98% 97% Stack B-C3 WBTCCF123 3730 3635 3637 3633 100% 97% 98% 97% Stack B-C4 WBTCCF124 4224 4147 4148 4144 100% 98% 98% 98% Stack B-C5 WBTCCF128 1489 1485 1484 1488 100% 100% 100% 100% Stack B-C6 WBTCCF129 1966 1965 1964 1965 100% 100% 100% 100%

Stack A-Tunnel Blank WBTCCF109 -14 -19 -15 -17 Stack B-Tunnel Blank WBTCCF126 25 25 23 24

Field blank1 WBTCCF130 0 5 1 0 Field blank2 WBTCCF131 1 3 4 -1 Field blank3 WBTCCF132 8 5 10 8

Page 38: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-8

a)

b)

Figure 3-5. PM mass on Teflon®-membrane filter from: a) Stack A and b) Stack B as originally weighed after conditioning at 35±5% RH in the lab, drying in a desiccator (<1% RH) for 72 hrs, re-equilibrated for 24 hours after desiccator drying, and after x-ray fluorescence (XRF) analysis.

0

1000

2000

3000

4000

5000

6000

7000

8000

C1 C2 C3 C4 C5 C6 W1 W2 W3 W4 W5 W6

PM2.

5M

ass

(µg/

filte

r)

Stack A Run ID

OriginalAfter dryingRe-equilibrateAfter XRF

Stack A

0

1000

2000

3000

4000

5000

6000

7000

8000

C1 C2 C3 C4 C5 C6 W1 W2 W3 W4 W5 W6 W7 W8

PM2.

5M

ass

(µg/

filte

r)

Stack B Run ID

OriginalAfter dryingRe-equilibrateAfter XRF

Stack B

Page 39: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-9

3-9

vacuum. However, if the filter is in the vacuum long enough to reach the azeotrope of H2SO4 solution, SO3 and H2O start to evaporate at the same rate (Richardson et al., 1986), causing permanent loss of total mass and S, consistent with observations for this study. (NH4)2SO4 does not absorb water below its deliquescence RH (79-81%) with increasing RH, or below its efflorescence RH (33-48%) with decreasing RH (Martin, 2000). Filters from Stack B are likely dry after conditioning in the laboratory. (NH4)2SO4 has low saturation vapor pressure and does not evaporate under the XRF vacuum.

3.1.5 SO4= versus Total S

SO4= is measured by IC on quartz-fiber filter extracts while total S is measured by XRF

on Teflon®-membrane filters. The ratio of SO4= to S is expected to equal to three if all S is

present as SO4=. Water-soluble SO4

= should not exceed three times the S concentration, within precision estimates. However, Figure 3-6a and b show that Stacks A and B have slopes of 4.39 and 4.75, respectively. The two possible causes for these >3 slopes are: 1) volatile sulfur-containing species (e.g., H2SO4) were measured by IC, but were vaporized under the vacuum of the XRF analysis chamber; and 2) the filters were heavily loaded and the X-ray may not totally penetrate the particle layer, causing underestimation of S. The IC SO4

= is the more accurate concentration for this case.

3.2 Real-time Data Validation Most real-time instruments (i.e., PID analyzer, emission analyzer, CO2 analyzers,

NO/NO2 monitor, SO2 analyzer, CPC, DustTrak DRX, OPC, AE51, and AE52) were serviced by manufacturers within 6 month before the stack testing. Calibrations were verified before and after the stack measurement. CO, NO, and SO2 calibration used a Scott-Martin gas mixture standard (CO: 5090 ± 31 ppm, NO: 50.2 ± 0.3 ppm, NO2: <0.3 ppm, SO2: 51.3 ± 0.5 ppm), CO2 calibration used an Airgas instrument grade 100% CO2 tank and a 4936 ± 99 ppm CO2 standard, and the PID analyzer calibration used the manufacturer provided calibration tank containing 100 ppm isobutylene. The calibration gas was diluted with zero air generated by an Environics Model 7000 zero air gas generator through either a Thermo Scientific Model 146i Multi-Gas Calibrator or a Horiba Instruments Model SGD-710C gas divider. Figure 3-7 shows that most instruments agree with the calibration standard within ±10%, with exceptions of the NO and SO2 analyzers. Figure 3-7d shows that the NO analyzer agreed with standards within ±10% for concentrations <500 ppb. Its value became ~15% lower than standard between 1000 and 2000 ppb and >25% lower for concentrations >5000 ppb (5 ppm). The SO2 analyzer agreed with standard within ±15% before the field study, but deviated >45% after the field study. It is not known when its performance changed and therefore, the SO2 readings from the SO2 analyzer are not used.

Figure 3-8 compares average diluted NO concentrations measured by the 2B NO monitor and the Testo emission analyzer. Although there is moderate correlation between these two instruments, the NO monitor readings were only ~16% of the emission analyzer. Since the emission analyzer has <10% error in the NO concentration range of 2-20 ppm while the NO monitor underestimate is >15% in this concentration range, the NO concentration from the Testo emission analyzer was used for the ER calculation.

Figure 3-9 compares the diluted SO2 concentrations measured by: a) Testo emission analyzer and b) Ecotech SO2 analyzer with K2CO3-impregnated filter. Figure 3-9a shows that the emission analyzer measured 35–77 ppm SO2 from Stack A, while the filter measured 7–13 ppm.

Page 40: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-10

a)

b)

Figure 3-6. Water-soluble sulfate (SO4=) on quartz-fiber filter by ion chromatographic (IC) analysis versus total sulfur (S) on Teflon®-membrane filters by x-ray

fluorescence (XRF) analysis for a) Stacks A and b) Stack B.

y = 4.39xR² = 0.51

0

400

800

1200

1600

2000

2400

0 200 400 600 800

Sulfa

te (µ

g/m

3 )

Sulfur (µg/m3)

Stack ASulfate/Sulfur

y = 4.75xR² = 0.61

0

600

1200

1800

2400

3000

3600

0 200 400 600

Sulfa

te (µ

g/m

3 )

Sulfur (µg/m3)

Stack BSulfate/Sulfur

B-W4B-W5

Page 41: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-11

a)

b)

c)

d)

e)

Figure 3-7. Verification data of: a) PID analyzer for isobutylene; b) Testo emission analyzer for CO, NO, and SO2; c) PP Systems CO2 analyzers for undiluted, diluted, and background CO2; d) 2B Tech NO monitor for NO; and e) Ecotech SO2 analyzer for SO2 (before and after stack test).

y = 0.93x + 3.88R² = 1.00

0

20

40

60

80

100

0 20 40 60 80 100

PID

Tota

l VO

Cs C

once

ntra

tion

(ppm

)

Isobutylene Standard Concentration (ppm)

1:1 Line

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Emis

sion

Ana

lyze

r Con

cent

ratio

n (p

pm)

CO/NO/SO2 Standard Concentration (ppm)

CO

NO

SO2

1:1 Line

CO: y = 0.99x - 1.04R² = 1.00

NO: y = 0.95x + 0.12R² = 0.99

SO2: y = 1.00x + 1.03R² = 0.94

y = 0.914xR² = 0.999

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

CO2

Ana

lyze

r Con

cent

ratio

n (p

pm)

CO2 Standard Concentration (ppm)

Undiluted

Diluted

Background

1:1 Line

y = 0.99x - 1.06R² = 1.00

10

100

1000

10000

100000

10 100 1000 10000 100000

NO

Mon

itor C

once

ntra

tion

(ppb

)

NO Standard Concentration (ppb)

1:1 Line

y = 0.91x - 1.70R² = 1.00

10

100

1000

10000

100000

10 100 1000 10000 100000

SO2

Anal

yzer

Con

cent

ratio

n (p

pb)

SO2 Standard Concentration (ppb)

Before field test

After field test

1:1 Line

Page 42: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-12

Figure 3-8. Comparison of average NO concentration measured by the 2B Tech NO monitor and the Testo emission analyzer.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20

NO

Mon

itor C

once

ntra

tion

(ppm

)

Emission Analyzer NO Concentration (ppm)

Stack A

Stack B

y = 0.157xR² = 0.8

Page 43: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-13

a)

b)

Figure 3-9. Comparison of average SO2 concentration measured by: a) Testo emission analyzer and b) Ecotech SO2 analyzer to potassium carbonate-impregnated filter.

0

10

20

30

40

50

60

70

80

90

0 5 10 15

Emis

sion

Ana

lyze

r SO

2 (p

pm)

K2CO3-Impregnated Filter SO2 (ppm)

Stack A

Stack B

y = 0.64x - 0.66R² = 0.92

0

5

10

15

0 5 10 15

SO2

Ana

lyze

r (pp

m)

K2CO3-Impregnated Filter SO2 (ppm)

Stack A

Stack B

Page 44: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-14

Table 3-2. Potassium (K+) and sulfate (SO4=) ions and pH measured from selected K2CO3-impregnated filters.

Run ID [K+] (µmol) [SO4

=] (µmol) ratio [K+]/[SO4=] pH

Stack A-W3 1428 631 2.3 6 Stack A-C2 1481 758 2.0 4 Stack A-C3 1326 619 2.1 6 Stack A-C4 1547 824 1.9 3 Stack B-C4 1535 41 37.1 11 Stack B-W7 1552 124 12.6 11

Page 45: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-15

The K2CO3-impregnated cellulose filters have an average K2CO3 impregnation and maximum SO2 holding capacity of 728±42 µmol/filter. Ion (i.e., SO4

= and K+) and pH analysis were performed on a selection of filters from both stacks to check if these filters were saturated with SO2 during stack sampling. Table 3-2 shows [K+], [SO4

=], and pH value of these several filters. The four filters from Stack A showed [K+]/[SO4

=] ratio of 1.9–2.3 and pH of 3–6, indicating that the K2CO3 was totally consumed and SO2 concentrations were underestimated. On the other hand, the two filters from Stack B showed [K+]/[SO4

=] ratio>10 and pH of 11, indicating that these filters were not saturated. In fact, the SO2 concentration from Stack B was so low that it was below the Testo emission analyzer detection limit (1 ppm) during 7 out of 14 runs. Figure 3-9b shows that the SO2 analyzer measured ~10.7 ppm SO2 from Stack A and there was little variability from run to run even when the dilution ratio changed by a factor of ~2 among these runs. This indicates that the Ecotech SO2 analyzer was also saturated in these runs since it is specified to measure a maximum concentration of 20 ppm (Table 2-1). The SO2 analyzer had good correlation with filter measurement (R2=0.92) for Stack B, although its values were only ~64% of the filter. Since both the filter and SO2 analyzer were saturated for Stack A, data from the emission analyzer were used for ER calculation. For Stack B, SO2 concentrations were below the emission analyzer detection limit, and the filter data were more reliable than the SO2 analyzer; therefore, filter data was used for SO2 ER calculation.

Particle sizing accuracy of the TSI DustTrak DRX and Grimm OPC were checked with polystyrene latex (PSL) spheres, the material used by manufacturers to calibrate these instruments. Monodisperse dry PSL powders with nominal diameters of 1.0, 3.0, 4.6, 6.9, and 10 µm were dispersed into the instruments under a HEPA filter laminar flow hood. Particle size distributions are shown in Figure 3-10. Although the size distributions spread into several channels, the peak sizes detected by the DustTrak DRX were in reasonable agreement with the nominal PSL size. The Grimm OPC also correctly identified the peak size. However, there were secondary peaks in the 2−3 µm range, possibly due to: 1) resuspension of 2−3 µm particles that were deposited in the flow path, and 2) incorrect sizing due to scattering resonance. Repeated experiments with larger particles (>3 µm) showed that there were always smaller phantom particles in the 0.3−3 µm range detected by the OPC but not by a collocated DustTrak DRX or an optical particle sizer (OPS; TSI Model 3330). Although these particles affect the number distribution, they do not significantly affect mass distribution due to their smaller sizes.

Figure 3-11 compares the PM2.5 concentrations measured by: a) DustTrak DRX and b) OPC to those from Teflon®-membrane filter by gravimetry. Good correlations (R2>0.94) between gravimetric and OPC PM2.5 were observed for the cold dilution sampling conditions at both stacks. However, correlations for other conditions were moderate to poor. Since the major particle composition (i.e., H2SO4 or (NH4)2SO4) from the stacks were hygroscopic, the mass concentration measured by optical methods depends on the RH. The RH under cold dilution was nearly 100% and so contained liquid water comparable to that of the gravimetric mass. It is not clear why the Grimm OPC had better correlation with gravimetry than the DustTrak DRX. Under warm dilution conditions, the diluted sample had a variable RH which might have led to variable ratio of gravimetric to optical mass. The ratio of gravimetric to optical PM2.5 from each run was used to scale the optical PM concentrations.

The DustTrak DRX is calibrated for particle size and mass concentration using Arizona road dust (ARD; density 2.65 g/cm3) (Vlasenko et al., 2005). Under the filter equilibration conditions (21.5 ± 1.5 °C and 35 ± 5% RH), the densities of H2SO4 and (NH4)2SO4 particles are

Page 46: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-16

a)

b)

Figure 3-10. Particle size distributions of monodisperse polystyrene latex (PSL) particles measured by: a) TSI DustTrak DRX and b) Grimm OPC.

0.0

0.5

1.0

1.5

2.0

2.5

0 1 10

dN/d

logD

p (p

artic

le/c

m3 •

µm)

Particle Diameter (Dp; µm)

1um3um4.6um6.9um10um

DustTrak DRX

0

1

2

3

4

5

6

0.1 1 10

dN/d

logD

p (p

artic

le/c

m3 •

µm)

Particle Diameter (Dp; µm)

1um3um4.6um6.9um10um

OPC

Page 47: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-17

a)

b)

Figure 3-11. Comparison of average PM2.5 concentration measured by gravimetry to: a) DustTrak DRX and b) OPC.

0

2

4

6

8

10

12

0 1 2 3 4 5

Dus

tTra

k D

RX P

M2.

5(mg/

m3 )

Gravimetry PM2.5 (mg/m3)

A-ColdA-WarmB-ColdB-Warm

A-Cold:y = 0.241x + 0.147R² = 0.602

B-Cold:y = 3.497x - 2.330R² = 0.686

0.00

0.04

0.08

0.12

0.16

0.20

0 1 2 3 4 5

OPC

PM

2.5(m

g/m

3 )

Gravimetry PM2.5 (mg/m3)

A-ColdA-WarmB-ColdB-Warm

A-Cold:y = 0.025x + 0.001R² = 0.963B-Cold:

y = 0.044x + 0.021R² = 0.944

Page 48: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-18

1.35 and 1.77 g/cm3, respectively. The DustTrak DRX would overestimate gravimetric PM2.5 concentration approximately by the ratio of densities of ARD to the particle being measured (Wang et al., 2009): i.e., 1.96 and 1.50 for H2SO4 and (NH4)2SO4, respectively.

Thermodynamic calculations (Clegg et al., 1998) show that a 1 µm-diameter H2SO4 particle at 35% RH (H2SO4•5.48 H2O) will grow to ~ 1.51 µm at 90% RH (H2SO4•25 H2O) and 2.95 µm at 99% RH (H2SO4•199 H2O). Although the particle refractive index (RI) will drop from 1.395 at 35% RH to 1.355 at 90% RH and 1.336 at 99% RH, the light scattering by the particle is expected to increase with RH due to particle growth (Malm et al., 1994; Tang, 1996), and the DustTrak DRX is expected to overestimate the PM2.5 concentration. However, Figure 3-11a shows that slope for Stack A is ~0.24, indicating that the DustTrak DRX detected less scattered light for these particles than expected. The reason is not clear. For Stack B, the (NH4)2SO4 particles will deliquescent at RH>80%. A 1 µm dry (NH4)2SO4 particle will grow to 1.47 µm at 80% RH, 1.74 µm at 90% RH, and 3.75 µm at 99% RH. It is expected that the DRX would overestimate mass concentration for (NH4)2SO4 particles, which qualitatively agrees with the higher slope (3.5) for Stack B as shown in Figure 3-11a. Figure 3-11b shows a low slope between the OPC and gravimetric PM2.5 (0.025 and 0.044 for Stacks A and B, respectively). The OPC data was logged in count mode, and mass concentration was calculated by assuming spherical particles with a density of 1.77 g/cm3. If all particles were counted and sized correctly, the OPC would overestimate PM2.5.

Figures 3-12a and 3-12b show the mass distribution measured by the OPC, and the corresponding cumulative mass distributions are shown in Figure 3-13. The observations are:

• The total concentrations in winter were 4.3 and 17 times higher than those in summer for Stacks A and B, respectively.

• For Stack A, the summer and winter mass distributions were bimodal, peaking at 0.5–0.9 µm for the submicron mode and 1.5–5 µm for the supermicron mode; for Stack B, the summer mass distribution was bimodal with peaks at 0.6 µm and ~2 µm, but the winter distributions had only one peak with mode diameter at ~2.5 µm (Figure 3-12b).

• Cold dilution showed slightly higher concentrations than warm dilution. However, the differences in mass distribution were insignificant.

• For Stack A, the mass distributions in summer and winter were similar (Figures 3-12a and 3-13a). The mass median diameters (MMDs) were 1.1 µm and 1.3 µm for summer and winter, respectively. In summer, it had 45% mass in PM1, ~28% in PM1-2.5, and ~27% in PM2.5-10; in winter, it had 40% mass in PM1, ~25% in PM1-2.5, and ~35% in PM2.5-10.

• For Stack B, the mass distributions in summer and winter were different (Figures 3-12b and Figure 3-13b). The MMDs were 0.7 µm and 2.0 µm for summer and winter, respectively. In summer ~60% mass was in PM1, ~20% in PM1-2.5, and ~20% in PM2.5-10; in winter, ~20% was in PM1, ~40% was in PM1-2.5, and ~40% was in PM2.5-10. Figure 3-14 shows the size segregated mass fractions measured by the DustTrak DRX

and OPC. The DRX showed >98% of mass in PM1 size fraction, while the OPC sizes were distributed among size fractions of <1 µm, 1–2.5 µm, and 2.5–10 µm. The ERs of size segregated PM from both instruments are reported.

Page 49: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-19

a)

b)

Figure 3-12. Particle mass distribution measured by the OPC from: a) Stack A and b) Stack B. The mass concentrations were scaled by the PM2.5 concentrations from Teflon®-membrane filter, and are expressed in concentrations under standard conditions (i.e., 101,325 Pa and 20 °C). The error bar represents standard error from multiple measurements.

0

20

40

60

80

100

120

140

0.1 1 10

dM/d

logD

p (m

g/m

3 )

Particle Diameter Dp (µm)

SummerWinter-ColdWinter-Warm

Stack A

0

60

120

180

240

300

0

3

6

9

12

15

0.1 1 10

dM/d

logD

p (m

g/m

3 )

Particle Diameter Dp (µm)

SummerWinter-ColdWinter-Warm

Stack B

Page 50: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-20

a)

b)

Figure 3-13. Cumulative particle mass distribution measured by the OPC from: a) Stack A and b) Stack B..

0%

20%

40%

60%

80%

100%

120%

0.1 1 10

Cum

ulat

ive

Mas

s D

istri

butio

n

Particle Diameter Dp (µm)

SummerWinter-ColdWinter-Warm

PM1 PM10PM2.5

2.5

Stack A

0%

20%

40%

60%

80%

100%

120%

0.1 1 10

Cum

ulat

ive

Mas

s D

istri

butio

n

Particle Diameter Dp (µm)

SummerWinter-ColdWinter-Warm

PM1 PM10PM2.5

2.5

Stack B

Page 51: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-21

a)

b)

Figure 3-14. Particle mass distribution measured by DustTrak DRX and OPC for : a) Stack A and b) Stack B. PM2.5 concentration was normalized to filter mass concentration.

0

20

40

60

80

<1 µm 1-2.5 µm 2.5-10 µm >10 µm

Mas

s C

once

ntra

tion

(mg/

m3 )

PM Size Fractions

DustTrak DRX

OPC

Stack -A

0

20

40

60

80

<1 µm 1-2.5 µm 2.5-10 µm >10 µm

Mas

s C

once

ntra

tion

(mg/

m3 )

PM Size Fractions

DustTrak DRX

OPC

Stack -B

Page 52: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-22

Figure 3-15 compares: a) BC from the AE51 with BC from the AE52 (λ=880 nm), and b) UVC (λ=370 nm) with BC (λ=880 nm) from the AE52. The AE51 and AE52 gave similar BC values (λ=880 nm). The correlation is only moderate (R2=0.77), probably due to the different averaging times (AE51: 1 s; AE52: 10 s) and sample flow rates (AE51: 50 cm3/min; AE52: 100 cm3/min). The AE51 pump was not stable during this study. The UVC and BC by AE52 had high correlation (R2=0.96) with a linear regression slope of 0.86. The average Ångström absorption exponent (AAE) is estimated to be 0.83 from the following equation:

𝐴𝑇𝑁370𝑛𝑚𝐴𝑇𝑁880𝑛𝑚

= �370880�−𝐴𝐴𝐸

= 𝑈𝑉𝐶𝐵𝐶

× 880370

, (3-1)

where ATN is the attenuation at a given wavelength (370 or 880 nm). The fact that AAE of the stack PM is less than one as assumed in the aethalometer algorithm (Hansen, 2005) indicates that light-absorbing particles behaved like BC and there was negligible UV-absorbing brown carbon (Moosmüller et al., 2011). Due to the close agreement between the AE51 and AE52, the AE52 UVC and BC were used for emission rates.

Figure 3-16 compares EC measured by thermal/optical reflectance (TOR) carbon analysis (Chow et al., 1993; Chow et al., 2007a) with: a) babs on Teflon®-membrane filter by densitometer (Chow et al., 2010) and b) BC by AE52. No clear correlation is found between these measurements, which may be caused by the low values of babs, EC, and BC, as well as the matrix effects of non-light-absorbing H2SO4 and (NH4)2SO4 particles.

Page 53: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-23

a)

b)

Figure 3-15. Comparison of average black carbon (BC) concentration measured by micro-aethalometer AE52 with: a) BC by AE51 at 880 nm and b) brown carbon (BrC; also called UV-absorbing carbon [UVC]) by AE52 at 370 nm.

0

5

10

15

20

0 5 10 15 20

AE51

BC

(µg/

m3 )

AE52 BC (µg/m3)

Stack A

Stack B

1:1 Line

y= 1.04xR² = 0.77

0

5

10

15

20

0 5 10 15 20

AE52

UVC

(µg

/m3 )

AE52 BC (µg/m3)

Stack A

Stack B

1:1 Line

y= 0.86xR² = 0.96

Page 54: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

3-24

a)

b)

Figure 3-16. Comparison of: a) light transmission (babs) on Teflon®-membrane filter by densitometer and b) black carbon (BC) by AE52 with elemental carbon (EC) concentration measured by thermal/optical reflectance analysis. The error bar represents analytical uncertainties.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 10 20 30 40 50

b abs

(Mm

-1)

EC Concentration (µg/m3)

Stack A

Stack B0

5

10

15

20

0 10 20 30 40 50

AE52

BC

(µg/

m3 )

EC Concentration (µg/m3)

Stack A

Stack B

Page 55: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-1

4 Pollutant Concentrations and Emission Rates 4.1 Emission Rate Calculation

ERs from stationary sources are expressed in mass emitted per unit of time or in mass of pollutant per mass of dry or wet air emitted by the stack. The time-based ERs are calculated from species concentrations, average stack velocity, and stack diameter as:

std

Stk

Stk

stdStki T

TCSAVC3600ERPP

i ×××××= (4-1)

where: i = pollutant i, ERi = emission rate of pollutant i in µg/hr, Ci = wet basis stack concentration of the pollutant i in µg/m3 under standard

temperature (Tstd = 293.15 Kelvin [K]; 25 °C) and pressure (Pstd = 101,325 pascal [Pa]) conditions,

VStk = average stack velocity in m/s, CSA = stack cross section area in m2, TStk and PStk = stack temperature in K and stack pressure in Pa, respectively.

For pollutants measured after dilution, the measured concentrations (Ci,Dil in µg/m3) need

to be corrected by the dilution ratio (DR): DRCC Dili,i ×= . (4-2)

The DR is calculated using measured undiluted, diluted, and background CO2 concentrations by:

Bkg2,Dil2,

Bkg2,Stk2,

COCOCOCO

DR−−

= (4-3)

where: CO2,Stk = undiluted CO2 stack concentration in ppm, CO2,Dil = diluted CO2 concentration in ppm, CO2,Bkg = background CO2 concentration in ppm in the dilution flow.

The average stack velocity (VStk) is determined following U.S. EPA Method 2 (2011):

21

Stk

StkSpStk PMW

273.15TΔPCKV

×

+×××= (4-4)

where: Kp = stack velocity constant (34.97), Cs = pitot tube constant (0.84), ΔP = velocity head of stack gas in millimeters of water (mmH2O), TStk = stack temperature in degrees Celsius (°C), MW = molecular weight of wet basis stack gas in g/mol (assumed to be 29.9 g/mol

based on previous measurements of flue gas composition from Stack A) PStk = absolute stack pressure in mm mercury (mmHg)

Page 56: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-2

4.2 Data Reduction The following steps were taken to analyze the real-time data:

1. Raw data files were unified in an Excel worksheet. 2. Average stack velocities (VStk) were calculated from Pitot tube differential pressures

using Eq. 4-4. Average stack velocity, flow rate under standard conditions (298.15 °K or 25 °C and 101,325 Pa), and stack temperature for the five tests conducted in 2008 and 2011 are listed in Table 4-1. Flow rates had a 30% and 62% increase from summer to winter for Stacks A and B, respectively, while stack temperature dropped by 7% and 6%, respectively.

3. Raw data were interpolated to 1 s time intervals, and DRs were calculated using Eq. 4-3. 4. Measured pollutant concentrations (Ci,Dil) were multiplied by DR, and PM concentrations

in particle/cm3 and mg/m3 under dilution chamber conditions were converted to standard conditions.

5. Real-time concentrations were averaged to obtain test-average concentrations. 6. ERs were calculated using Eq. 4-1.

In ER calculations, species with concentrations below MDLs were replaced by 3 times the analytical uncertainty and used for calculating the average concentrations and emission rates. If the species was below MDL during any of the runs at each sampling condition, the average value was flagged by the “<” sign. In source profile calculations, species with concentrations below MDLs were set to zero, and the uncertainty value takes the larger of standard deviation and uncertainty of average of multiple runs.

4.3 NMHC and Carbonyl Concentrations and Emission Rates Figure 4-1 shows the sum of identified NMHCs from the canister analyses. The system

blanks collected dilution air only. Although the dilution air was filtered with an activated charcoal capsule (Figure 2-1), some NMHC remained in the diluted air. Except for the two warm runs (i.e., W1 and W6) from Stack B, both warm and cold runs had similar amounts of NMHC as the blank samples. Therefore, the stack NMHC concentration was probably comparable to ambient air. This was indirectly confirmed by the PID analyzer measurement, which showed near zero concentrations throughout this study. It was not possible to discern if the measured species were from dilution air or ambient air entering the stack. It is not clear why the runs W1 and W6 in Stack B yielded higher concentrations than the other samples. The total NMHC from these two samples were still relative low (<750 µg/m3), in the same range of some runs of the Stack A in Figure 4-1a.

Tables 4-2a and 4-2b list the blank-subtracted stack concentration (in µg/m3) and ERs (in kg/hr) for the 55 photochemical assessment monitoring station (PAMS) compounds and other identified NMHC species for Stacks A and B, respectively. Dilutions with cold and warm air, as well as the average of all runs from each stack, are listed. The five species with highest ERs (in descending order) were: ethene (1.3±1.2 kg/hr), propene (1.0±0.9 kg/hr), propane (0.6±0.5 kg/hr), ethane (0.4±0.2 kg/hr), and n-heptane (0.4±0.2 kg/hr) for Stack A, and n-pentane (1.0±0.8 kg/hr), iso-pentane (0.9±0.7 kg/hr), n-butane (0.8±0.7 kg/hr), iso-butane (0.4±0.3 kg/hr), and toluene (0.2±0.2 kg/hr) for Stack B. ERs for the sum of NMHC were 6.2±3.0 kg/hr and 5.3 ±3.4 kg/hr for Stacks A and B, respectively.

Page 57: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-3

Table 4-1. Stack velocity, temperature, and flow rate under standard conditions (25°C, and 101,325 Pa). The ambient temperature ranged 9.0–32.7 °C with an average of 18.7 °C during the 2008 sampling period, and ranged -14.1–4.7 °C with an average of -4.7 °C during the 2011 sampling period.

Parameter Stack A Stack B Stack C

Summer (2008)

Winter (2011)

Summer (2008)

Winter (2011)

Summer (2008)

Stack velocity (m/s) 24.7±0.3 30.7±1.3 12.7±0.1 19.9±0.6 9.6±0.2 Stack flow rate (m3/s) 645.1±6.9 839.8±38.4 295.8±2.7 478.3±12.2 316.4±5.7 Stack temperature (°C) 258.3±0.6 240.1±1.6 79.6±0.2 74.9±0.7 54.5±0.1

Page 58: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-4

a)

b)

Figure 4-1. Sum of identified NMHC from: a) Stack A and b) Stack B. C denotes cold run, W denotes warm run and Blank denotes the system blank.

0

100

200

300

400

500

600

700

800

Tont

al N

MH

C C

once

ntra

tion

(µg/

m3 )

Run ID

Stack A

0

100

200

300

400

500

600

700

800

Tont

al N

MH

C C

once

ntra

tion

(µg/

m3 )

Run ID

Stack B

Page 59: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-5

Table 4-2a. Stack A wet basis concentration and emission rate of 55 PAMS compounds and other identified non-methane hydrocarbons (NMHC). The 10 species with highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold and warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Stack A

NMHC Compounds Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

PAM

S sp

ecie

s

acetylene 3.818±2.359 99.410±95.126 51.614±47.597 0.0110±0.0066 0.3086±0.2960 0.1598±0.1481 ethene 44.756±16.019 806.236±742.342 425.496±372.130 0.1290±0.0438 2.4979±2.3108 1.3135±1.1583 ethane 58.040±19.504 174.747±147.824 116.393±73.228 0.1718±0.0573 0.5406±0.4603 0.3562±0.2280

propene 8.114±4.190 642.329±598.180 325.221±300.779 0.0237±0.0118 1.9918±1.8616 1.0078±0.9358 propane 28.465±10.926 337.655±288.001 183.060±145.089 0.0845±0.0316 1.0430±0.8966 0.5637±0.4514

1-butene 3.975±1.617 7.051±2.911 5.513±1.654 0.0117±0.0046 0.0212±0.0086 0.0165±0.0049 c-2-butene 0.977±0.409 4.067±1.980 2.522±1.070 0.0029±0.0012 0.0123±0.0059 0.0076±0.0032 t-2-butene 2.782±1.452 9.356±3.453 6.069±2.043 0.0085±0.0045 0.0282±0.0103 0.0184±0.0061

n-butane 20.162±4.517 28.126±11.841 24.144±6.160 0.0603±0.0139 0.0846±0.0351 0.0724±0.0184 iso-butane 12.221±2.450 26.506±12.336 19.364±6.371 0.0362±0.0071 0.0803±0.0376 0.0583±0.0194

iso-pentane 0.174±0.174 0.332±0.332 0.253±0.180 0.0005±0.0005 0.0010±0.0010 0.0008±0.0005 n-pentane 1.348±1.348 0.809±0.809 1.079±0.754 0.0042±0.0042 0.0025±0.0025 0.0033±0.0023

1-pentene 2.954±1.680 3.486±2.116 3.220±1.291 0.0092±0.0052 0.0104±0.0062 0.0098±0.0039 isoprene 0.568±0.407 0.468±0.468 0.518±0.296 0.0016±0.0011 0.0014±0.0014 0.0015±0.0009

t-2-pentene 2.496±1.809 3.464±2.402 2.980±1.441 0.0078±0.0056 0.0103±0.0071 0.0090±0.0043

c-2-pentene 0.860±0.705 1.262±0.807 1.061±0.514 0.0027±0.0022 0.0038±0.0024 0.0032±0.0015 2,2-dimethylbutane 4.651±3.441 3.737±2.897 4.194±2.149 0.0144±0.0107 0.0114±0.0089 0.0129±0.0066

cyclopentane 3.280±2.346 2.524±2.265 2.902±1.559 0.0102±0.0073 0.0078±0.0070 0.0090±0.0048 2,3-dimethylbutane 9.185±7.167 7.591±7.106 8.388±4.818 0.0285±0.0222 0.0234±0.0220 0.0259±0.0149

2-methylpentane 12.991±12.640 12.218±12.218 12.605±8.382 0.0402±0.0391 0.0377±0.0377 0.0390±0.0259

3-methylpentane 11.338±10.057 9.631±9.631 10.484±6.643 0.0351±0.0311 0.0297±0.0297 0.0324±0.0205 2-methyl-1-pentene 3.084±1.966 2.581±1.722 2.833±1.248 0.0096±0.0061 0.0078±0.0053 0.0087±0.0039

n-hexane 51.134±40.284 43.977±43.977 47.556±28.452 0.1587±0.1246 0.1358±0.1358 0.1472±0.0879 methylcyclopentane 43.557±33.534 33.759±31.716 38.658±22.054 0.1352±0.1038 0.1040±0.0980 0.1196±0.0682

2,4-dimethylpentane 2.475±2.475 1.639±1.639 2.057±1.421 0.0077±0.0077 0.0051±0.0051 0.0064±0.0044 benzene 6.059±4.122 27.256±10.933 16.658±6.422 0.0188±0.0128 0.0831±0.0341 0.0510±0.0199

cyclohexane 30.542±23.526 25.023±21.902 27.782±15.346 0.0948±0.0728 0.0769±0.0677 0.0858±0.0475

2-methylhexane 25.713±21.817 21.381±21.381 23.547±14.578 0.0797±0.0675 0.0660±0.0660 0.0729±0.0451 2,3-dimethylpentane 16.651±13.597 13.558±13.558 15.104±9.166 0.0516±0.0421 0.0419±0.0419 0.0468±0.0283

3-methylhexane 50.460±40.445 37.947±37.947 44.203±26.506 0.1565±0.1251 0.1172±0.1172 0.1369±0.0819 2,2,4-trimethylpentane 14.335±10.809 10.061±10.061 12.198±7.069 0.0445±0.0335 0.0311±0.0311 0.0378±0.0219

n-heptane 126.928±95.335 99.883±95.054 113.406±64.310 0.3941±0.2951 0.3083±0.2935 0.3512±0.1989

methylcyclohexane 93.791±70.616 101.852±56.598 97.821±43.160 0.2862±0.2148 0.3035±0.1691 0.2949±0.1304 2,3,4-trimethylpentane 2.562±1.822 2.287±1.460 2.424±1.114 0.0078±0.0055 0.0067±0.0043 0.0073±0.0033

toluene 17.308±13.539 51.100±23.501 34.204±13.897 0.0528±0.0412 0.1558±0.0716 0.1043±0.0423 2-methylheptane 63.123±45.516 83.134±40.464 73.129±29.190 0.1927±0.1385 0.2480±0.1205 0.2204±0.0879

3-methylheptane 25.861±19.662 35.915±17.000 30.888±12.484 0.0789±0.0598 0.1076±0.0512 0.0933±0.0378 n-octane 54.780±42.232 88.976±42.061 71.878±28.879 0.1671±0.1284 0.2672±0.1271 0.2171±0.0874

ethylbenzene 0.710±0.328 1.541±0.996 1.125±0.515 0.0021±0.0009 0.0047±0.0030 0.0034±0.0016

Page 60: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-6

Table 4-2a continued.

Stack A

NMHC Compounds Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

m&p-xylene 2.617±1.438 3.771±1.684 3.194±1.070 0.0075±0.0040 0.0114±0.0052 0.0095±0.0032 styrene 0.274±0.168 0.111±0.085 0.193±0.093 0.0008±0.0005 0.0003±0.0003 0.0006±0.0003

o-xylene 0.850±0.497 0.475±0.333 0.662±0.291 0.0025±0.0014 0.0014±0.0010 0.0020±0.0008 n-nonane 2.063±0.975 5.159±3.397 3.611±1.748 0.0062±0.0030 0.0157±0.0104 0.0110±0.0053

isopropylbenzene 0.063±0.034 0.496±0.432 0.280±0.217 0.0002±0.0001 0.0015±0.0013 0.0008±0.0007

n-propylbenzene 0.083±0.055 0.035±0.035 0.059±0.032 0.0002±0.0002 0.0001±0.0001 0.0002±0.0001 3-ethyltoluene 0.270±0.182 0.074±0.047 0.172±0.094 0.0008±0.0005 0.0002±0.0001 0.0005±0.0003

4-ethyltoluene 0.035±0.035 0.090±0.058 0.063±0.033 0.0001±0.0001 0.0003±0.0002 0.0002±0.0001 1,3,5-trimethylbenzene 0.048±0.035 0.013±0.013 0.030±0.019 0.0001±0.0001 0.0000±0.0000 0.0001±0.0001

o-ethyltoluene 0.112±0.079 0.075±0.063 0.093±0.049 0.0003±0.0002 0.0002±0.0002 0.0003±0.0001

n-decane 1.074±0.779 0.876±0.438 0.975±0.427 0.0030±0.0022 0.0025±0.0013 0.0028±0.0012 1,2,4-trimethylbenzene 0.246±0.246 0.177±0.177 0.211±0.145 0.0007±0.0007 0.0005±0.0005 0.0006±0.0004

1,2,3-trimethylbenzene 0.153±0.122 0.586±0.474 0.370±0.242 0.0004±0.0003 0.0018±0.0015 0.0011±0.0008 1,3-diethylbenzene 0.252±0.095 0.078±0.033 0.165±0.055 0.0007±0.0003 0.0002±0.0001 0.0005±0.0002

1,4-diethylbenzene 0.093±0.042 0.009±0.004 0.051±0.024 0.0003±0.0001 0.0000±0.0000 0.0002±0.0001 n-undecane 0.395±0.199 0.889±0.373 0.642±0.215 0.0012±0.0006 0.0026±0.0011 0.0019±0.0006

Oth

er id

entif

ied

NM

HC

1,3-butadiene 2.802±0.730 2.752±0.524 2.777±0.428 0.0080±0.0019 0.0080±0.0014 0.0080±0.0011

isobutylene 3.478±1.067 101.460±52.842 52.469±29.207 0.0101±0.0030 0.3014±0.1587 0.1557±0.0875 1,2-butadiene 1.003±1.003 <0.994 0.501±0.501 0.0030±0.0030 <0.0029 0.0015±0.0015

2-methyl-1-butene 1.158±0.995 2.264±2.134 1.711±1.135 0.0035±0.0030 0.0066±0.0062 0.0050±0.0033 2-methyl-2-butene 1.670±1.057 7.355±3.829 4.513±2.079 0.0051±0.0032 0.0218±0.0112 0.0135±0.0061

cyclopentene 6.916±4.729 10.029±6.211 8.473±3.751 0.0211±0.0144 0.0295±0.0181 0.0253±0.0111

t-2-hexene 0.989±0.869 1.007±1.007 0.998±0.634 0.0031±0.0027 0.0031±0.0031 0.0031±0.0020 c-2-hexene 0.819±0.435 0.229±0.229 0.524±0.251 0.0025±0.0014 0.0007±0.0007 0.0016±0.0008

1,3-hexadiene (trans) 1.152±0.539 0.947±0.541 1.049±0.365 0.0036±0.0017 0.0029±0.0017 0.0032±0.0011 cyclohexene 2.759±1.677 3.609±1.716 3.184±1.151 0.0081±0.0048 0.0107±0.0050 0.0094±0.0033

1,3-dimethylcyclopentane (cis) 17.004±13.125 12.129±12.129 14.566±8.551 0.0528±0.0406 0.0375±0.0375 0.0451±0.0264 1-heptene 45.897±38.199 43.007±35.216 44.452±24.772 0.1423±0.1182 0.1317±0.1088 0.1370±0.0766

2,3-dimethyl-2-pentene 0.340±0.340 0.516±0.516 0.428±0.296 0.0011±0.0011 0.0015±0.0015 0.0013±0.0009

4-methylheptane 15.497±11.712 20.221±9.922 17.859±7.352 0.0481±0.0363 0.0612±0.0302 0.0547±0.0226 alpha-pinene 1.235±0.479 1.093±0.590 1.164±0.363 0.0037±0.0015 0.0033±0.0018 0.0035±0.0011

indan 0.157±0.073 0.018±0.011 0.087±0.041 0.0005±0.0002 0.0001±0.0000 0.0003±0.0001 Sum of PAMS 870.9±491.2 2875.8±1821.0 1873.3±948.6 2.6582±1.5168 8.8573±5.6752 5.7578±2.9523 Sum of NMHC 973.7±562.7 3082.4±1858.0 2028.1±978.6 2.9747±1.7381 9.4772±5.7892 6.2260±3.0438

Page 61: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-7

Table 4-2b. Stack B wet basis concentration and emission rate of 55 PAMS compounds and other identified non-methane hydrocarbons (NMHC). The 10 species with highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold dilution and eight runs of warm dilution. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Stack B

NMHC Compounds Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

PAM

S sp

ecie

s

acetylene 0.388±0.326 40.007±35.672 23.027±20.521 0.0007±0.0006 0.0684±0.0611 0.0394±0.0352 ethene 2.284±1.326 77.737±49.213 45.400±29.202 0.0039±0.0023 0.1314±0.0839 0.0768±0.0497 ethane 1.368±1.368 30.018±23.421 17.739±13.585 0.0023±0.0023 0.0490±0.0377 0.0290±0.0219

propene <7.081 43.752±20.438 25.001±12.829 <0.0124 0.0734±0.0340 0.0419±0.0214 propane <40.012 67.462±29.408 38.550±18.757 <0.0698 0.1129±0.0481 0.0645±0.0309

1-butene 0.251±0.251 12.024±8.094 6.979±4.773 0.0004±0.0004 0.0198±0.0131 0.0115±0.0077 c-2-butene 1.637±0.893 7.782±4.528 5.149±2.674 0.0029±0.0016 0.0130±0.0076 0.0087±0.0045 t-2-butene 15.939±6.358 15.698±7.622 15.801±4.954 0.0279±0.0112 0.0265±0.0128 0.0271±0.0084

n-butane <25.592 843.015±753.747 481.723±433.818 <0.0447 1.3629±1.2105 0.7788±0.6971 iso-butane <9.309 410.941±316.943 234.824±184.634 <0.0162 0.6701±0.5105 0.3829±0.2977

iso-pentane <8.499 895.458±716.412 511.690±415.965 <0.0148 1.5170±1.2260 0.8668±0.7112 n-pentane <19.945 1015.875±836.646 580.500±484.581 <0.0348 1.7233±1.4325 0.9848±0.8291

1-pentene 1.833±1.417 11.771±5.747 7.512±3.515 0.0032±0.0024 0.0196±0.0093 0.0126±0.0057 isoprene 0.071±0.071 15.245±5.291 8.742±3.599 0.0001±0.0001 0.0256±0.0084 0.0147±0.0058

t-2-pentene <2.034 7.689±6.426 4.394±3.718 <0.0035 0.0130±0.0110 0.0075±0.0064

c-2-pentene <1.956 5.225±3.511 2.986±2.075 <0.0034 0.0088±0.0060 0.0051±0.0035 2,2-dimethylbutane <2.423 10.755±7.175 6.146±4.245 <0.0042 0.0179±0.0121 0.0103±0.0071

cyclopentane 0.362±0.362 38.873±18.791 22.368±11.688 0.0006±0.0006 0.0651±0.0313 0.0375±0.0195 2,3-dimethylbutane 2.464±1.361 55.030±27.589 32.502±16.928 0.0043±0.0023 0.0922±0.0460 0.0545±0.0282

2-methylpentane <5.905 101.525±64.882 58.015±38.593 <0.0103 0.1692±0.1086 0.0967±0.0645

3-methylpentane 0.027±0.027 71.219±47.673 40.708±28.192 0.0000±0.0000 0.1195±0.0808 0.0683±0.0477 2-methyl-1-pentene <2.354 2.336±1.097 1.335±0.688 <0.0041 0.0040±0.0019 0.0023±0.0012

n-hexane <11.618 121.669±79.783 69.525±47.301 <0.0203 0.2008±0.1306 0.1147±0.0775 methylcyclopentane <4.248 71.041±49.625 40.595±29.203 <0.0074 0.1165±0.0803 0.0666±0.0473

2,4-dimethylpentane 0.279±0.279 8.879±4.467 5.193±2.747 0.0005±0.0005 0.0149±0.0074 0.0087±0.0046 benzene 1.729±1.729 35.303±19.255 20.914±11.654 0.0030±0.0030 0.0590±0.0321 0.0350±0.0194

cyclohexane 6.521±6.521 206.939±150.530 121.046±87.953 0.0115±0.0115 0.3508±0.2576 0.2054±0.1503

2-methylhexane <4.256 34.417±24.727 19.667±14.507 <0.0074 0.0564±0.0400 0.0322±0.0235 2,3-dimethylpentane 0.130±0.130 21.991±16.039 12.622±9.389 0.0002±0.0002 0.0360±0.0259 0.0207±0.0152

3-methylhexane <4.465 49.390±37.196 28.223±21.718 <0.0078 0.0806±0.0599 0.0461±0.0350 2,2,4-trimethylpentane <3.194 14.712±11.410 8.407±6.643 <0.0056 0.0240±0.0183 0.0137±0.0107

n-heptane <21.819 127.987±117.759 73.135±67.642 <0.0381 0.2066±0.1891 0.1180±0.1086

methylcyclohexane 0.059±0.059 89.834±71.606 51.359±41.587 0.0001±0.0001 0.1436±0.1129 0.0821±0.0656 2,3,4-trimethylpentane 0.248±0.115 7.640±4.159 4.472±2.521 0.0004±0.0002 0.0126±0.0069 0.0074±0.0042

toluene <13.411 249.237±182.881 142.421±107.057 <0.0234 0.4155±0.3076 0.2374±0.1799 2-methylheptane <6.935 74.856±67.789 42.775±38.981 <0.0121 0.1189±0.1069 0.0679±0.0615

3-methylheptane <4.596 32.419±25.043 18.525±14.586 <0.0080 0.0519±0.0395 0.0297±0.0230 n-octane <11.790 118.969±82.462 67.982±48.569 <0.0206 0.1914±0.1301 0.1094±0.0768

ethylbenzene 0.254±0.254 25.407±15.354 14.627±9.190 0.0004±0.0004 0.0424±0.0258 0.0244±0.0154

Page 62: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-8

Table 4-2b continued. Stack B

NMHC Compounds Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

m&p-xylene 0.690±0.444 68.338±42.991 39.346±25.592 0.0012±0.0008 0.1144±0.0723 0.0659±0.0430 styrene 0.061±0.061 3.522±3.044 2.039±1.754 0.0001±0.0001 0.0059±0.0051 0.0034±0.0030

o-xylene 1.003±0.679 27.545±16.858 16.170±10.040 0.0017±0.0012 0.0471±0.0289 0.0276±0.0172 n-nonane 2.714±1.601 49.921±17.790 29.689±11.823 0.0046±0.0027 0.0831±0.0294 0.0495±0.0196

isopropylbenzene 0.059±0.037 1.662±0.767 0.975±0.479 0.0001±0.0001 0.0028±0.0013 0.0016±0.0008

n-propylbenzene 0.054±0.041 2.418±1.556 1.405±0.922 0.0001±0.0001 0.0041±0.0026 0.0024±0.0016 3-ethyltoluene 0.218±0.207 7.817±5.480 4.560±3.215 0.0004±0.0003 0.0131±0.0092 0.0077±0.0054

4-ethyltoluene 0.225±0.135 4.148±2.670 2.466±1.577 0.0004±0.0002 0.0070±0.0045 0.0042±0.0027 1,3,5-trimethylbenzene 0.404±0.231 4.425±3.222 2.702±1.873 0.0007±0.0004 0.0075±0.0054 0.0046±0.0032

o-ethyltoluene 0.424±0.241 4.348±2.187 2.666±1.331 0.0007±0.0004 0.0073±0.0037 0.0045±0.0022

n-decane 1.323±0.913 43.622±39.321 25.494±22.574 0.0022±0.0015 0.0735±0.0662 0.0430±0.0380 1,2,4-trimethylbenzene 2.242±0.649 16.240±12.000 10.241±6.933 0.0038±0.0011 0.0273±0.0202 0.0173±0.0117

1,2,3-trimethylbenzene 0.883±0.457 4.912±3.113 3.185±1.823 0.0015±0.0008 0.0084±0.0053 0.0055±0.0031 1,3-diethylbenzene 0.474±0.181 1.499±0.805 1.060±0.474 0.0008±0.0003 0.0025±0.0014 0.0018±0.0008

1,4-diethylbenzene 0.424±0.169 1.374±0.712 0.967±0.422 0.0007±0.0003 0.0023±0.0012 0.0016±0.0007 n-undecane 0.224±0.224 15.758±12.895 9.101±7.464 0.0004±0.0004 0.0266±0.0217 0.0154±0.0126

Oth

er id

entif

ied

NM

HC

1,3-butadiene 2.009±0.955 7.773±4.453 5.303±2.622 0.0034±0.0016 0.0129±0.0075 0.0089±0.0044

isobutylene <4.847 60.926±52.856 34.815±30.489 <0.0085 0.1019±0.0890 0.0582±0.0513 1,2-butadiene 0.930±0.930 <1.200 0.399±0.399 0.0016±0.0016 <0.0021 0.0007±0.0007

2-methyl-1-butene <1.956 <1.558 <1.223 <0.0034 <0.0027 <0.0021 2-methyl-2-butene <1.956 13.520±9.947 7.726±5.821 <0.0034 0.0225±0.0167 0.0129±0.0098

cyclopentene <2.294 7.777±4.064 4.444±2.494 <0.0040 0.0127±0.0065 0.0073±0.0040

t-2-hexene <2.353 9.805±8.886 5.603±5.109 <0.0041 0.0167±0.0152 0.0095±0.0088 c-2-hexene 0.204±0.204 0.700±0.419 0.487±0.256 0.0004±0.0004 0.0012±0.0007 0.0008±0.0004

1,3-hexadiene (trans) <2.294 2.681±2.681 1.532±1.532 <0.0040 0.0046±0.0046 0.0026±0.0026 cyclohexene 0.158±0.158 1.406±0.872 0.872±0.517 0.0003±0.0003 0.0023±0.0014 0.0014±0.0008

1,3-dimethylcyclopentane (cis) 0.126±0.126 16.745±14.120 9.622±8.158 0.0002±0.0002 0.0272±0.0227 0.0156±0.0131 1-heptene <5.864 46.310±42.300 26.463±24.309 <0.0102 0.0748±0.0679 0.0427±0.0390

2,3-dimethyl-2-pentene <2.737 0.661±0.413 0.378±0.247 <0.0048 0.0011±0.0007 0.0006±0.0004

4-methylheptane <3.201 19.379±16.273 11.074±9.410 <0.0056 0.0314±0.0261 0.0180±0.0151 alpha-pinene <3.802 5.091±2.926 2.909±1.767 <0.0066 0.0086±0.0050 0.0049±0.0030

indan 0.266±0.155 2.274±1.115 1.413±0.680 0.0005±0.0003 0.0039±0.0019 0.0024±0.0012 Sum of PAMS 47.264±14.347 5327.676±3262.479 3064.642±1949.437 0.0822±0.0249 8.8573±5.4333 5.0965±3.2456 Sum of NMHC 50.957±14.192 5522.723±3380.032 3177.680±2019.733 0.0885±0.0246 9.1791±5.6267 5.2831±3.3613

Page 63: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-9

Tables 4-3a and 4-3b list the blank-subtracted stack concentration (in µg/m3) and ERs (in kg/hr) for halocarbons for Stacks A and B, respectively. Similar to the NMHC, the stack and background concentrations were similar. Species with highest ERs are bromodichloromethane (0.09 kg/hr), 1,1,2,2-tetrachloroethane (0.04 kg/hr), and chloroform (0.02 kg/hr) for Stack A; and dichloromethane (0.03 kg/hr), tetrachloroethene (0.02 kg/hr), and 1,1,2,2-tetrachloroethane (0.02 kg/hr) for Stack B. ERs of the sum of halocarbons were 0.22 kg/hr and 0.11 kg/hr for Stacks A and B, respectively.

Figures 4-2a and 4-2b plot carbonyl concentrations from each test for Stacks A and B, respectively. For Stack A, stack concentrations (except sample C1, which is deemed an outlier) were all significantly higher than the blank concentration, while for Stack B, stack concentrations were in the same range as the blank concentration for about 50% of the samples. Tables 4-4a and 4-4b list the blank-subtracted stack concentrations and ERs of the 14 carbonyls for Stacks A and B, respectively. The three carbonyls with the highest ERs were acetone (5.5 kg/hr), acetaldehyde (1.9 kg/hr), and formaldehyde (0.4 kg/hr) for Stack A, and acetone (0.12 kg/hr), acetaldehyde (0.06 kg/hr), and propionaldehyde (0.01 kg/hr) for Stack B.

4.4 Stack Concentrations and Emission Rates of Inorganic Gases and PM Tables 4-5a and 4-5b summarize the average inorganic gas and PM concentrations and

ERs from Stacks A and B, respectively, under cold and warm dilution conditions for March 2011 with data from August 2008 included for comparison. ERs from cold and warm dilutions in 2011 sampling are plotted in Figure 4-3, and ERs from August 2008 (summer) and March 2011 (winter) are plotted in Figure 4-4.

Among all pollutants, CO2 had the highest ERs: (4.99±0.06)×105 kg/hr and (2.61±0.05)×105 kg/hr for Stack A in winter 2011 and summer 2008, respectively, and (2.62±0.02)×105 kg/hr and (1.77±0.02)×105 kg/hr for Stack B in winter and summer, respectively. Winter ER is 91% and 48% higher than summer for Stacks A and B, respectively. CH4, an extremely potent GHG, had relatively low ERs: 6.4±1.9 kg/hr and 5.8±2.3 kg/hr for Stacks A and B (in winter), respectively. CO had ERs of 301±47 kg/hr and 1599±54 kg/hr for Stack A in winter and summer, respectively, and 87±7 kg/hr and 982±45 kg/hr for Stack B in winter and summer, respectively. NO had ERs of 1072±37 kg/hr and 295±11 kg/hr for Stack A in winter and summer, respectively, and 271±6 kg/hr and 133±2 kg/hr for Stack B in winter and summer, respectively. SO2 had ERs of 9344±331 kg/hr and >1050 kg/hr for Stack A in winter and summer, respectively, and 639±98 kg/hr and 727±132 kg/hr for Stack B in winter and summer, respectively. PM2.5 (OPC) had ERs of 231±13 kg/hr and 49±5 kg/hr for Stack A in winter and summer, respectively, and 128±7 kg/hr and 8.0±0.3 kg/hr for Stack B in winter and summer, respectively. The differences in ERs between cold and warm dilution are not significant for most species. The t values of the Student t-test were > 0.16 for all species from Stack A. Small t values were observed from Stack B for NO2 (t = 0.03), PM1_OPC (t = 0.05), and SO2 (t = 0.02), with NO2 and SO2 from warm dilution being approximately twice of those from cold dilution.

Generally higher ERs were found in March 2011 than August 2008 for all criteria air contaminants (CACs). For Stack A, the ER of CO in March 2011 was ~20% of that in August 2008, and gaseous NH3 was below detection limits in 2011 but was 16.6 kg/hr in 2008. ERs of other species were higher in 2011 than 2008 with 2011/2008 ratios of 1.9 for CO2, 3.7 for NOx, 8.9 for SO2, 5.7 for H2S, and ~5 for PM.

Page 64: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-10

Table 4-3a. Stack A wet basis concentration and emission rate of halocarbons. Three species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold and warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Stack A

Halocarbons Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

vinyl chloride <1.213 <1.150 <0.836 <0.0036 <0.0034 <0.0025

dichloromethane 1.168±0.594 1.519±0.549 1.344±0.389 0.0036±0.0018 0.0045±0.0016 0.0040±0.0012 chloroprene 0.567±0.536 0.505±0.505 0.536±0.351 0.0018±0.0017 0.0016±0.0016 0.0017±0.0011

bromomethane 0.245±0.245 7.731±4.874 3.988±2.586 0.0008±0.0008 0.0229±0.0143 0.0119±0.0076 cis-1,2-dichloroethene <1.883 <1.786 <1.297 <0.0055 <0.0053 <0.0038

1,1-dichloroethene <1.883 <1.786 <1.297 <0.0055 <0.0053 <0.0038

trans-1,2-dichloroethene <1.883 <1.786 <1.297 <0.0055 <0.0053 <0.0038 1,1-dichloroethane <1.922 <1.823 <1.324 <0.0056 <0.0054 <0.0039

1,2-dichloroethane 0.168±0.168 0.117±0.117 0.143±0.098 0.0005±0.0005 0.0004±0.0004 0.0004±0.0003 cis-1,3-dichloropropene 0.307±0.195 0.235±0.169 0.271±0.123 0.0009±0.0006 0.0007±0.0005 0.0008±0.0004

t-1,3-dichloropropene <2.153 <2.041 <1.483 <0.0063 <0.0060 <0.0044 chlorobenzene 0.083±0.083 0.164±0.110 0.123±0.067 0.0003±0.0003 0.0005±0.0003 0.0004±0.0002

1,2-dichloropropane <2.192 <2.078 <1.510 <0.0064 <0.0061 <0.0044

chloroform 8.016±7.121 9.323±4.888 8.670±4.122 0.0228±0.0200 0.0267±0.0139 0.0247±0.0116 dichlorodifluoromethane (F-12) 3.990±1.398 3.035±1.107 3.513±0.862 0.0121±0.0043 0.0093±0.0035 0.0107±0.0027

benzyl chloride <2.457 0.120±0.120 0.060±0.060 <0.0072 0.0004±0.0004 0.0002±0.0002 bromochloromethane 1.227±0.899 0.725±0.725 0.976±0.556 0.0038±0.0028 0.0022±0.0022 0.0030±0.0017

trichloroethene 1.851±0.360 2.658±0.288 2.255±0.251 0.0055±0.0011 0.0079±0.0008 0.0067±0.0007

1,1,1-trichloroethane <2.592 0.015±0.007 0.007±0.004 <0.0076 0.0000±0.0000 0.0000±0.0000 1,1,2-trichloroethane 0.493±0.493 1.802±1.114 1.147±0.613 0.0016±0.0016 0.0054±0.0034 0.0035±0.0019

trichlorofluoromethane (F-11) 2.203±1.107 1.108±0.581 1.655±0.619 0.0067±0.0034 0.0033±0.0017 0.0050±0.0019 1,3-dichlorobenzene 0.546±0.345 0.075±0.075 0.310±0.183 0.0016±0.0010 0.0002±0.0002 0.0009±0.0005

o-dichlorobenzene <2.853 <2.705 <1.966 <0.0084 <0.0080 <0.0058 p-dichlorobenzene <2.853 0.122±0.077 0.061±0.041 <0.0084 0.0004±0.0002 0.0002±0.0001 tetrachloromethane 0.487±0.226 0.842±0.347 0.665±0.204 0.0015±0.0007 0.0025±0.0011 0.0020±0.0006

bromodichloromethane 27.606±12.444 33.610±17.810 30.608±10.397 0.0839±0.0392 0.1011±0.0536 0.0925±0.0318 tetrachloroethene 0.650±0.451 0.776±0.356 0.713±0.275 0.0019±0.0013 0.0022±0.0010 0.0021±0.0008

1,1,2,2-tetrachloroethane 12.929±2.134 13.681±3.809 13.305±2.085 0.0385±0.0064 0.0416±0.0120 0.0400±0.0065 1,2-dichlorotetrafluoroethane (F-114) 0.096±0.061 0.020±0.020 0.058±0.033 0.0003±0.0002 0.0001±0.0001 0.0002±0.0001

1,2,4-trichlorobenzene <3.523 0.899±0.899 0.449±0.449 <0.0103 0.0028±0.0028 0.0014±0.0014

1,1,2-trichloro-1,2,2-trifluoroethane ( 1.641±0.581 0.660±0.348 1.151±0.355 0.0049±0.0018 0.0020±0.0011 0.0035±0.0011 1,2-dibromoethane 0.101±0.064 0.028±0.028 0.064±0.035 0.0003±0.0002 0.0001±0.0001 0.0002±0.0001

dibromochloromethane <4.044 <3.835 <2.787 <0.0119 <0.0113 <0.0082 bromoform <4.906 <4.651 <3.380 <0.0144 <0.0137 <0.0099

hexachloro-1,3-butadiene <5.062 <4.800 <3.488 <0.0149 <0.0142 <0.0103 Sum of halocarbons 64.37±10.95 79.77±20.06 72.07±11.14 0.1932±0.0345 0.2388±0.0604 0.2160±0.0339

Page 65: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-11

Table 4-3b. Stack B wet basis concentration and emission rate of halocarbons. Three species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold and eight runs of warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Stack B

Halocarbons Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

vinyl chloride <1.744 <1.389 <1.090 <0.0030 <0.0024 <0.0019

dichloromethane 10.009±4.936 23.040±12.891 17.456±7.638 0.0173±0.0085 0.0396±0.0221 0.0300±0.0131 chloroprene <2.611 2.199±1.815 1.257±1.051 <0.0046 0.0037±0.0031 0.0021±0.0018

bromomethane <2.650 <2.110 <1.657 <0.0046 <0.0036 <0.0029 cis-1,2-dichloroethene <2.706 <2.155 <1.692 <0.0047 <0.0037 <0.0029

1,1-dichloroethene <2.706 0.373±0.373 0.213±0.213 <0.0047 0.0006±0.0006 0.0004±0.0004

trans-1,2-dichloroethene <2.706 0.026±0.026 0.015±0.015 <0.0047 0.0000±0.0000 0.0000±0.0000 1,1-dichloroethane <2.762 0.356±0.356 0.203±0.203 <0.0048 0.0006±0.0006 0.0003±0.0003

1,2-dichloroethane 0.487±0.310 3.794±2.013 2.377±1.212 0.0009±0.0005 0.0065±0.0034 0.0041±0.0021 cis-1,3-dichloropropene <3.093 <2.464 <1.934 <0.0054 <0.0042 <0.0033

t-1,3-dichloropropene <3.093 <2.464 <1.934 <0.0054 <0.0042 <0.0033 chlorobenzene 0.142±0.090 0.783±0.519 0.508±0.303 0.0002±0.0002 0.0013±0.0009 0.0009±0.0005

1,2-dichloropropane <3.150 0.504±0.504 0.288±0.288 <0.0055 0.0009±0.0009 0.0005±0.0005

chloroform <3.343 0.611±0.376 0.349±0.225 <0.0058 0.0010±0.0006 0.0006±0.0004 dichlorodifluoromethane (F-12) 0.424±0.375 2.324±1.052 1.510±0.657 0.0007±0.0007 0.0039±0.0017 0.0025±0.0011

benzyl chloride <3.531 <2.812 <2.207 <0.0062 <0.0048 <0.0038 bromochloromethane <5.669 1.965±1.305 1.123±0.772 <0.0099 0.0032±0.0021 0.0019±0.0013

trichloroethene 1.276±0.506 2.596±0.665 2.030±0.460 0.0022±0.0009 0.0045±0.0011 0.0035±0.0008

1,1,1-trichloroethane 0.005±0.005 0.044±0.027 0.027±0.016 0.0000±0.0000 0.0001±0.0000 0.0000±0.0000 1,1,2-trichloroethane <3.813 1.610±1.534 0.920±0.879 <0.0067 0.0026±0.0025 0.0015±0.0014

trichlorofluoromethane (F-11) 0.308±0.161 3.777±0.479 2.290±0.549 0.0005±0.0003 0.0064±0.0008 0.0039±0.0009 1,3-dichlorobenzene <4.108 1.882±1.042 1.075±0.633 <0.0072 0.0031±0.0017 0.0018±0.0010

o-dichlorobenzene <4.100 0.076±0.076 0.043±0.043 <0.0072 0.0001±0.0001 0.0001±0.0001 p-dichlorobenzene <4.100 0.068±0.068 0.039±0.039 <0.0072 0.0001±0.0001 0.0001±0.0001 tetrachloromethane 2.852±0.667 4.525±0.619 3.808±0.494 0.0050±0.0012 0.0078±0.0011 0.0066±0.0009

bromodichloromethane 2.253±1.017 3.632±1.209 3.041±0.810 0.0039±0.0018 0.0062±0.0021 0.0052±0.0014 tetrachloroethene 0.837±0.721 23.119±21.231 13.569±12.171 0.0015±0.0013 0.0396±0.0364 0.0232±0.0208

1,1,2,2-tetrachloroethane 0.539±0.455 19.177±9.517 11.189±5.869 0.0010±0.0008 0.0319±0.0152 0.0186±0.0095 1,2-dichlorotetrafluoroethane (F-114) 0.178±0.080 0.375±0.116 0.291±0.077 0.0003±0.0001 0.0006±0.0002 0.0005±0.0001

1,2,4-trichlorobenzene 0.174±0.174 0.094±0.094 0.128±0.088 0.0003±0.0003 0.0002±0.0002 0.0002±0.0002

1,1,2-trichloro-1,2,2-trifluoroethane ( <6.817 0.313±0.250 0.179±0.145 <0.0119 0.0005±0.0004 0.0003±0.0002 1,2-dibromoethane <5.243 0.036±0.036 0.020±0.020 <0.0092 0.0001±0.0001 0.0000±0.0000

dibromochloromethane <5.812 <4.629 <3.633 <0.0101 <0.0079 <0.0063 bromoform <7.049 0.096±0.096 0.055±0.055 <0.0123 0.0002±0.0002 0.0001±0.0001

hexachloro-1,3-butadiene 0.933±0.429 0.473±0.473 0.670±0.321 0.0016±0.0008 0.0008±0.0008 0.0012±0.0006 Sum of halocarbons 20.42±5.98 97.87±42.73 64.68±26.09 0.0354±0.0102 0.1661±0.0728 0.1101±0.0444

Page 66: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-12

a)

b)

Figure 4-2. Carbonyl species concentration for each sample collected from: a) Stack A and b) Stack B.

0

20

40

60

80

100

120

140

160

180

200C

arbo

nyl C

once

ntra

tion

(µg/

m3 )

Run ID

m-Tolualdehyde

benzaldehyde

Hexaldehyde

Valeraldehyde

2-Butanone (MEK)

n-butyraldehyde

Methacrolein

Crotonaldehyde

Propionaldehyde

acetone

Glyoxal

Acrolein

acetaldehyde

Formaldehyde

Stack A

0

2

4

6

8

10

12

14

16

Car

bony

l Con

cent

ratio

n (µ

g/m

3 )

Run ID

m-Tolualdehyde

benzaldehyde

Hexaldehyde

Valeraldehyde

2-Butanone (MEK)

n-butyraldehyde

Methacrolein

Crotonaldehyde

Propionaldehyde

acetone

Glyoxal

Acrolein

acetaldehyde

Formaldehyde

Stack B

Page 67: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-13

Table 4-4a. Stack A wet basis concentration and emission rate of carbonyls. Species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from five runs of cold dilution (excluding Run C1) and six runs of warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Stack A

Carbonyls Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Formaldehyde 74.516±41.020 183.972±93.405 134.219±53.364 0.2254±0.1255 0.5594±0.2900 0.4076±0.1650 Acetaldehyde 492.416±44.460 733.664±126.400 624.006±92.464 1.4984±0.1440 2.1612±0.3362 1.8599±0.2599

Acrolein <4.697 2.347±1.382 1.280±0.781 <0.0142 0.0069±0.0041 0.0037±0.0023

Glyoxal <4.697 <4.607 <3.297 <0.0142 <0.0136 <0.0098 Acetone 1433.337±134.889 2153.603±400.119 1826.209±282.239 4.3756±0.4606 6.3476±1.1036 5.4512±0.8061

Propionaldehyde 67.631±6.721 120.253±25.858 96.334±17.492 0.2052±0.0203 0.3530±0.0707 0.2858±0.0492 Crotonaldehyde 16.709±2.085 12.528±3.183 14.429±2.281 0.0512±0.0070 0.0376±0.0096 0.0438±0.0070

Methacrolein <4.697 43.816±22.101 23.900±12.989 <0.0142 0.1283±0.0626 0.0700±0.0371

n-butyraldehyde <4.697 33.557±15.999 18.304±9.559 <0.0142 0.0960±0.0453 0.0524±0.0272 2-Butanone (MEK) 92.975±41.345 122.347±36.900 108.996±27.011 0.2877±0.1306 0.3573±0.1049 0.3256±0.0804

Valeraldehyde <4.697 <4.607 <3.297 <0.0142 <0.0136 <0.0098 Hexaldehyde <4.697 <4.607 <3.297 <0.0142 <0.0136 <0.0098

Benzaldehyde <4.697 <4.607 <3.297 <0.0142 <0.0136 <0.0098 m-Tolualdehyde <4.697 <4.607 <3.297 <0.0142 <0.0136 <0.0098

Page 68: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-14

Table 4-4b. Stack B wet basis concentration and emission rate of carbonyls. Species with the highest emission rates are highlighted in green. (Data were blank subtracted and averaged from six runs of cold dilution and eight runs of warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Stack B

Carbonyls Concentration (µg/m3) Emission rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Formaldehyde <16.600 <13.375 <10.442 <0.0290 <0.0229 <0.0180 Acetaldehyde 31.948±12.411 33.037±8.523 32.570±6.911 0.0555±0.0215 0.0559±0.0140 0.0558±0.0117

Acrolein <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076

Glyoxal 5.050±5.050 2.297±2.297 3.477±2.443 0.0088±0.0088 0.0039±0.0039 0.0060±0.0042 Acetone 42.554±18.365 83.162±22.369 65.759±15.512 0.0740±0.0319 0.1402±0.0357 0.1118±0.0253

Propionaldehyde 6.557±2.118 4.948±1.615 5.638±1.261 0.0114±0.0037 0.0083±0.0027 0.0097±0.0021 Crotonaldehyde <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076

Methacrolein <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076

n-butyraldehyde <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076 2-Butanone (MEK) <7.011 3.053±2.941 1.744±1.684 <0.0122 0.0049±0.0047 0.0028±0.0027

Valeraldehyde <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076 Hexaldehyde <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076

Benzaldehyde <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076 m-Tolualdehyde <7.011 <5.605 <4.392 <0.0122 <0.0096 <0.0076

Page 69: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-15

Table 4-5a. Stack A gas and PM wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and warm dilution, respectively. Cells with “<” indicate that the species were below the minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Species Stack A Concentration (mg/m3)a Stack A Emission Rate (kg/hr) a

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Ratio Winter/Summer

GH

G CO2 (1.67±0.01)×105 (1.67±0.03)×105 (1.67±0.02)×105 (1.12±0.02)×105 (5.01±0.08)×105 (4.98±0.09)×105 (4.99±0.06)×105 (2.61±0.05)×105 1.9

CH4 2.6±0.9 1.6±0.8 2.1±0.6 NAb 8.0±2.7 4.9±2.6 6.4±1.9 NA NA

Oth

er g

ases

VOCs 18.7±3.3 18.5±3.1 18.6±2.1 NA 54.9±8.6 54.5±8.1 54.7±5.6 NA NA

CO 113.7±21.7 90.4±25.9 102.1±16.5 685.9±26.2 336.0±58.8 265.0±74.6 300.5±46.5 1598.7±54.4 0.2

NO 360.6±14.3 357.8±25.3 359.2±13.9 126.2±3.5 1080.0±50.2 1064.5±59.4 1072.2±37.1 294.8±11.1 3.6

NO2 5.1±2.3 3.9±1.3 4.5±1.3 NA 14.7±6.4 11.9±4.2 13.3±3.7 NA NA

NOx 365.7±12.8 361.7±24.4 363.7±13.1 126.2±3.5c 1094.6±44.3 1076.4±56.6 1085.5±34.4 294.8±11.1c 3.7c

NH3 <0.023 <0.023 <0.023 7.185±1.048 <0.065 <0.067 <0.066 16.614±2.374 NA

SO2 3160±139 3100±216 3130±123 >453c 9464±473 9224±503 9344±331 >1050 d NA

H2S <0.060 0.090±0.024 <0.075 0.017±0.008 <0.177 0.264±0.066 <0.218 0.038±0.017 5.8

Number (4.02±1.20)×108 (3.74±0.27)×108 (3.88±0.59)×108 NA (1.16±0.32)×1021 (1.10±0.08)×1021 (1.13±0.16)×1021 NA NA

PM

BC 0.10±0.04 0.11±0.04 0.10±0.03 NA 0.30±0.14 0.33±0.13 0.31±0.09 NA NA

UVC 0.09±0.04 0.09±0.04 0.09±0.03 NA 0.26±0.13 0.27±0.12 0.27±0.08 NA NA

PM1_OPC 50.0±2.9 47.7±4.7 48.9±2.7 13.0±1.1 149.4±8.1 142.0±12.3 145.7±7.1 30.5±2.7 4.8

PM2.5_OPC 79.1±6.0 76.0±7.7 77.6±4.7 21.1±2.1 236.2±17.4 226.2±20.1 231.2±12.8 49.4±5.1 4.7

PM10_OPC 126.9±18.0 115.7±13.4 121.3±10.8 29.3±3.4 378.8±53.4 343.6±34.8 361.2±30.8 68.6±8.2 5.3

PM25_OPC 129.6±19.0 117.3±13.8 123.5±11.3 29.4±3.4 386.7±56.3 348.4±35.9 367.6±32.4 68.8±8.2 5.3

PM1_DRX 78.5±5.7 74.4±8.3 76.4±4.8 NA 234.5±16.9 221.4±22.3 227.9±13.5 NA NA

PM2.5_DRX 79.1±5.8 74.9±8.4 77.0±4.9 21.1±2.0 236.3±17.2 222.8±22.5 229.5±13.7 49.3±5.0 4.7

PM4_DRX 79.6±5.9 75.3±8.5 77.4±5.0 NA 237.9±17.7 224.0±22.7 230.9±13.9 NA NA

PM10_DRX 80.3±6.2 75.6±8.5 77.9±5.1 35.5±3.0 239.9±18.6 224.9±22.8 232.4±14.2 82.9±7.3 2.8

PM15_DRX 80.3±6.3 75.6±8.5 78.0±5.1 NA 240.0±18.7 225.0±22.9 232.5±14.3 NA NA

a. The unit for particle number concentration is particle/cm3 and particle number emission rate is particles/hr. b. NA = data not available. c. The NO2 measurement in summer 2008 was not reliable. NOx was assumed to be NO. d. Potassium carbonate-impregnated filters were saturated with SO2 in 2008 measurement, causing data biased low.

Page 70: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-16

Table 4-5b. Stack B gas and PM wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and eight warm dilution, respectively. Data were reported as average ± standard error of multiple runs.)

Species Stack B Concentration (mg/m3)a Stack B Emission Rate (kg/hr)a

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Ratio Winter/Summer

GH

G CO2 (1.52±0.02)×105 (1.52±0.01)×105 (1.52±0.08)×105 (1.65±0.03)×105 (2.65±0.03)×105 (2.59±0.03)×105 (2.62±0.02)×105 (1.77±0.02)×105 1.5

CH4 3.3±2.2 3.5±1.9 3.4±1.4 NAb 5.7±3.7 5.9±3.2 5.8±2.3 NA NA

Oth

er g

ases

VOCs 3.8±1.6 6.6±1.8 5.4±1.2 NA 6.6±2.7 11.3±3.1 9.3±2.1 NA NA

CO 46.3±5.7 53.3±6.1 50.3±4.2 914.6±42.3 80.8±10.1 91.0±10.4 86.7±7.2 981.6±44.6 0.1

NO 153.2±4.3 160.0±7.4 157.1±4.6 123.4±1.8 267.4±7.4 272.8±10.1 270.5±6.4 132.5±2.5 2.0

NO2 9.9±4.3 21.9±3.5 16.7±3.1 NA 17.1±7.3 37.3±6.0 28.6±5.2 NA NA

NOx 163.1±7.3 181.8±9.5 173.8±6.6 123.4±1.8c 284.5±12.0 310.1±13.7 299.2±9.7 132.5±2.5 c 2.3 c

NH3 0.836±0.323 3.089±1.471 2.124±0.883 80.607±20.903 1.453±0.559 5.282±2.526 3.641±1.513 86.444±22.858 0.042

SO2 237±77 474±64 373±57 677±120 411±131 810±110 639±98 727±132 0.9

H2S <0.005 <0.007 <0.006 0.007±0.002 <0.009 <0.012 <0.011 0.007±0.002 1.5

PM

Number (1.73±0.17)×108 (1.68±0.15)×108 (1.70±0.11)×108 NA (3.02±0.31)×1020 (2.86±0.24)×1020 (2.93±0.18)×1020 NA NA

BC 0.10±0.03 0.12±0.03 0.11±0.02 NA 0.18±0.04 0.20±0.04 0.19±0.03 NA NA

UVC 0.09±0.02 0.10±0.02 0.10±0.02 NA 0.15±0.04 0.18±0.04 0.17±0.03 NA NA

PM1_OPC 25.8±3.0 32.4±2.8 29.9±2.2 5.5±0.1 45.3±5.4 55.2±4.3 51.4±3.5 5.9±0.1 8.7

PM2.5_OPC 69.8±6.7 77.0±5.6 74.2±4.3 7.5±0.3 122.3±12.2 131.4±8.9 127.9±7.0 8.0±0.3 15.9

PM10_OPC 133.6±20.1 133.0±12.2 133.2±10.2 10.0±1.1 234.4±35.8 227.6±21.4 230.2±18.2 10.8±1.3 21.4

PM25_OPC 133.6±20.1 133.2±12.2 133.3±10.2 10.2±1.3 234.4±35.8 228.0±21.5 230.4±18.2 11.0±1.5 20.9

PM1_DRX 72.1±7.3 76.8±5.4 74.8±4.2 NA 125.9±12.8 131.0±8.5 128.9±7.1 NA NA

PM2.5_DRX 72.4±7.3 76.9±5.4 75.0±4.3 7.5±0.3 126.4±12.9 131.3±8.5 129.2±7.1 8.0±0.3 16.1

PM4_DRX 72.6±7.4 77.0±5.4 75.1±4.3 NA 126.8±13.0 131.4±8.5 129.4±7.1 NA NA

PM10_DRX 72.6±7.4 77.0±5.4 75.2±4.3 8.0±0.4 126.8±13.0 131.4±8.5 129.5±7.1 8.6±0.5 15.0

PM15_DRX 72.6±7.4 77.1±5.4 75.2±4.3 NA 126.9±13.0 131.5±8.6 129.5±7.1 NA NA

a. The unit for particle number concentration is particle/cm3 and particle number emission rate is particle/hr. b. NA = data not available. c. The NO2 measurement in summer 2008 was not reliable. NOx was assumed to be NO.

Page 71: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-17

a)

b)

Figure 4-3. Comparison of gas and PM emission rates from: a) Stack A and b) Stack B under cold and warm dilution conditions in winter 2011.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Emis

sion

Rat

e (k

g/hr

)

Pollutants

Stack A 03/2011, Cold Dilution

Stack A 03/2011, Warm Dilution

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Emis

sion

Rat

e (k

g/hr

)

Pollutants

Stack B 03/2011, Cold Dilution

Stack B 03/2011, Warm Dilution

Page 72: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-18

a)

b)

Figure 4-4. Comparison of gas and PM emission rate from: a) Stack A and b) Stack B in March 2011 and August 2008.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

CO2 CO NO NH3 SO2 H2S PM1 PM2.5 PM10 PM25

Emis

sion

Rat

e (k

g/hr

)

Pollutants

Stack A 03/2011

Stack A 08/2008

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

CO2 CO NO NH3 SO2 H2S PM1 PM2.5 PM10 PM25

Emis

sion

Rat

e (k

g/hr

)

Pollutants

Stack B 03/2011

Stack B 08/2008

Page 73: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-19

The low level of NH3 in March 2011 resulted in non-neutralized sulfate being released as H2SO4 droplets. For Stack A, the coker feed rates had an 8% drop from the 2008 to 2011 test periods. Therefore, the increased ERs are not due to larger feed rates. For Stack B, the CO ER for March, 2011 was ~10% of that measured during August, 2008, and NH3 in March, 2011 was only ~4% of that for the August, 2008 tests. SO2 in March was similar (~90% on average) to that of August, and H2S was near detection limits in both 2011 and 2008. ERs of other species were higher in March with 2011/2008 ratios of 1.5 for CO2, 2.3 for NOx, and 15.9 for PM. For Stack B, the coker feed rates increased by 16% from the 2008 to 2011 tests. The increases in CO2, NOx, and PM are higher than the feed increase. Therefore, other factors, such as stack operating conditions, feed from the sulfur recovery units and sour water plant, and season of measurement may have been responsible for these differences. The ~10% reduction in SO2 emission is probably due to higher SO2 removal efficiency in 2011 (93.6%) than during 2008 (82%).

Table 4-6 and Figure 4-5 compare the NOx, SO2, and PM ERs measured from dilution sampling in August, 2008 and March, 2011, compliance tests in 2007, and emission limits for Stacks A and B from Alberta Environment. TPM25 measured by the OPC is used to estimate TSP. As noted above, much of the TSP is in smaller size fractions, which is expected of process emissions having passed through ESP particle removal. Alberta Method 7A (Alberta Environment, 1995) used to determine NOx compliance oxidizes NOx to nitrate and reports NOx in term of NO2. To be comparable with the compliance NOx, NOx from dilution sampling is also expressed as NO2 by: NOx=NO×46/30+NO2.

For Stack A, the NOx, SO2, and PM25 ERs from dilution sampling in August, 2008 were 52%, >12%, and 18%, respectively, of those from compliance tests. NOx and SO2 ERs from March, 2011 sampling were 90% and 6% higher than those from compliance tests, while PM25 was 6% lower than TSP. For Stack B, NOx from the August, 2008 dilution test was 45% higher than from compliance test, and the August, 2008 SO2 ERs were similar to those of compliance tests. The NOx ER from March, 2011 was 3.2 times of that from compliance tests, while the SO2 ER was 14% lower. The PM25 ER from August, 2008 was only ~3% of the TSP or 21% of the filterable PM from compliance tests, which does not include the condensable PM fraction collected by impingers. The PM25 ER for March, 2011 was 4.5 times the filterable PM, and 39% lower than the sum of filterable and condensable PM measured from the hot filter and impinger catch.

Given that ERs differ from test to test owing to feedstock and operational variability and the test methods are different, the dilution test results can be considered comparable to the compliance tests, although a side-by-side comparison of these two methods is still needed to evaluate their differences. It appears that the hot front filter in the compliance tests reasonably represents the PM emission rates, and that adding the backup impinger catch would overestimate these emissions, similar to the situation found in prior comparison studies (Corio and Sherwell, 2000; England et al., 2000; Richards et al., 2005).

Table 4-7 compares particle size distributions measured from a 2002 in-stack test of Stack A with the August, 2008 and March, 2011 results from dilution sampling. The in-stack sampling method was adapted from U.S. EPA (2010a) Method 201A by adding PM10 and PM2.5 in-stack cyclones to the end of the stack probe. The condensable fraction captured in the impingers was not added to the hot-filter mass measurements. The PM2.5 ERs from 2008 and 2011 dilution sampling were 2.7 and 12.8 times that from this in-stack testing, consistent with an expectation for PM condensation, but at odds with the compliance test comparison.

Page 74: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-20

Table 4-6a. Comparison of emission rates (ER) from compliance tests conducted in 2007 (data from the 2007 AENV Air Emission Report), dilution sampling conducted in August 2008 and March 2011, and emission limits for Stack A.

Test ID Test Date NOx (as NO2, kg/hr)a SO2 ER (kg/hr) TSP (kg/hr) D

RI A

ugus

t 200

8 Stack A-1 8/9/2008 449 >999 109 Stack A-2 8/10/2008 523 >843 62 Stack A-3 8/10/2008 457 >863 63 Stack A-4 8/11/2008 452 >1397 66 Stack A-5 8/11/2008 394 >1183 60 Stack A-6 8/11/2008 437 >1018 52 Average - 452±17 >1050b 69±8c

DR

I Mar

ch 2

011

Stack A-C1 3/16/2011 1340 7214 274 Stack A-C2 3/17/2011 1791 10226 497 Stack A-C3 3/18/2011 1756 10375 578 Stack A-C4 3/18/2011 1660 9467 444 Stack A-C5 3/19/2011 1812 9938 262 Stack A-C6 3/19/2011 1665 9561 265 Stack A-W1 3/17/2011 1531 8013 235 Stack A-W2 3/17/2011 1809 10098 426 Stack A-W3 3/17/2011 1913 10940 463 Stack A-W4 3/18/2011 1738 9569 378 Stack A-W5 3/19/2011 1322 7721 302 Stack A-W6 3/19/2011 1525 8850 282

Average - 1655±55 9331±333 368±32c

Com

plia

nce

Test

07-1 3/13/2007 - 9800 630 07-1-R1 5/8/2007 680 8700 280

07-2 6/5/2007 - 10600 320 07-3 7/4/2007 1010 7500 340 07-4 8/21/2007 900 7500 300 07-5 9/18/2007 890 8600 380 07-6 10/16/2007 - 9200 500

Average - 870±69 8843±431 392±48 Emission Limits 1500 16400 600

a NOx from dilution sampling was expressed as NO2 to be comparable with those from compliance tests. It was calculated from: NOx=NO×46/30+NO2. NO2 was not measured in August 2008. bThe K2CO3-impregnated filter capacity was exceeded during Stack A sampling. Therefore, Stack A SO2 concentration and emission rates were underestimated.

c TSP from dilution sampling is estimated from the PM25 measured by the Grimm OPC.

Page 75: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-21

Table 4-6b. Comparison of emission rates (ER) from compliance tests conducted in 2007 (data from the 2007 AENV Air Emission Report), dilution sampling conducted in August 2008 and March 2011, and emission limits for Stack B.

Test ID Test Date NOx (as NO2, kg/hr)a SO2 ER (kg/hr) Front Half PM

(kg/hr) TSP (kg/hr) D

RI S

umm

er 2

008

Stack B-1 8/14/2008 210 433 - 20.2 Stack B-2 8/14/2008 205 263 - 8.9 Stack B-3 8/15/2008 205 641 - 9.6 Stack B-4 8/15/2008 182 742 - 9.6 Stack B-5 8/15/2008 199 653 - 9.4 Stack B-6 8/16/2008 208 1151 - 9.6 Stack B-7 8/16/2008 210 1208 - 9.8 Average - 203±4 727±132 - 11.0±1.5b

DRI W

inte

r 201

1

Stack B-C1 3/22/2011 487 798 - - Stack B-C2 3/23/2011 409 201 - 273 Stack B-C3 3/23/2011 436 85 - 299 Stack B-C4 3/23/2011 447 86 - 305 Stack B-C5 3/24/2011 402 651 - 151 Stack B-C6 3/24/2011 382 647 - 144 Stack B-W1 3/21/2011 555 915 - 207 Stack B-W2 3/21/2011 422 658 - 150 Stack B-W3 3/21/2011 438 658 - 268 Stack B-W4 3/22/2011 455 1258 - 231 Stack B-W5 3/22/2011 455 1127 - 313 Stack B-W6 3/22/2011 511 774 - 297 Stack B-W7 3/23/2011 414 249 - 197 Stack B-W8 3/24/2011 395 838 - 160 Average - 443±13 639±98 - 230±18b

Com

plia

nce

Test

07-01 1/10/2007 80 420 30 150 07-1b 5/2/2007 - 480 - - 07-2 6/20/2007 60 490 70 287 07-3 8/14/2007 190 580 70 370 07-4 9/11/2007 160 180 90 558 07-5 10/16/2007 180 690 50 454 07-6 11/13/2007 140 730 15 450 07-7 11/27/2007 170 2360 40 377 Average - 140±19 741±239 52±10 378±50

Emission Limits - - - - 250c a NOx from dilution sampling was expressed as NO2 to be comparable with those from compliance tests. It was calculated from: NOx=NO×46/30+NO2. NO2 was not measured in August 2008. bTSP concentrations for dilution sampling are estimated from the PM25 measured by the Grimm OPC. cThe emission guideline is 0.20 g/kg of dry effluent (adjusted to 50% excess air) for TSP. It was converted to emission rate of 250 kg/hr by taking the average dry flue gas flow rate of 1250 tonnes/hr measured by compliance tests in 2007.

Page 76: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-22

a)

b)

Figure 4-5. Comparison of emission rates (ER) from March 2011 and August 2008 dilution tests, compliance tests, and emission limits for: a) Stack A and b) Stack B.

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

Emis

sion

Rat

e (k

g/hr

)

Pollutant

Dilution-03/2011Dilution-08/2008Compliance 2007Emission Limits

NOx SO2 TSP

Stack A

110%

30%

58%

57% 54%

63% 65%

12%

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

Emis

sion

Rat

e (k

g/hr

)

Dilution-03/2011Dilution-08/2008Compliance 2007Emission Limits

NOx SO2 TSP

Stack BH

ot F

ilter

Impi

nger

92%

4%

151%

Page 77: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-23

4.5 PM Chemical Concentrations and Emission Rates Tables 4-8a and 4-8b list stack concentrations and ERs for PM2.5 constituents (soluble

ions, carbon fractions, and elements) from Stacks A and B, respectively for March, 2011 and August, 2008. Soluble SO4

= had the highest concentration and ER of all PM2.5 constituents for both stacks, accounting for 40-73% of the PM2.5 emissions. Stack A recorded higher SO4

= and lower NH4

+ ERs in March, 2011 than in August, 2008, consistent with the presence of H2SO4 discussed earlier. The SO4

= ER in 2011 was ~6 times of that in 2008, while the NH4+ ER in 2011

was 23% of that in 2008. For Stack B, the SO4= ER in 2011 was ~20 times of that in 2008 and

NH4+ ER in 2011 was ~17 times of that in 2008. PM2.5 from both stacks contained Al, S, and Fe,

while most other elements were near or below detection limits. Dilution with cold or warm air did not result in statistically significant differences in concentrations and ERs.

Stack concentrations and ERs for PM2.5 Cs, Ba, rare earth elements, and Pb measured by ICP/MS are listed in Tables 4-9a and 4-9b for Stacks A and B, respectively. ERs for these elements are all <5 g/hr. For Stack A, Ce, La, and Nd are the three rare earth elements that have the highest ERs both in March, 2011 and August, 2008. ERs in 2011 were 30-60% of those in 2008. For Stack B, most elements were near or below detection limits.

Tables 4-10a and 4-10b list stack concentrations and ERs for 113 PM non-polar organic carbon compounds for Stacks A and B, respectively. These organic compounds are grouped into nine categories (i.e., PAHs, n-alkanes, iso- and anteiso-alkanes, hopanes, steranes, methyl-alkanes, branched alkanes, cyclo-alkanes, and alkenes). Retene had the dominant ER (1299.3±451.0 g/hr) among all species in Stack A in winter, which accounted for 95% of all measured non-polar species, and caused the total measured non-polar species in winter to be ~100 times the levels measured during the summer 2008 tests. ERs for PM2.5 non-polar organic species were low in Stack B, with comparable winter and summer ERs.

Tables 4-11a and 4-11b list the stack concentrations and ERs for PM2.5 carbohydrates, organics, three WSOC classes (i.e., neutral, mono-/di-carboxylic acids, and polycarboxylic acids including humic-like substances (HULIS)), total WSOC for Stacks A and B, respectively. For Stack A, glycerol (136.8±38.8 g/hr) was the only carbohydrate that was above detection limits in March, 2011, while all carbohydrates were below detection limits in August, 2008. In terms of organic acids, Stack A had higher ERs for succinic acid (251.4±31.5 g/hr), lactic acid (84.7±13.9 g/hr), and glutaric acid (75.5±12.4 g/hr) in March, 2011, and methanesulfonic acid (95.1±5.4 g/hr) in August, 2008. Neutral compounds was the most abundant WSOC class measured, and Stack A had higher WSOC ERs in 20122 (3951±584 g/hr) than in 2008 (<666 g/hr). For Stack B, the only carbohydrate that was above MDL was also glycerol in 2011 (32.3±6.0 g/hr). Organic acids with the highest ERs were lactic acid (56.8±3.6 g/hr) and acetic acid (52.9±7.6 g/hr) in 2011 and all organic acids were below MDL in 2008. WSOC ERs in 2011 (525.5±48.7 g/hr) were 8 times of that in 2008 (66.3±12.6 g/hr).

Tables 4-12a and 4-12b list the stack concentrations and ERs for nitro-PAHs in PM2.5 collected in 2011. Most nitro-PAHs ERs were below detection limits except 9-nitroanthracene in Stack A (50.6±19.9 mg/hr).

Page 78: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-24

Table 4-7. Comparison of Stack A particle size distribution measured from hot filters behind PM10 and PM2.5 inlets and dilution sampling.

Test Name Test Date PM2.5 ER (kg/hr) PM10 ER (kg/hr) TSPa ER (kg/hr) Size-Selective Test,

2002 5/1/2002 – 5/2/2002 18±2 58±10 103±27

Dilution Sampling, August 2008 8/9/2008 – 8/11/2008 49±5 69±8 69±8

Dilution Sampling, March 2011 3/16/2011 –3/19/2011 231±13 361±31 368±32

aTSP concentrations for dilution sampling are estimated from the PM25 measured by the Grimm OPC.

Page 79: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-25

Table 4-8a. Stack A PM2.5 constituents (ions, carbon fractions, and elements) wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limit [MDLs]. Data were reported as average ± standard error of multiple runs.)

Chemical Species

Stack A Concentration (µg/m3) Stack A Emission Rate (kg/hr) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Cl- 76.9±8.7 57.1±15.6 67.0±9.0 330.1±76.8 0.229±0.025 0.169±0.046 0.199±0.027 0.760±0.173

NO2- <31.415 <21.958 <26.686 <27.705 <0.093 <0.066 <0.079 <0.064

NO3- <25.914 <25.488 <25.701 13.9±2.5 <0.078 <0.077 <0.078 0.032±0.006

PO43- <24.273 <40.507 <32.390 <25.754 <0.072 <0.121 <0.097 <0.060

SO4= 39029±1487 39001±2684 39015±1463 8134±499 116.6±4.3 116.0±6.0 116.3±3.5 18.9±1.2

NH4+ 796±81 666±65 730.8±53.1 3143±192 2.403±0.287 2.001±0.218 2.202±0.182 7.296±0.447

Na+ 6.3±1.7 10.4±2.3 8.3±1.5 10.5±1.2 0.018±0.005 0.030±0.006 0.024±0.004 0.024±0.003

Mg++ 16.8±1.3 16.9±2.1 16.9±1.2 4.3±0.5 0.050±0.003 0.050±0.005 0.050±0.003 0.010±0.001

K+ 15.9±1.4 17.5±1.5 16.7±1.0 9.7±1.3 0.047±0.004 0.052±0.004 0.050±0.003 0.023±0.003

Ca++ 21.9±4.4 26.2±4.9 24.1±3.2 22.8±3.2 0.064±0.012 0.077±0.013 0.071±0.009 0.053±0.008

OC1a 1035.3±503.6 539.0±138.8 787.1±260.0 541.6±310.2 2.978±1.370 1.584±0.395 2.281±0.712 1.271±0.734 OC2 a 638.4±229.3 351.1±67.8 494.7±121.9 588.5±89.7 1.858±0.617 1.034±0.182 1.446±0.331 1.374±0.216

OC3 a 1098.9±546.8 613.7±152.0 856.3±280.3 <83.545 3.143±1.488 1.799±0.427 2.471±0.765 <0.195 OC4 a 912.1±107.9 687.1±149.1 799.6±94.1 108.9±15.0 2.706±0.291 2.023±0.403 2.365±0.258 0.254±0.037 OPT a 3035.5±1399.8 2458.5±666.3 2747.0±744.2 <114.658 8.721±3.803 7.211±1.900 7.966±2.040 <0.267

OPR a 2624.4±1301.4 2032.5±604.8 2328.5±689.9 <34.589 7.524±3.542 5.962±1.741 6.743±1.896 <0.080 OC a 6307±2622 4220.9±975.6 5263.7±1370.5 1300±394 18.2±7.1 12.4±2.7 15.3±3.7 3.042±0.938

EC1 a 2577±1348 2102.9±631.2 2340.1±713.1 1349±92 7.365±3.677 6.161±1.813 6.763±1.963 3.137±0.229 EC2 a 580.6±92.3 456.8±73.0 518.7±59.1 139.6±20.2 1.713±0.239 1.348±0.193 1.530±0.157 0.326±0.049

EC3 a <21.375 <16.222 <18.798 <7.816 <0.064 <0.048 <0.056 <0.018 EC a 552.8±146.1 540.4±113.1 546.6±88.1 1483.3±91.9 1.612±0.394 1.585±0.304 1.599±0.237 3.450±0.234 TC \a 6859±2750 4761.2±1077.5 5810.2±1443.0 2783±446 19.8±7.4 14.0±3.0 16.9±3.9 6.493±1.080

Na <264.890 <270.139 <267.514 186.5±18.2 <0.794 <0.803 <0.798 0.432±0.041 Mg <28.131 <28.305 <28.218 28.5±3.9 <0.083 <0.084 <0.084 0.066±0.008

Al 65.1±7.9 89.5±18.8 77.3±10.4 214.4±25.9 0.195±0.023 0.264±0.049 0.230±0.028 0.499±0.063 Si 904±63 801.1±104.2 852.8±60.0 1037±265 2.693±0.154 2.369±0.269 2.531±0.156 2.424±0.633 P <1.531 <1.540 <1.535 <3.173 <0.005 <0.005 <0.005 <0.007

S 8078±711 8312±922 8195±556 2732±152 24.3±2.4 24.7±2.5 24.5±1.6 6.340±0.351

Page 80: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-26

Table 4-8a continued.

Chemical Species Stack A Concentration (µg/m3) Stack A Emission Rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Cl <1.207 <0.748 <0.977 252.0±58.1 <0.004 <0.002 <0.003 0.580±0.131

K 13.5±1.5 16.7±3.6 15.1±1.9 34.0±1.2 0.040±0.004 0.049±0.009 0.045±0.005 0.079±0.003 Ca 17.7±3.0 23.8±6.1 20.7±3.4 37.2±1.6 0.052±0.008 0.069±0.016 0.061±0.009 0.086±0.003 Sc <13.074 <9.040 <11.057 <0.408 <0.039 <0.027 <0.033 <0.001

Ti 24.4±2.5 31.6±6.3 28.0±3.4 95.4±2.6 0.073±0.007 0.093±0.016 0.083±0.009 0.221±0.006 V 8.9±1.1 12.2±3.1 10.6±1.7 30.9±1.3 0.026±0.003 0.036±0.008 0.031±0.004 0.072±0.003

Cr <0.369 <0.640 <0.504 <0.387 <0.001 <0.002 <0.002 <0.001 Mn 4.9±0.7 6.4±1.3 5.6±0.8 18.1±0.8 0.015±0.002 0.019±0.004 0.017±0.002 0.042±0.002

Fe 172.8±21.1 221.3±50.2 197.0±27.0 589.6±21.2 0.514±0.057 0.649±0.131 0.581±0.071 1.369±0.051 Co <0.888 <1.046 <0.967 <0.082 <0.003 <0.003 <0.003 <0.000 Ni 3.0±0.4 4.3±0.9 3.7±0.5 16.1±1.9 0.009±0.001 0.013±0.002 0.011±0.001 0.037±0.004

Cu 0.6±0.1 0.5±0.1 0.6±0.1 5.7±2.4 0.002±0.000 0.002±0.000 0.002±0.000 0.013±0.006 Zn 1.5±0.2 1.2±0.2 1.4±0.2 5.0±1.5 0.005±0.001 0.004±0.001 0.004±0.000 0.012±0.004

Ga <4.037 <4.223 <4.130 <1.031 <0.012 <0.013 <0.012 <0.002 As <1.018 <1.046 <1.032 <0.113 <0.003 <0.003 <0.003 <0.000 Se <0.946 <0.834 <0.890 <1.492 <0.003 <0.003 <0.003 <0.003

Br <0.823 <0.978 <0.900 1.4±0.2 <0.002 <0.003 <0.003 0.003±0.001 Rb <0.483 <0.377 <0.430 <0.945 <0.001 <0.001 <0.001 <0.002

Sr 1.0±0.1 0.9±0.2 1.0±0.1 2.5±0.1 0.003±0.000 0.003±0.001 0.003±0.000 0.006±0.000 Y 0.2±0.0 0.3±0.0 0.3±0.0 0.8±0.1 0.001±0.000 0.001±0.000 0.001±0.000 0.002±0.000

Zr 1.0±0.1 1.1±0.3 1.1±0.1 3.6±0.2 0.003±0.000 0.003±0.001 0.003±0.000 0.008±0.000 Nb <0.805 <1.070 <0.937 <1.310 <0.002 <0.003 <0.003 <0.003 Mo 0.8±0.1 1.1±0.2 0.9±0.1 2.3±0.1 0.002±0.000 0.003±0.001 0.003±0.000 0.005±0.000

Pd <1.248 <2.141 <1.695 <4.300 <0.004 <0.006 <0.005 <0.010 Ag <1.215 <1.315 <1.265 <1.474 <0.004 <0.004 <0.004 <0.003

Cd <2.193 <2.009 <2.101 <3.419 <0.007 <0.006 <0.006 <0.008 In <2.717 <1.972 <2.345 <2.463 <0.008 <0.006 <0.007 <0.006 Sn <3.139 <2.261 <2.700 <1.946 <0.009 <0.007 <0.008 <0.004

Sb <5.033 <5.163 <5.098 <3.818 <0.015 <0.015 <0.015 <0.009 Cs <10.183 <10.446 <10.315 <1.143 <0.030 <0.031 <0.031 <0.003

Ba <6.991 <7.913 <7.452 <0.563 <0.021 <0.024 <0.022 <0.001 La <9.533 <13.146 <11.339 <0.847 <0.029 <0.039 <0.034 <0.002

Ce <10.273 <8.304 <9.288 <0.884 <0.030 <0.024 <0.027 <0.002

Page 81: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-27

Table 4-8a continued.

Chemical Species Stack A Concentration (µg/m3) Stack A Emission Rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Sm <18.319 <21.741 <20.030 <0.653 <0.054 <0.064 <0.059 <0.002

Eu <15.764 <18.416 <17.090 <6.125 <0.046 <0.055 <0.051 <0.014 Tb <13.073 <27.315 <20.194 <2.145 <0.040 <0.081 <0.060 <0.005 Hf <3.022 <6.529 <4.775 <11.425 <0.009 <0.019 <0.014 <0.027

Ta <4.150 <4.254 <4.202 <11.186 <0.012 <0.013 <0.012 <0.026 W <9.963 <11.941 <10.952 <6.995 <0.029 <0.035 <0.032 <0.016

Ir <1.853 <1.899 <1.876 <1.863 <0.006 <0.006 <0.006 <0.004 Au <1.838 <1.886 <1.862 <1.607 <0.005 <0.006 <0.006 <0.004 Hg <1.018 <1.046 <1.032 <1.665 <0.003 <0.003 <0.003 <0.004

Tl <1.223 <1.254 <1.239 <2.006 <0.004 <0.004 <0.004 <0.005 Pb 0.5±0.2 0.7±0.2 0.6±0.1 1.0±0.3 0.001±0.001 0.002±0.001 0.002±0.000 0.002±0.001

U <1.237 <1.404 <1.320 <1.507 <0.004 <0.004 <0.004 <0.003 Sum of Species b 47954±2975 45710±3780 46832±2318 16441±1297 142.6±6.1 135.7±8.9 139.2±5.2 38.2±3.2

a OC1, OC2, OC3, and OC4 are organic carbon thermal fractions that evolve at 140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere EC1, EC2, and EC3 are elemental carbon thermal fractions that evolve at 580, 740, and 840 °C, respectively, in a 98% He / 2% O2 atmosphere OP is pyrolyzed organic carbon by reflectance (OPR) or transmittance (OPT) OC = (OC1 + OC2 + OC3 + OC4) + OPR EC = (EC1 + EC2 + EC3) – OPR TC = OC + EC b Including TC, Na+, Mg++, K, Cl, Ca, PO4

≡, and SO4=; excluding OC and EC fractions, OC, EC, Na, Mg, P, S, CO3

=, K+, Cl- , and Ca++

Page 82: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-28

Table 4-8b. Stack B PM2.5 constituent (ions, carbon fractions, and elements) wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold dilution and eight runs of warm dilutions, respectively. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Chemical Species Stack B Concentration (µg/m3) Stack B Emission Rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Cl- 873.6±98.9 915.4±165.8 897.5±100.5 <46.144 1.526±0.176 1.554±0.269 1.542±0.165 <0.050

NO2- <44.526 <37.796 <40.680 <32.038 <0.078 <0.065 <0.070 <0.034

NO3- 199.7±44.1 453.6±139.8 344.8±86.9 17.5±3.9 0.349±0.078 0.782±0.243 0.596±0.151 0.019±0.004

PO43- <71.930 <47.938 <58.220 <44.979 <0.125 <0.082 <0.101 <0.048

SO4= 53562±3570.9 70285±7616 63118±5022 5070±152 93.6±6.5 120.1±13.1 108.7±8.6 5.440±0.195

NH4+ 19310±1347 19182±2404 19237±1442 1859±58 33.7±2.5 32.6±3.8 33.1±2.4 1.995±0.073

Na+ 7.9±4.3 11.9±3.8 10.2±2.8 <5.833 0.014±0.008 0.020±0.007 0.018±0.005 <0.006

Mg++ <101.076 <84.392 <91.543 3.2±0.2 <0.176 <0.145 <0.158 0.003±0.000

K+ <61.661 <37.438 <47.819 <3.696 <0.108 <0.064 <0.083 <0.004

Ca++ 26.0±6.6 <18.606 <21.777 8.4±2.1 0.045±0.012 <0.032 <0.038 0.009±0.002

OC1a 149.3±41.9 766.2±371.1 501.8±223.2 <93.803 0.260±0.072 1.325±0.649 0.868±0.390 <0.100

OC2 a 186.8±36.1 492.1±76.6 361.2±61.4 270.9±18.9 0.326±0.063 0.840±0.131 0.620±0.105 0.290±0.021 OC3 a <204.521 <161.853 <180.139 49.4±5.7 <0.357 <0.279 <0.312 0.053±0.006

OC4 a 50.2±15.2 98.3±23.9 77.7±16.0 41.5±4.5 0.088±0.027 0.168±0.041 0.134±0.028 0.045±0.005 OPT a 92.1±22.9 128.5±42.4 112.9±25.8 79.3±10.1 0.161±0.040 0.216±0.069 0.192±0.042 0.085±0.011 OPR a <72.840 <87.383 <81.151 <45.146 <0.127 <0.146 <0.138 <0.048

OC a 382.4±101.4 1518.9±516.7 1031.9±328.9 356.1±33.1 0.668±0.177 2.608±0.903 1.777±0.572 0.382±0.037 EC1 a <51.424 <68.143 <60.978 148.6±15.3 <0.090 <0.115 <0.104 0.159±0.016

EC2 a 74.0±11.7 109.0±22.3 94.0±14.1 <48.895 0.129±0.021 0.185±0.037 0.161±0.023 <0.053 EC3 a <17.663 <11.893 <14.365 <13.035 <0.031 <0.020 <0.025 <0.014 EC a 59.4±9.0 99.2±15.9 82.1±11.0 160.2±12.3 0.104±0.016 0.170±0.028 0.142±0.019 0.172±0.014

TC a 441.7±100.2 1618.0±525.9 1113.9±335.9 516.3±29.0 0.771±0.175 2.778±0.920 1.918±0.584 0.554±0.034 Na <446.769 <411.438 <426.579 119.1±8.0 <0.779 <0.700 <0.734 0.128±0.009

Mg <61.530 <50.171 <55.039 13.2±2.7 <0.107 <0.086 <0.095 0.014±0.003 Al 142.9±8.7 141.2±23.8 141.9±13.7 21.2±1.0 0.249±0.015 0.239±0.038 0.244±0.022 0.023±0.001

Si <6.714 <5.253 <5.879 29.2±1.9 <0.012 <0.009 <0.010 0.031±0.002 P <1.814 <5.596 <3.975 <3.112 <0.003 <0.010 <0.007 <0.003 S 11846±767 11935±1626 11897±954 1486±34 20.7±1.3 20.3±2.6 20.4±1.5 1.593±0.043

Page 83: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-29

Table 4-8b continued.

Chemical Species Stack B Concentration (µg/m3) Stack B Emission Rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Cl 152.9±36.9 178.7±75.7 167.6±44.7 19.5±6.5 0.267±0.065 0.298±0.121 0.285±0.072 0.021±0.007

K 3.3±0.2 3.8±0.5 3.6±0.3 4.4±0.7 0.006±0.000 0.006±0.001 0.006±0.001 0.005±0.001 Ca <5.868 <3.803 <4.688 10.6±1.2 <0.010 <0.006 <0.008 0.011±0.001 Sc <12.625 <20.686 <17.232 <5.714 <0.022 <0.035 <0.030 <0.006

Ti 1.2±0.4 2.7±1.3 2.0±0.8 7.6±0.5 0.002±0.001 0.004±0.002 0.003±0.001 0.008±0.001 V <1.814 <1.064 <1.385 3.1±0.3 <0.003 <0.002 <0.002 0.003±0.000

Cr <1.657 <0.644 <1.078 <1.410 <0.003 <0.001 <0.002 <0.002 Mn <1.521 <2.487 <2.073 2.7±0.4 <0.003 <0.004 <0.004 0.003±0.000 Fe 58.3±29.6 97.2±30.4 80.5±21.4 124.2±20.0 0.101±0.051 0.164±0.050 0.137±0.036 0.134±0.023

Co <1.814 <1.146 <1.432 <0.106 <0.003 <0.002 <0.002 <0.000 Ni <1.515 <1.742 <1.645 19.6±7.0 <0.003 <0.003 <0.003 0.021±0.008

Cu 0.8±0.2 1.2±0.1 1.0±0.1 6.3±3.3 0.001±0.000 0.002±0.000 0.002±0.000 0.007±0.003 Zn 1.4±0.5 1.4±0.4 1.4±0.3 4.9±2.3 0.002±0.001 0.002±0.001 0.002±0.001 0.005±0.002

Ga <4.900 <3.919 <4.340 <2.002 <0.009 <0.007 <0.007 <0.002 As <1.814 <1.420 <1.589 <0.105 <0.003 <0.002 <0.003 <0.000 Se <1.814 <1.420 <1.589 <2.310 <0.003 <0.002 <0.003 <0.002

Br 4.0±1.1 4.7±0.7 4.4±0.6 <0.441 0.007±0.002 0.008±0.001 0.008±0.001 <0.000 Rb <1.484 <1.099 <1.264 <1.210 <0.003 <0.002 <0.002 <0.001

Sr 0.5±0.1 0.4±0.1 0.4±0.1 <0.465 0.001±0.000 0.001±0.000 0.001±0.000 <0.000 Y 0.5±0.1 0.3±0.1 0.4±0.1 <0.212 0.001±0.000 0.001±0.000 0.001±0.000 <0.000 Zr <0.686 <1.165 <0.960 <1.013 <0.001 <0.002 <0.002 <0.001

Nb <1.691 <1.158 <1.386 <1.268 <0.003 <0.002 <0.002 <0.001 Mo <2.509 <2.167 <2.314 <1.003 <0.004 <0.004 <0.004 <0.001

Pd <3.155 <2.169 <2.591 <4.447 <0.005 <0.004 <0.004 <0.005 Ag <2.740 <2.114 <2.382 <4.627 <0.005 <0.004 <0.004 <0.005

Cd <3.333 <3.207 <3.261 <3.754 <0.006 <0.006 <0.006 <0.004 In <3.354 <3.973 <3.708 <2.264 <0.006 <0.007 <0.006 <0.002 Sn <5.604 <3.157 <4.206 <1.885 <0.010 <0.005 <0.007 <0.002

Sb <8.977 <4.049 <6.161 <7.123 <0.016 <0.007 <0.011 <0.008 Cs <18.217 <14.196 <15.919 <1.026 <0.032 <0.024 <0.027 <0.001

Ba <14.735 <11.453 <12.859 <0.658 <0.026 <0.020 <0.022 <0.001 La <23.506 <20.549 <21.816 <0.794 <0.041 <0.035 <0.038 <0.001

Page 84: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-30

Table 4-8b continued.

Chemical Species Stack B Concentration (µg/m3) Stack B Emission Rate (kg/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Ce <8.323 <13.944 <11.535 <1.286 <0.015 <0.024 <0.020 <0.001

Sm <39.165 <32.148 <35.155 <1.184 <0.068 <0.055 <0.061 <0.001 Eu <14.133 <10.321 <11.954 <6.292 <0.025 <0.017 <0.020 <0.007 Tb <38.885 <23.655 <30.182 <2.447 <0.068 <0.041 <0.052 <0.003

Hf <10.206 <7.259 <8.522 <15.680 <0.018 <0.012 <0.015 <0.017 Ta <4.261 <5.738 <5.105 <8.605 <0.007 <0.010 <0.009 <0.009

W <20.741 <14.163 <16.982 <10.661 <0.036 <0.024 <0.029 <0.011 Ir <2.049 <1.686 <1.841 <1.682 <0.004 <0.003 <0.003 <0.002

Au <2.832 <2.561 <2.677 <2.798 <0.005 <0.004 <0.005 <0.003

Hg <1.814 <1.420 <1.589 <2.646 <0.003 <0.002 <0.003 <0.003 Tl <2.181 <1.487 <1.784 <2.751 <0.004 <0.003 <0.003 <0.003

Pb <1.742 <1.017 <1.327 <0.874 <0.003 <0.002 <0.002 <0.001 U <2.374 <1.218 <1.714 <1.542 <0.004 <0.002 <0.003 <0.002

Sum of Speciesb 73905±5007 92016±7185 84254±5118 7762±263 129.1±9.2 157.1±11.9 145.1±8.5 8.3±0.3

a OC1, OC2, OC3, and OC4 are organic carbon thermal fractions that evolve at 140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere

EC1, EC2, and EC3 are elemental carbon thermal fractions that evolve at 580, 740, and 840 °C, respectively, in a 98% He / 2% O2 atmosphere OP is pyrolyzed organic carbon by reflectance (OPR) or transmittance (OPT) OC = (OC1 + OC2 + OC3 + OC4) + OPR EC = (EC1 + EC2 + EC3) – OPR TC = OC + EC

b Including TC, Na+, Mg++, K, Cl, Ca, PO4≡, and SO4

= Excluding OC and EC fractions, OC, EC, Na, Mg, P, S, CO3

=, K+, Cl- , and Ca++

Page 85: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-31

431

Table 4-9a. Stack A PM2.5 Cs, Ba, rare earth elements, and Pb (measured by ICP/MS) wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Chemical Species

Stack A Concentration (µg/m3) Stack A Emission Rate (g/hr) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008)

Cs <0.0004 <0.0005 <0.0004 <0.0004 <0.0013 <0.0013 <0.0013 <0.001

Ba 0.7224±0.0912 0.8918±0.2229 0.8071±0.1176 1.6070±0.0511 2.1381±0.2315 2.6093±0.5876 2.3737±0.3094 3.7355±0.1429

La 0.1711±0.0222 0.2150±0.0493 0.1930±0.0266 0.5793±0.0172 0.5071±0.0587 0.6311±0.1292 0.5691±0.0702 1.3464±0.0478

Ce 0.3547±0.0467 0.4437±0.1027 0.3992±0.0554 1.1892±0.0334 1.0514±0.1237 1.3021±0.2693 1.1768±0.1462 2.7635±0.0933

Pr 0.0410±0.0054 0.0516±0.0120 0.0463±0.0065 0.1325±0.0039 0.1216±0.0142 0.1513±0.0316 0.1364±0.0171 0.3080±0.0110

Nd 0.1527±0.0203 0.1915±0.0446 0.1721±0.0241 0.4975±0.0142 0.4525±0.0537 0.5618±0.1173 0.5072±0.0636 1.1562±0.0395

Sm 0.0271±0.0037 0.0341±0.0079 0.0306±0.0043 0.0892±0.0025 0.0804±0.0098 0.1000±0.0207 0.0902±0.0113 0.2074±0.0068

Eu 0.0037±0.0007 0.0054±0.0016 0.0046±0.0009 0.0167±0.0006 0.0110±0.0019 0.0159±0.0043 0.0134±0.0024 0.0388±0.0014

Gd 0.0195±0.0029 0.0266±0.0079 0.0230±0.0041 0.0665±0.0018 0.0576±0.0076 0.0777±0.0210 0.0676±0.0111 0.1545±0.0047

Tb 0.0025±0.0005 0.0033±0.0009 0.0029±0.0005 0.0093±0.0003 0.0074±0.0012 0.0097±0.0023 0.0085±0.0013 0.0217±0.0007

Dy 0.0143±0.0021 0.0179±0.0041 0.0161±0.0023 0.0472±0.0013 0.0423±0.0056 0.0526±0.0108 0.0474±0.0060 0.1097±0.0036

Ho 0.0023±0.0004 0.0032±0.0009 0.0027±0.0005 0.0087±0.0003 0.0067±0.0010 0.0094±0.0023 0.0080±0.0013 0.0203±0.0006

Er 0.0070±0.0010 0.0093±0.0023 0.0081±0.0012 0.0247±0.0009 0.0206±0.0025 0.0274±0.0060 0.0240±0.0033 0.0574±0.0023

Tm <0.0006 0.0009±0.0002 <0.0008 0.0032±0.0002 <0.0018 0.0027±0.0006 <0.0022 0.0075±0.0004

Yb 0.0041±0.0007 0.0058±0.0016 0.0050±0.0009 0.0197±0.0005 0.0120±0.0019 0.0170±0.0044 0.0145±0.0024 0.0458±0.0014

Lu <0.0004 0.0006±0.0002 <0.0005 0.0026±0.0001 <0.0012 0.0016±0.0006 <0.0014 0.0060±0.0002

Pb 0.2458±0.0385 0.2896±0.0629 0.2677±0.0358 0.7998±0.0546 0.7290±0.1044 0.8507±0.1639 0.7899±0.0944 1.8609±0.1388

Page 86: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-32

432

Table 4-9b. Stack B PM2.5 Cs, Ba, rare earth elements, and Pb (measured by ICP/MS) wet basis concentrations (under standard conditions) and emission rates. (Data were averaged from six runs of cold dilution and eight runs of warm dilution. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Chemical Species

Stack B Concentration (µg/m3) Stack B Emission Rate (g/hr) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008)

Cs <0.0008 <0.0006 <0.0007 <0.0005 <0.0014 <0.0010 <0.0012 <0.001

Ba <0.0616 <0.0339 <0.0458 0.2109±0.0253 <0.1087 <0.0558 <0.0785 0.2271±0.0288

La <0.0027 0.0106±0.0072 <0.0073 0.0508±0.0043 <0.0047 0.0175±0.0115 <0.0120 0.0545±0.0048

Ce 0.0110±0.0063 0.0233±0.0142 0.0180±0.0084 0.1065±0.0095 0.0191±0.0107 0.0383±0.0227 0.0301±0.0136 0.1144±0.0106

Pr <0.0009 <0.0025 <0.0018 0.0118±0.0010 <0.0015 <0.0042 <0.0030 0.0127±0.0011

Nd 0.0031±0.0010 0.0100±0.0063 0.0070±0.0036 0.0445±0.0038 0.0054±0.0017 0.0165±0.0101 0.0117±0.0058 0.0477±0.0042

Sm 0.0001±0.0000 0.0013±0.0012 0.0008±0.0007 0.0082±0.0008 0.0002±0.0000 0.0021±0.0019 0.0013±0.0011 0.0088±0.0009

Eu <0.0008 <0.0006 <0.0007 <0.0004 <0.0014 <0.0010 <0.0012 <0.0005

Gd <0.0008 <0.0009 <0.0009 <0.0005 <0.0014 <0.0016 <0.0015 <0.001

Tb <0.0008 <0.0006 <0.0007 0.0009±0.0001 <0.0014 <0.0010 <0.0012 0.0010±0.0001

Dy <0.0008 <0.0011 <0.0010 0.0040±0.0004 <0.0014 <0.0018 <0.0016 0.0043±0.0004

Ho <0.0008 <0.0006 <0.0007 0.0009±0.0001 <0.0014 <0.0010 <0.0012 0.0010±0.0001

Er <0.0008 <0.0008 <0.0008 0.0019±0.0001 <0.0014 <0.0013 <0.0013 0.0021±0.0002

Tm <0.0008 <0.0006 <0.0007 <0.0005 <0.0014 <0.0010 <0.0012 <0.001

Yb <0.0008 <0.0006 <0.0007 <0.0005 <0.0014 <0.0010 <0.0012 <0.001

Lu <0.0008 <0.0006 <0.0007 <0.0005 <0.0014 <0.0010 <0.0012 <0.001

Pb 0.0755±0.0331 0.0548±0.0149 0.0637±0.0160 0.5705±0.3494 0.1320±0.0580 0.0930±0.0252 0.1097±0.0279 0.6105±0.3706

Page 87: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-33

Table 4-10a. Stack A wet basis concentrations and ERs of non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from filter samples. Retene had the highest ER in winter and is highlighted in yellow. (Data were averaged from six runs of cold and warm dilutions, respectively. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Compound MW

Stack A Concentration (µg/m3) Stack A Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs

acenaphthylene 152 <0.303 <0.308 <0.216 <0.183 <0.891 <0.922 <0.641 <0.419 acenaphthene 154 <0.090 <0.091 <0.064 <0.099 <0.264 <0.273 <0.190 <0.227

fluorene 166 <0.021 <0.025 <0.016 <0.069 <0.063 <0.075 <0.049 <0.158 phenanthrene 178 0.183±0.084 <0.033 <0.020 0.029±0.005 0.524±0.227 <0.103 <0.064 0.066±0.011 anthracene 178 <0.249 <0.253 <0.178 0.010±0.002 <0.733 <0.758 <0.527 0.024±0.005

fluoranthene 202 <0.056 <0.069 <0.045 0.006±0.001 <0.169 <0.208 <0.134 0.014±0.002 pyrene 202 <0.097 <0.056 <0.056 0.019±0.004 <0.332 <0.174 <0.187 0.045±0.010

benzo[a]anthracene 228 0.453±0.143 1.596±0.815 1.025±0.431 0.026±0.006 1.339±0.405 4.861±2.498 3.100±1.318 0.059±0.014 chrysene 228 0.796±0.358 <0.138 <0.089 0.037±0.009 2.456±1.132 <0.469 <0.312 0.086±0.022 benzo[b]fluoranthene 252 <0.067 <0.052 <0.042 <0.064 <0.237 <0.168 <0.145 <0.147

benzo[j+k]fluoranthene 252 0.721±0.279 <0.103 <0.070 <0.022 2.211±0.882 <0.339 <0.241 <0.050 benzo[a]fluoranthene 252 <0.034 <0.038 <0.025 <0.032 <0.105 <0.122 <0.080 <0.073

benzo[e]pyrene 252 <0.052 <0.032 <0.030 <0.069 <0.182 <0.100 <0.104 <0.158 benzo[a]pyrene 252 <0.049 <0.056 <0.037 <0.070 <0.156 <0.170 <0.115 <0.161

perylene 252 <0.125 <0.108 <0.082 <0.076 <0.363 <0.316 <0.241 <0.179 indeno[1,2,3-cd]pyrene 276 <0.025 <0.025 <0.018 <0.033 <0.073 <0.075 <0.052 <0.075 dibenzo[a,h]anthracene 278 <0.011 <0.014 <0.009 <0.074 <0.033 <0.043 <0.027 <0.168

benzo[ghi]perylene 276 <0.042 <0.043 <0.030 <0.049 <0.124 <0.129 <0.089 <0.111 coronene 300 <0.025 <0.025 <0.018 <0.057 <0.072 <0.075 <0.052 <0.131

dibenzo[a,e]pyrene 302 <0.008 <0.007 <0.005 <0.022 <0.026 <0.020 <0.016 <0.050 9-fluorenone 180 <0.053 0.439±0.203 <0.038 <0.077 <0.176 1.285±0.593 <0.131 <0.176

dibenzothiophene 184 <0.037 <0.047 <0.030 0.056±0.006 <0.112 <0.140 <0.089 0.130±0.014

1 methyl phenanthrene 192 <0.031 <0.036 <0.024 0.023±0.005 <0.092 <0.109 <0.071 0.053±0.011

2 methyl phenanthrene 192 <0.046 <0.035 <0.029 0.007±0.002 <0.152 <0.111 <0.094 0.016±0.005

3,6 dimethyl phenanthrene 206 1.225±0.449 0.639±0.179 0.932±0.247 <0.068 3.680±1.348 1.934±0.560 2.807±0.744 <0.156

Page 88: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-34

Table 4-10a continued.

Compound MW Stack A Concentration (µg/m3) Stack A Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs

methylfluoranthene 216 <0.060 <0.070 <0.046 <0.022 <0.212 <0.236 <0.159 <0.050 retene 219 565.5±269.9 294.6±126.7 430.1±147.9 <0.095 1706±823 893±390 1299±451 <0.217

benzo(ghi)fluoranthene 226 <0.034 <0.063 <0.036 0.033±0.008 <0.112 <0.218 <0.122 0.077±0.017

benzo(c)phenanthrene 228 <0.040 0.636±0.293 <0.051 0.003±0.002 <0.134 1.936±0.899 <0.180 0.006±0.004

benzo(b)naphtho[1,2-d]thiophene 234 <0.040 <0.047 <0.031 0.007±0.005 <0.137 <0.154 <0.103 0.016±0.012

cyclopenta[cd]pyrene 226 3.847±0.845 <0.981 <0.527 <0.022 11.494±2.493 <3.377 <1.829 <0.050 benz[a]anthracene-7,12-dione 258 0.951±0.581 <0.294 <0.159 <0.080 2.777±1.637 <1.062 <0.578 <0.183

methylchrysene 242 0.288±0.180 <0.056 <0.039 <0.033 0.891±0.569 <0.186 <0.134 <0.075

benzo(b)chrysene 278 <0.020 <0.025 <0.016 0.000±0.000 <0.061 <0.076 <0.049 0.000±0.000 picene 278 <0.031 <0.032 <0.022 <0.081 <0.093 <0.096 <0.067 <0.186

anthanthrene 276 <0.076 <0.078 <0.055 <0.137 <0.225 <0.232 <0.162 <0.314

Alkane/Alkene/Phthalate

n-alkane n-pentadecane (n-C15) 212 <0.250 <0.230 <0.170 0.012±0.004 <0.734 <0.689 <0.503 0.028±0.009

n-hexadecane (n-C16) 226 <0.294 <0.271 <0.200 0.027±0.008 <0.865 <0.812 <0.593 0.062±0.020 n-heptadecane (n-C17) 240 <0.277 <0.328 <0.215 0.089±0.031 <0.842 <0.983 <0.647 0.208±0.074 n-octadecane (n-C18) 254 <0.236 <0.200 <0.155 0.139±0.044 <0.725 <0.626 <0.479 0.324±0.101

n-nonadecane (n-C19) 268 <0.297 <0.304 <0.213 0.146±0.078 <0.903 <0.939 <0.652 0.336±0.176 n-icosane (n-C20) 282 <0.074 <0.108 <0.065 0.133±0.095 <0.236 <0.341 <0.207 0.313±0.224

n-heneicosane (n-C21) 296 <0.043 0.262±0.071 <0.025 0.456±0.197 <0.147 0.764±0.197 <0.087 1.071±0.467 n-docosane (n-C22) 310 0.441±0.165 0.393±0.106 0.417±0.094 0.101±0.032 1.270±0.446 1.145±0.293 1.207±0.255 0.236±0.077 n-tricosane (n-C23) 324 0.568±0.200 0.545±0.154 0.556±0.120 0.191±0.051 1.637±0.539 1.590±0.433 1.614±0.330 0.443±0.121

n-tetracosane (n-C24) 338 0.613±0.195 0.652±0.191 0.633±0.130 1.063±0.427 1.772±0.527 1.901±0.537 1.837±0.359 2.464±0.983 n-pentacosane (n-C25) 352 0.617±0.158 0.745±0.226 0.681±0.133 0.723±0.407 1.797±0.427 2.172±0.637 1.985±0.370 1.705±0.971

n-hexacosane (n-C26) 366 0.569±0.229 0.554±0.171 0.562±0.136 0.395±0.184 1.635±0.623 1.611±0.476 1.623±0.374 0.924±0.434 n-heptacosane (n-C27) 380 0.445±0.190 0.584±0.182 0.514±0.127 0.149±0.055 1.274±0.516 1.698±0.516 1.486±0.354 0.349±0.130

n-octacosane (n-C28) 394 0.279±0.096 0.383±0.117 0.331±0.074 0.029±0.009 0.806±0.259 1.115±0.331 0.961±0.206 0.067±0.021 n-nonacosane (n-C29) 408 0.242±0.101 0.353±0.113 0.297±0.074 0.031±0.007 0.695±0.274 1.027±0.321 0.861±0.208 0.073±0.017 n-triacontane (n-C30) 422 <0.045 <0.048 <0.033 0.022±0.004 <0.147 <0.153 <0.106 0.050±0.010

Page 89: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-35

Table 4-10a continued.

Compound MW Stack A Concentration (µg/m3) Stack A Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

n-hentriacotane (n-C31) 436 <0.091 <0.087 <0.063 0.020±0.007 <0.274 <0.274 <0.194 0.046±0.016

n-dotriacontane (n-C32) 450 <0.164 <0.159 <0.114 0.009±0.002 <0.481 <0.476 <0.338 0.020±0.005 n-tritriactotane (n-C33) 464 <0.176 <0.171 <0.123 0.027±0.009 <0.519 <0.513 <0.365 0.064±0.021

n-tetratriactoane (n-C34) 478 <0.151 <0.154 <0.108 0.011±0.005 <0.444 <0.459 <0.319 0.025±0.012 n-pentatriacontane (n-C35) 492 <0.196 <0.200 <0.140 0.017±0.006 <0.578 <0.598 <0.416 0.040±0.015 n-hexatriacontane (n-C36) 506 <0.563 <0.572 <0.401 <0.067 <1.654 <1.712 <1.190 <0.154

n-heptatriacontane (n-C37) 521 <3.447 <3.506 <2.458 <0.068 <10.134 <10.486 <7.291 <0.156

n-octatriacontane (n-C38) 535 <5.258 <5.348 <3.750 <0.068 <15.460 <15.996 <11.123 <0.156

n-nonatriacontane (n-C39) 549 <4.558 <4.636 <3.251 <0.066 <13.402 <13.867 <9.642 <0.154

n-tetracontane (n-C40) 563 <4.750 <4.831 <3.388 <0.066 <13.966 <14.451 <10.048 <0.153

iso/anteiso-alkane

iso-nonacosane (iso-C29) 408 <0.062 <0.076 <0.049 0.009±0.004 <0.192 <0.234 <0.151 0.020±0.009 anteiso-nonacosane (anteiso-C29) 408 <0.062 <0.076 <0.049 0.007±0.002 <0.192 <0.234 <0.152 0.017±0.004

iso-triacontane (iso-C30) 422 <0.080 <0.099 <0.063 0.006±0.001 <0.245 <0.297 <0.192 0.013±0.003 anteiso-triacontane (anteiso-C30) 422 <0.080 <0.099 <0.063 0.006±0.002 <0.245 <0.297 <0.192 0.013±0.004

iso-hentriacotane (iso-C31) 436 <0.128 <0.130 <0.091 0.005±0.002 <0.376 <0.389 <0.270 0.012±0.005 anteiso-hentriacotane (anteiso-C31) 436 <0.128 <0.130 <0.091 0.003±0.001 <0.376 <0.389 <0.270 0.006±0.002 iso-dotriacontane (iso-C32) 450 <0.164 <0.166 <0.117 0.016±0.006 <0.481 <0.498 <0.346 0.038±0.015

anteiso-dotriacontane (anteiso-C32) 450 <0.164 <0.166 <0.117 0.008±0.002 <0.481 <0.498 <0.346 0.018±0.006 iso-tritriactotane (iso-C33) 464 <0.137 <0.171 <0.110 0.003±0.001 <0.417 <0.513 <0.330 0.007±0.003

anteiso-tritriactotane (anteiso-C33) 464 <0.138 <0.171 <0.110 0.004±0.001 <0.418 <0.513 <0.331 0.010±0.002

hopane 22,29,30-trisnorneophopane (Ts) 370 0.037±0.028 <0.007 <0.006 0.024±0.007 0.105±0.076 <0.022 <0.017 0.057±0.017

22,29,30-trisnorphopane (Tm) 370 0.035±0.022 0.020±0.010 0.027±0.012 0.015±0.004 0.099±0.061 0.058±0.030 0.079±0.033 0.034±0.009 αβ-norhopane (C29αβ-hopane) 398 0.047±0.015 0.040±0.013 0.044±0.009 0.035±0.012 0.136±0.040 0.118±0.037 0.127±0.026 0.081±0.029

22,29,30-norhopane (29Ts) 398 0.017±0.006 0.014±0.005 0.015±0.004 0.014±0.003 0.049±0.016 0.041±0.015 0.045±0.011 0.032±0.007 αα- + βα-norhopane (C29αα- + βα -hopane) 398 0.020±0.012 <0.015 <0.011 0.108±0.042 0.057±0.033 <0.043 <0.031 0.252±0.100

αβ-hopane (C30αβ -hopane) 412 0.040±0.016 0.035±0.013 0.038±0.010 0.028±0.008 0.116±0.045 0.103±0.037 0.109±0.028 0.065±0.020 αα-hopane (30αα-hopane) 412 <0.007 <0.006 <0.004 0.011±0.005 <0.019 <0.018 <0.013 0.025±0.012 βα-hopane (C30βα -hopane) 412 <0.020 <0.011 <0.011 0.009±0.004 <0.057 <0.033 <0.033 0.022±0.009

αβS-homohopane (C31αβS-hopane) 426 0.010±0.003 0.010±0.003 0.010±0.002 0.027±0.010 0.029±0.008 0.028±0.009 0.029±0.006 0.063±0.023

Page 90: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-36

Table 4-10a continued.

Compound MW Stack A Concentration (µg/m3) Stack A Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

αβR-homohopane (C31αβR-hopane) 426 0.010±0.004 0.010±0.004 0.010±0.002 0.014±0.003 0.030±0.010 0.029±0.010 0.029±0.007 0.033±0.007

αβS-bishomohopane (C32αβS-hopane) 440 <0.010 <0.016 <0.010 <0.019 <0.031 <0.047 <0.028 <0.044 αβR-bishomohopane (C32αβR-hopane) 440 <0.026 <0.022 <0.017 <0.023 <0.072 <0.065 <0.049 <0.052

22S-trishomohopane (C33) 454 <0.010 <0.011 <0.007 <0.019 <0.031 <0.032 <0.022 <0.044 22R-trishomohopane (C33) 454 <0.026 <0.014 <0.015 <0.023 <0.072 <0.040 <0.041 <0.052 22S-tretrahomohopane (C34) 468 <0.010 <0.011 <0.007 <0.019 <0.031 <0.032 <0.022 <0.044

22R-tetrashomohopane (C34) 468 <0.026 <0.014 <0.015 <0.023 <0.072 <0.040 <0.041 <0.052 22S-pentashomohopane(C35) 482 <0.010 <0.011 <0.007 <0.019 <0.031 <0.032 <0.022 <0.044

22R-pentashomohopane(C35) 482 <0.006 <0.006 <0.004 <0.023 <0.017 <0.017 <0.012 <0.052

sterane ααα 20S-Cholestane 372 0.019±0.006 0.012±0.005 0.015±0.004 <0.046 0.055±0.017 0.034±0.014 0.044±0.011 <0.106

αββ 20R-Cholestane 372 <0.002 0.005±0.002 <0.001 0.020±0.015 <0.006 0.015±0.005 <0.004 0.048±0.036 αββ 20s-Cholestane 372 0.010±0.002 0.008±0.003 0.009±0.002 0.016±0.011 0.028±0.007 0.023±0.007 0.026±0.005 0.037±0.025

ααα 20R-Cholestane 372 0.012±0.003 0.019±0.011 0.016±0.005 <0.023 0.036±0.007 0.055±0.031 0.046±0.016 <0.052 ααα 20S 24S-Methylcholestane 386 0.020±0.004 0.013±0.003 0.017±0.003 <0.026 0.061±0.012 0.039±0.009 0.050±0.008 <0.060

αββ 20R 24S-Methylcholestane 386 0.011±0.008 <0.006 <0.004 0.002±0.001 0.031±0.022 <0.017 <0.013 0.005±0.001 αββ 20S 24S-Methylcholestane 386 <0.006 0.009±0.005 <0.004 0.005±0.001 <0.017 0.026±0.016 <0.012 0.011±0.003 ααα 20R 24R-Methylcholestane 386 0.005±0.003 0.007±0.004 0.006±0.002 0.015±0.011 0.015±0.009 0.019±0.011 0.017±0.007 0.035±0.026

ααα 20S 24R/S-Ethylcholestane 386 0.004±0.001 0.005±0.002 0.004±0.001 <0.027 0.011±0.002 0.014±0.005 0.012±0.002 <0.066 αββ 20R 24R-Ethylcholestane 400 0.009±0.007 <0.003 <0.003 <0.021 0.026±0.018 <0.010 <0.007 <0.047

αββ 20S 24R-Ethylcholestane 400 0.015±0.010 0.011±0.007 0.013±0.006 <0.021 0.043±0.029 0.032±0.021 0.037±0.017 <0.047 ααα 20R 24R-Ethylcholestane 400 0.016±0.011 <0.004 <0.003 <0.055 0.044±0.029 <0.013 <0.009 <0.125

methyl-alkane

2-methylnonadecane 282 <0.117 <0.017 <0.059 0.152±0.053 <0.419 <0.051 <0.211 0.355±0.123 3-methylnonadecane 282 <0.101 <0.090 <0.067 0.087±0.033 <0.363 <0.304 <0.237 0.203±0.076

branched-alkane pristane 268 <0.127 <0.094 <0.079 0.096±0.016 <0.382 <0.296 <0.242 0.222±0.036

phytane 282 <0.080 <0.079 <0.056 0.125±0.027 <0.252 <0.249 <0.177 0.289±0.059 squalane 422 <0.014 <0.011 <0.009 0.009±0.002 <0.043 <0.034 <0.027 0.022±0.006

cycloalkane

octylcyclohexane 196 <0.040 <0.041 <0.029 <0.199 <0.119 <0.123 <0.085 <0.456

Page 91: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-37

Table 4-10a continued.

Compound MW Stack A Concentration (µg/m3) Stack A Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

decylcyclohexane 224 <0.041 <0.042 <0.029 <0.170 <0.120 <0.125 <0.087 <0.388

tridecylcyclohexane 266 <0.035 <0.044 <0.028 <0.128 <0.108 <0.133 <0.085 <0.294 n-heptadecylcyclohexane 322 0.025±0.009 0.023±0.006 0.024±0.005 0.021±0.006 0.071±0.024 0.068±0.018 0.070±0.014 0.049±0.014

nonadecylcyclohexane 350 <0.014 <0.014 <0.010 0.011±0.004 <0.041 <0.043 <0.030 0.026±0.009

alkene 1-octadecene 252 <0.221 <0.089 <0.119 0.293±0.102 <0.791 <0.290 <0.421 0.680±0.233

Sum of categories PAHs 580.3±269.5 313.9±130.0 447.1±148.2 0.544±0.216 1750±822 951±401 1351±452 1.276±0.517

n-alkane 53.49±8.46 54.80±6.53 54.14±5.10 4.143±0.989 157.5±21.1 162.5±18.0 160.0±13.2 9.677±2.345 iso/anteiso-alkane 3.095±0.511 3.320±0.352 3.207±0.298 0.066±0.019 9.112±1.282 9.845±0.973 9.479±0.775 0.154±0.045 hopane 0.377±0.123 0.333±0.062 0.355±0.066 0.328±0.103 1.096±0.328 0.983±0.173 1.039±0.178 0.767±0.244

sterane 0.142±0.057 0.111±0.043 0.127±0.034 0.145±0.069 0.411±0.154 0.326±0.125 0.368±0.095 0.342±0.165 methyl-alkane 1.256±1.193 0.318±0.260 0.787±0.599 0.240±0.082 3.485±3.294 0.982±0.810 2.234±1.661 0.558±0.191

branched-alkane 0.493±0.052 0.361±0.143 0.427±0.075 0.231±0.024 1.474±0.159 1.088±0.450 1.281±0.235 0.533±0.050 cycloalkane 0.365±0.064 0.357±0.041 0.361±0.036 0.039±0.010 1.072±0.161 1.061±0.115 1.066±0.094 0.090±0.022

alkene 1.463±1.140 0.434±0.157 0.948±0.570 0.293±0.102 4.114±3.137 1.279±0.459 2.696±1.571 0.680±0.233 Sum of all non-polar species 641.0±267.2 374.0±128.6 507.5±147.0 6.028±1.249 1928±816 1129±398 1529±449 14.076±2.983

Page 92: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-38

Table 4-10b. Stack B wet basis concentrations and ERs of non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from filter samples. (Data were averaged from six runs of cold dilution and eight warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Compound MW

Stack B Concentration (µg/m3) Stack B Emission Rate (g/hr) Winter Cold

(2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs acenaphthylene 152 <0.401 <0.340 <0.259 <0.208 <0.706 <0.591 <0.453 <0.220 acenaphthene 154 <0.119 <0.101 <0.077 <0.113 <0.210 <0.175 <0.135 <0.120

fluorene 166 <0.034 <0.029 <0.022 0.007±0.001 <0.060 <0.050 <0.039 0.007±0.001 phenanthrene 178 <0.094 <0.080 <0.061 0.004±0.002 <0.166 <0.138 <0.106 0.004±0.002

anthracene 178 <0.330 <0.280 <0.213 0.004±0.001 <0.581 <0.486 <0.373 0.004±0.001 fluoranthene 202 <0.095 <0.080 <0.061 0.005±0.002 <0.167 <0.139 <0.107 0.005±0.002 pyrene 202 <0.091 <0.077 <0.059 <0.036 <0.161 <0.134 <0.103 <0.038

benzo[a]anthracene 228 <0.046 <0.038 <0.029 <0.068 <0.081 <0.065 <0.051 <0.072 chrysene 228 <0.080 <0.067 <0.051 0.003±0.000 <0.141 <0.117 <0.090 0.004±0.001

benzo[b]fluoranthene 252 <0.052 <0.038 <0.031 <0.073 <0.092 <0.067 <0.055 <0.077 benzo[j+k]fluoranthene 252 <0.093 <0.078 <0.060 <0.025 <0.164 <0.134 <0.104 <0.026

benzo[a]fluoranthene 252 <0.049 <0.038 <0.030 <0.036 <0.086 <0.067 <0.053 <0.039 benzo[e]pyrene 252 <0.043 <0.035 <0.027 <0.078 <0.076 <0.061 <0.048 <0.083 benzo[a]pyrene 252 <0.090 <0.076 <0.058 <0.080 <0.158 <0.131 <0.101 <0.085

perylene 252 <0.185 <0.158 <0.120 <0.086 <0.327 <0.273 <0.210 <0.091 indeno[1,2,3-cd]pyrene 276 <0.033 <0.028 <0.021 <0.037 <0.058 <0.048 <0.037 <0.040

dibenzo[a,h]anthracene 278 <0.020 <0.017 <0.013 <0.084 <0.035 <0.029 <0.022 <0.088 benzo[ghi]perylene 276 <0.056 <0.048 <0.036 <0.055 <0.099 <0.082 <0.063 <0.058 coronene 300 <0.033 <0.028 <0.021 <0.065 <0.058 <0.048 <0.037 <0.069

dibenzo[a,e]pyrene 302 <0.009 <0.008 <0.006 <0.025 <0.016 <0.013 <0.010 <0.026

9-fluorenone 180 <0.078 <0.066 <0.050 0.018±0.005 <0.137 <0.114 <0.088 0.019±0.005

dibenzothiophene 184 <0.062 <0.052 <0.040 <0.363 <0.109 <0.089 <0.069 <0.383

1 methyl phenanthrene 192 <0.055 <0.040 <0.033 0.035±0.015 <0.096 <0.069 <0.057 0.038±0.016

2 methyl phenanthrene 192 <0.065 <0.055 <0.042 0.002±0.001 <0.115 <0.096 <0.074 0.003±0.001

3,6 dimethyl phenanthrene 206 <0.039 <0.029 <0.024 <0.077 <0.068 <0.051 <0.041 <0.082

Page 93: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-39

Table 4-10b continued.

Compound MW Stack B Concentration (µg/m3) Stack B Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs

methylfluoranthene 216 <0.040 <0.030 <0.024 <0.025 <0.070 <0.052 <0.042 <0.026 retene 219 <0.0 0.3±0.1 <0.017 <0.108 <0.039 0.455±0.162 <0.034 <0.114

benzo(ghi)fluoranthene 226 <0.039 <0.029 <0.024 0.002±0.000 <0.069 <0.050 <0.041 0.002±0.000

benzo(c)phenanthrene 228 <0.038 <0.028 <0.023 0.000±0.000 <0.067 <0.049 <0.040 0.000±0.000

benzo(b)naphtho[1,2-d]thiophene 234 <0.038 <0.028 <0.023 0.000±0.000 <0.067 <0.049 <0.040 0.000±0.000

cyclopenta[cd]pyrene 226 <0.911 <0.774 <0.590 <0.025 <1.605 <1.343 <1.031 <0.026 benz[a]anthracene-7,12-dione 258 <0.040 <0.031 <0.024 <0.091 <0.070 <0.053 <0.043 <0.096

methylchrysene 242 <0.044 <0.034 <0.027 <0.037 <0.078 <0.059 <0.048 <0.040

benzo(b)chrysene 278 <0.034 <0.028 <0.022 0.000±0.000 <0.060 <0.049 <0.038 0.000±0.000 picene 278 <0.042 <0.035 <0.027 <0.093 <0.075 <0.061 <0.047 <0.098

anthanthrene 276 <0.111 <0.086 <0.068 <0.156 <0.195 <0.149 <0.119 <0.165

Alkane/Alkene/Phthalate

n-alkane n-pentadecane (n-C15) 212 <0.330 <0.281 <0.214 0.017±0.004 <0.582 <0.487 <0.374 0.018±0.004

n-hexadecane (n-C16) 226 <0.389 <0.331 <0.252 0.135±0.040 <0.686 <0.574 <0.440 0.146±0.044 n-heptadecane (n-C17) 240 <0.471 <0.385 <0.299 0.078±0.042 <0.831 <0.668 <0.522 0.083±0.045 n-octadecane (n-C18) 254 <0.391 <0.299 <0.239 0.123±0.049 <0.689 <0.521 <0.419 0.132±0.053

n-nonadecane (n-C19) 268 <0.502 <0.427 <0.325 0.118±0.026 <0.885 <0.741 <0.568 0.125±0.028 n-icosane (n-C20) 282 <0.234 <0.191 <0.148 0.025±0.006 <0.413 <0.333 <0.260 0.027±0.007

n-heneicosane (n-C21) 296 <0.150 <0.122 <0.095 0.059±0.018 <0.264 <0.213 <0.166 0.063±0.019 n-docosane (n-C22) 310 <0.171 <0.115 <0.098 0.108±0.034 <0.301 <0.201 <0.173 0.116±0.037 n-tricosane (n-C23) 324 <0.094 <0.057 <0.052 0.175±0.023 <0.166 <0.101 <0.092 0.187±0.024

n-tetracosane (n-C24) 338 <0.092 <0.066 <0.055 0.435±0.059 <0.161 <0.115 <0.095 0.465±0.063 n-pentacosane (n-C25) 352 <0.066 0.229±0.063 <0.030 0.241±0.037 <0.117 0.386±0.100 <0.055 0.257±0.038

n-hexacosane (n-C26) 366 <0.082 0.257±0.059 <0.037 0.190±0.032 <0.145 0.434±0.094 <0.067 0.203±0.033 n-heptacosane (n-C27) 380 <0.083 <0.023 <0.038 0.152±0.027 <0.147 <0.044 <0.068 0.162±0.027

n-octacosane (n-C28) 394 <0.096 <0.066 <0.056 0.111±0.015 <0.169 <0.116 <0.098 0.119±0.015 n-nonacosane (n-C29) 408 <0.099 <0.075 <0.060 0.074±0.010 <0.174 <0.131 <0.105 0.079±0.010 n-triacontane (n-C30) 422 <0.133 <0.103 <0.082 0.039±0.005 <0.234 <0.179 <0.143 0.041±0.006

n-hentriacotane (n-C31) 436 <0.169 <0.137 <0.106 0.016±0.002 <0.298 <0.237 <0.186 0.017±0.002

Page 94: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-40

Table 4-10b continued.

Compound MW Stack B Concentration (µg/m3) Stack B Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

n-dotriacontane (n-C32) 450 <0.216 <0.184 <0.140 0.005±0.001 <0.382 <0.319 <0.245 0.005±0.001

n-tritriactotane (n-C33) 464 <0.233 <0.198 <0.151 0.004±0.001 <0.411 <0.344 <0.264 0.004±0.001 n-tetratriactoane (n-C34) 478 <0.200 <0.170 <0.129 0.003±0.001 <0.352 <0.294 <0.226 0.003±0.001

n-pentatriacontane (n-C35) 492 <0.260 <0.221 <0.168 <0.064 <0.458 <0.383 <0.294 <0.068 n-hexatriacontane (n-C36) 506 <0.744 <0.632 <0.482 <0.077 <1.312 <1.097 <0.842 <0.081

n-heptatriacontane (n-C37) 521 <4.557 <3.874 <2.952 <0.077 <8.034 <6.720 <5.157 <0.082

n-octatriacontane (n-C38) 535 <6.952 <5.910 <4.504 <0.077 <12.256 <10.251 <7.868 <0.081

n-nonatriacontane (n-C39) 549 <6.027 <5.124 <3.904 <0.073 <10.624 <8.886 <6.820 <0.077

n-tetracontane (n-C40) 563 <6.280 <5.339 <4.069 <0.075 <11.072 <9.260 <7.107 <0.079

iso/anteiso-alkane iso-nonacosane (iso-C29) 408 <0.099 <0.084 <0.064 0.003±0.000 <0.174 <0.145 <0.112 0.003±0.001

anteiso-nonacosane (anteiso-C29) 408 <0.099 <0.084 <0.064 0.004±0.001 <0.174 <0.145 <0.112 0.004±0.001 iso-triacontane (iso-C30) 422 <0.133 <0.113 <0.086 0.003±0.001 <0.234 <0.196 <0.150 0.003±0.001

anteiso-triacontane (anteiso-C30) 422 <0.133 <0.113 <0.086 0.004±0.000 <0.234 <0.196 <0.150 0.004±0.000 iso-hentriacotane (iso-C31) 436 <0.169 <0.144 <0.109 0.002±0.001 <0.298 <0.249 <0.191 0.002±0.001

anteiso-hentriacotane (anteiso-C31) 436 <0.169 <0.144 <0.109 <0.186 <0.298 <0.249 <0.191 <0.197 iso-dotriacontane (iso-C32) 450 <0.217 <0.184 <0.140 <0.175 <0.382 <0.319 <0.245 <0.185 anteiso-dotriacontane (anteiso-C32) 450 <0.216 <0.184 <0.140 0.002±0.001 <0.382 <0.319 <0.245 0.002±0.001

iso-tritriactotane (iso-C33) 464 <0.233 <0.198 <0.151 <0.139 <0.411 <0.344 <0.264 <0.147 anteiso-tritriactotane (anteiso-C33) 464 <0.234 <0.198 <0.151 <0.139 <0.412 <0.344 <0.264 <0.147

hopane 22,29,30-trisnorneophopane (Ts) 370 <0.008 <0.005 <0.005 0.006±0.001 <0.014 <0.009 <0.008 0.007±0.001 22,29,30-trisnorphopane (Tm) 370 <0.010 <0.007 <0.006 0.006±0.001 <0.017 <0.013 <0.010 0.006±0.001

αβ-norhopane (C29αβ-hopane) 398 <0.006 <0.005 <0.004 0.010±0.001 <0.011 <0.009 <0.007 0.011±0.001 22,29,30-norhopane (29Ts) 398 <0.007 <0.005 <0.004 0.009±0.001 <0.013 <0.008 <0.007 0.009±0.001

αα- + βα-norhopane (C29αα- + βα -hopane) 398 <0.013 <0.006 <0.006 0.007±0.001 <0.023 <0.010 <0.011 0.007±0.001 αβ-hopane (C30αβ -hopane) 412 <0.012 <0.009 <0.007 0.007±0.001 <0.021 <0.015 <0.012 0.008±0.001

αα-hopane (30αα-hopane) 412 <0.009 <0.005 <0.005 <0.090 <0.015 <0.009 <0.008 <0.095 βα-hopane (C30βα -hopane) 412 <0.016 <0.004 <0.007 <0.090 <0.028 <0.006 <0.013 <0.095 αβS-homohopane (C31αβS-hopane) 426 <0.014 <0.007 <0.007 <0.083 <0.025 <0.012 <0.013 <0.087

αβR-homohopane (C31αβR-hopane) 426 <0.011 <0.006 <0.006 <0.096 <0.020 <0.010 <0.010 <0.102

Page 95: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-41

Table 4-10b continued.

Compound MW Stack B Concentration (µg/m3) Stack B Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

αβS-bishomohopane (C32αβS-hopane) 440 <0.033 <0.012 <0.016 <0.022 <0.059 <0.020 <0.028 <0.023

αβR-bishomohopane (C32αβR-hopane) 440 <0.031 <0.014 <0.016 <0.026 <0.055 <0.023 <0.027 <0.027 22S-trishomohopane (C33) 454 <0.033 <0.012 <0.016 <0.022 <0.059 <0.020 <0.028 <0.023

22R-trishomohopane (C33) 454 <0.031 <0.006 <0.014 <0.026 <0.055 <0.011 <0.024 <0.027 22S-tretrahomohopane (C34) 468 <0.033 <0.012 <0.016 <0.022 <0.059 <0.020 <0.028 <0.023 22R-tetrashomohopane (C34) 468 <0.031 <0.006 <0.014 <0.026 <0.055 <0.011 <0.024 <0.027

22S-pentashomohopane(C35) 482 <0.033 <0.012 <0.016 <0.022 <0.059 <0.020 <0.028 <0.023 22R-pentashomohopane(C35) 482 <0.031 <0.006 <0.014 <0.026 <0.055 <0.011 <0.024 <0.027

sterane ααα 20S-Cholestane 372 <0.006 <0.004 <0.003 0.003±0.000 <0.010 <0.007 <0.006 0.003±0.000 αββ 20R-Cholestane 372 <0.003 <0.002 <0.002 <0.022 <0.006 <0.004 <0.003 <0.024

αββ 20s-Cholestane 372 <0.007 <0.006 <0.005 <0.026 <0.013 <0.009 <0.008 <0.027 ααα 20R-Cholestane 372 <0.004 <0.003 <0.003 <0.026 <0.008 <0.006 <0.005 <0.027

ααα 20S 24S-Methylcholestane 386 <0.008 0.007±0.003 <0.005 0.002±0.001 <0.014 0.012±0.005 <0.009 0.002±0.001 αββ 20R 24S-Methylcholestane 386 <0.005 <0.005 <0.003 <0.030 <0.009 <0.008 <0.006 <0.032

αββ 20S 24S-Methylcholestane 386 <0.005 <0.005 <0.004 <0.030 <0.009 <0.008 <0.006 <0.032 ααα 20R 24R-Methylcholestane 386 <0.005 <0.005 <0.003 <0.035 <0.008 <0.008 <0.006 <0.037 ααα 20S 24R/S-Ethylcholestane 386 <0.005 <0.005 <0.004 <0.029 <0.008 <0.009 <0.006 <0.031

αββ 20R 24R-Ethylcholestane 400 <0.004 <0.002 <0.002 <0.023 <0.006 <0.004 <0.004 <0.025 αββ 20S 24R-Ethylcholestane 400 <0.003 <0.003 <0.002 <0.023 <0.006 <0.006 <0.004 <0.025

ααα 20R 24R-Ethylcholestane 400 <0.005 <0.004 <0.003 <0.062 <0.009 <0.007 <0.005 <0.066

methyl-alkane 2-methylnonadecane 282 <0.022 <0.019 <0.015 0.052±0.005 <0.040 <0.034 <0.026 0.055±0.005

3-methylnonadecane 282 <0.020 <0.017 <0.013 0.059±0.009 <0.036 <0.030 <0.023 0.064±0.010

branched-alkane

pristane 268 <0.165 <0.146 <0.110 0.056±0.015 <0.293 <0.254 <0.192 0.060±0.017 phytane 282 <0.139 <0.166 <0.112 0.049±0.012 <0.247 <0.286 <0.195 0.053±0.013

squalane 422 <0.016 <0.012 <0.010 0.003±0.001 <0.028 <0.021 <0.017 0.004±0.001

cycloalkane octylcyclohexane 196 <0.053 <0.045 <0.035 <0.227 <0.094 <0.079 <0.060 <0.240

decylcyclohexane 224 <0.050 <0.046 <0.034 <0.193 <0.089 <0.080 <0.059 <0.204

Page 96: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-42

Table 4-10b continued.

Compound MW Stack B Concentration (µg/m3) Stack B Emission Rate (g/hr)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

tridecylcyclohexane 266 <0.059 <0.049 <0.038 <0.146 <0.103 <0.085 <0.066 <0.155

n-heptadecylcyclohexane 322 <0.013 <0.009 <0.008 0.010±0.001 <0.024 <0.015 <0.013 0.010±0.001 nonadecylcyclohexane 350 <0.025 <0.020 <0.016 0.005±0.001 <0.043 <0.035 <0.027 0.006±0.001

alkene 1-octadecene 252 <0.222 0.678±0.136 <0.100 0.264±0.052 <0.393 1.150±0.224 <0.180 0.282±0.055

Sum of categories

PAHs 8.251±1.376 8.389±0.875 8.330±0.740 0.142±0.034 14.40±2.39 14.35±1.52 14.37±1.28 0.152±0.037 n-alkane 63.60±14.20 66.67±7.29 65.36±7.05 2.149±0.188 111.0±24.7 114.2±12.7 112.8±12.3 2.297±0.190

iso/anteiso-alkane 3.765±0.796 3.926±0.429 3.857±0.402 0.022±0.003 6.570±1.382 6.723±0.749 6.657±0.699 0.024±0.003 hopane 0.642±0.265 0.326±0.038 0.461±0.118 0.051±0.005 1.118±0.461 0.559±0.067 0.798±0.206 0.054±0.005 sterane 0.095±0.024 0.074±0.012 0.083±0.012 0.015±0.003 0.165±0.042 0.126±0.019 0.143±0.021 0.016±0.003

methyl-alkane 0.104±0.016 0.109±0.012 0.107±0.009 0.111±0.012 0.181±0.027 0.186±0.021 0.184±0.016 0.119±0.013 branched-alkane 0.863±0.044 0.717±0.112 0.780±0.068 0.108±0.027 1.507±0.080 1.226±0.194 1.346±0.119 0.117±0.030

cycloalkane 0.470±0.069 0.460±0.051 0.464±0.040 0.023±0.005 0.819±0.120 0.788±0.089 0.801±0.069 0.025±0.005 alkene 0.468±0.130 0.678±0.136 0.588±0.096 0.264±0.052 0.818±0.228 1.150±0.224 1.008±0.161 0.282±0.055

Sum of all non-polar species 78.26±16.32 81.35±8.73 80.03±8.22 2.884±0.238 137±28 139±15 138±14 3.086±0.243

Page 97: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-43

Table 4-11a. Stack A wet basis concentrations and ERs of carbohydrates, organic acids and WSOC from PM2.5 particles collected on the quartz filters. (Data were averaged from six runs of cold and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limit [MDLs]. Data were reported as average ± standard error of multiple runs.)

Compound MW

Stack A Concentration (µg/m3) Stack A Emission Rate (g/hr) Winter Cold Winter Warm Winter Average Summer

A Winter Cold Winter Warm Winter Average Summer

A Carbohydrates Glycerol (C3H8O3 ) 92 60.52±24.18 29.77±3.59 45.15±12.54 <0.996 184.59±74.71 89.06±10.87 136.83±38.77 <2.353 Inositol (C6H12O6) 180 <1.900 <1.799 <1.850 <1.633 <5.605 <5.322 <5.463 <3.798 Erythritol (C4H10O4) 122 <2.850 <2.699 <2.774 <2.450 <8.407 <7.982 <8.195 <5.697 Xylitol (C5H12O5 ) 152 <1.900 <1.799 <1.850 <5.913 <5.605 <5.322 <5.463 <13.84 Levoglucosan (C6H10O5 ) 162 <3.800 <3.598 <3.699 <6.904 <11.21 <10.64 <10.93 <16.18 Arabitol (C5H12O5) 152 <2.850 <2.699 <2.774 <8.407 <7.982 <8.195 Sorbitol (C6H14O6 ) 182 <4.154 <4.155 <4.154 <4.084 <12.36 <12.49 <12.42 <9.495 Mannosan (C6H10O5 ) 162 <2.850 <2.699 <2.774 <2.450 <8.407 <7.982 <8.195 <5.697 Trehalose (C12H22O11 ) 342 <3.800 <3.598 <3.699 <3.267 <11.21 <10.64 <10.93 <7.596 Mannitol (C6H14O6 ) 182 <2.850 <2.699 <2.774 <2.450 <8.407 <7.982 <8.195 <5.697 Arabinose (C5H10O5) 150 <2.850 <2.699 <2.774 <2.450 <8.407 <7.982 <8.195 <5.697 Glucose (C6H12O6 )/Xylose (C5H10O5) 180 <8.708 <2.975 <5.841 <3.070 <24.68 <8.708 <16.70 <7.184 Galactose (C6H12O6 ) 180 <3.800 <3.598 <3.699 <3.267 <11.21 <10.64 <10.93 <7.596 Maltitol (C12H24O11)/Fructose (C6 12O6)

344 <4.750 <4.498 <4.624 <4.084 <14.01 <13.30 <13.66 <9.495 Organic Acids Lactic acid (C3H6O3) 90 23.61±4.40 34.09±8.91 28.85±4.99 8.981±5.181 69.37±11.22 99.98±25.07 84.68±13.88 21.21±12.37 Acetic acid (C2H4O2 ) 60 15.81±4.74 15.88±4.92 15.85±3.26 <5.053 45.87±12.84 47.59±14.80 46.73±9.35 <11.74 Formic acid (CH2O ) 46 6.922±1.294 <7.382 <7.152 <4.891 20.86±4.01 <22.23 <21.55 <11.37 Methanesulfonic acid (CH4SO3 ) 96 <3.800 <3.598 <3.699 40.91±2.17 <11.21 <10.64 <10.93 95.07±5.39 Glutaric acid (C5H8O4) 132 27.98±8.11 23.42±4.54 25.70±4.48 <4.076 81.91±22.40 69.01±12.51 75.46±12.38 <9.475 Succinic acid (C4H6O4 ) 118 99.06±17.35 70.47±11.78 84.76±10.89 <3.261 294.50±50.73 208.22±32.45 251.36±31.52 <7.580 Malonic acid (C3H4O4) 104 <5.700 <5.397 <5.549 <4.891 <16.81 <15.96 <16.39 <11.37 Maleic acid (C4H4O4 ) 116 <4.750 <4.498 <4.624 <4.076 <14.01 <13.30 <13.66 <9.475 Oxalic acid (C2H2O4) 90 3.855±0.447 4.797±0.360 4.326±0.308 2.732±0.325 11.46±1.25 14.25±0.80 12.86±0.83 6.350±0.782 WSOC Neutral compounds 51.24±19.05 40.92±7.43 46.08±9.87 11.95±3.16 148.45±51.24 120.51±20.17 134.48±26.59 27.93±7.63 Mono-/di- carboxylic acids 27.16±11.07 <22.27 <24.71 <14.57 78.38±29.90 <66.71 <72.54 <34.36 Polycarboxylic acids (including HULIS) 15.30±7.02 <23.86 <19.58 <71.63 44.18±19.44 <72.58 <58.38 <165.88 Sum of speciated WSOC 93.70±36.82 62.52±14.09 78.11±19.37 22.34±5.66 271.00±99.50 183.65±39.26 227.33±52.67 52.28±13.58 Total WSOC

1529.42±398.72

1161.91±192.45

1345.66±218.22

<287.94 4475.06±1060.36

3427.39±518.25

3951.23±584.40

<665.68

Page 98: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-44

Table 4-11b. Stack B wet basis concentrations and ERs of carbohydrates, organic acids and WSOC from PM2.5 particles collected on the quartz filters. (Data were averaged from six runs of cold dilution and eight warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. The indicated uncertainty is the standard error of multiple runs.)

Compound MW Stack B Concentration (µg/m3) Stack B Emission Rate (g/hr)

Winter Cold Winter Warm Winter Average Summer Average Winter Cold Winter Warm Winter Average Summer Average Carbohydrates Glycerol (C3H8O3 ) 92 7.874±1.243 27.24±4.41 18.94±3.65 <0.937 13.76±2.20 46.21±7.13 32.31±6.02 <1.013 Inositol (C6H12O6) 180 <2.958 <2.486 <2.688 <1.925 <5.159 <4.257 <4.644 <2.068 Erythritol (C4H10O4) 122 <4.437 <3.729 <4.033 <2.888 <7.738 <6.386 <6.965 <3.102 Xylitol (C5H12O5 ) 152 <2.958 <2.486 <2.688 <1.925 <5.159 <4.257 <4.644 <2.068 Levoglucosan (C6H10O5 ) 162 <5.917 <4.972 <5.377 <3.851 <10.32 <8.515 <9.287 <4.136 Arabitol (C5H12O5) 152 <4.437 <3.729 <4.033 <7.738 <6.386 <6.965 Sorbitol (C6H14O6 ) 182 <7.396 <6.215 <6.721 <4.813 <12.90 <10.64 <11.61 <5.170 Mannosan (C6H10O5 ) 162 <4.437 <3.729 <4.033 <2.888 <7.738 <6.386 <6.965 <3.102 Trehalose (C12H22O11 ) 342 <5.917 <4.972 <5.377 <3.851 <10.32 <8.515 <9.287 <4.136 Mannitol (C6H14O6 ) 182 <4.437 <3.729 <4.033 <2.888 <7.738 <6.386 <6.965 <3.102 Arabinose (C5H10O5) 150 <4.437 <3.729 <4.033 <2.888 <7.738 <6.386 <6.965 <3.102 Glucose (C6H12O6 )/Xylose (C5H10O5) 180 <2.958 <2.486 <2.688 <1.925 <5.159 <4.257 <4.644 <2.068 Galactose (C6H12O6 ) 180 <5.917 <4.972 <5.377 <3.851 <10.32 <8.515 <9.287 <4.136 Maltitol (C12H24O11)/Fructose (C6H12O6) 344 <7.396 <6.215 <6.721 <4.813 <12.90 <10.64 <11.61 <5.170 Organic Acids Lactic acid (C3H6O3) 90 31.03±2.31 34.39±3.26 32.95±2.09 <2.970 54.16±4.03 58.83±5.70 56.83±3.62 <3.211 Acetic acid (C2H4O2 ) 60 37.48±6.85 25.26±5.08 30.49±4.30 <5.313 65.45±12.04 43.52±8.87 52.92±7.56 <5.687 Formic acid (CH2O ) 46 <8.875 <15.62 <12.73 <5.776 <15.48 <26.82 <21.96 <6.204 Methanesulfonic acid (CH4SO3 ) 96 <5.917 <4.972 <5.377 <26.12 <10.32 <8.515 <9.287 <27.86 Glutaric acid (C5H8O4) 132 <18.98 <9.634 <13.64 <4.813 <33.18 <16.43 <23.61 <5.170 Succinic acid (C4H6O4 ) 118 <5.917 <4.972 <5.377 <3.851 <10.32 <8.515 <9.287 <4.136 Malonic acid (C3H4O4) 104 <8.875 <7.458 <8.065 <5.776 <15.48 <12.77 <13.93 <6.204 Maleic acid (C4H4O4 ) 116 <7.396 <6.215 <6.721 <4.813 <12.90 <10.64 <11.61 <5.170 Oxalic acid (C2H2O4) 90 <1.400 <2.986 <2.306 <2.769 <2.447 <5.126 <3.978 <2.975 WSOC Neutral compounds 41.32±11.90 36.29±4.59 38.45±5.50 20.90±6.08 71.97±20.59 62.20±8.05 66.39±9.57 22.50±6.59 Mono-/di- carboxylic acids 9.826± 41.31± 27.82± <17.02 17.20± 70.25± 47.51± <18.05 Polycarboxylic acids (including HULIS) <110.14 <88.46 <97.75 <93.41 <190.71 <152.13 <168.66 <100.80 Sum of speciated WSOC 53.48±11.78 53.16±9.90 53.30±7.28 32.32±8.16 93.27±20.37 90.98±17.08 91.96±12.58 34.62±8.70 Total WSOC 265.19±50.70 335.40±31.78 305.31±28.77 62.02±11.91 463.89±90.39 571.68±51.15 525.49±48.69 66.27±12.58

Page 99: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-45

4.6 Stack Concentrations and Emission Rates of Hg Species Tables 4-13a and 4-13b list the stack concentrations and ERs for Hg collected on KCl-

impregnated filters and gold-coated quartz traps from Stacks A and B, respectively. There were variations from run to run, especially for Hg collected on the quartz trap. Assuming that the Hg collected on the filter was all RGM+PHg and that collected on the quartz trap was all GEM, the emission rates of RGM+PHg and GEM were 1.94±0.47 mg/hr and 15.86±8.40 mg/hr for Stack A, and 0.51±0.07 mg/hr and 13.21±3.15 mg/hr for Stack B, respectively. The total Hg emissions were 17.80±8.41 mg/hr and 13.73±3.15 mg/hr for Stacks A and B, respectively. Therefore, GEM accounted to approximately 89% and 96% of total Hg for Stacks A and B. Assuming these ERs are representative to average ER throughout a year, the yearly ERs from Stacks A and B are 0.16 kg/yr and 0.12 kg/yr, respectively. Facility A reported 20.587 kg/yr Hg emissions from stationary sources to Environment Canada (2011b) for 2009, much higher than the estimate from the dilution tests.

Page 100: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-46

Table 4-12a. Stack A wet basis concentrations and ERs of nitro-PAHs. (Data were averaged from six runs of cold dilution and warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Compound MW Stack A Concentration (ng/m3) Stack A Emission Rate (mg/hr)

Winter Cold Winter Warm Winter Average Winter Cold Winter Warm Winter Average

1-nitronaphthalene 173.2 <0.365 <0.411 <0.388 <1.100 <1.210 <1.155

1-methyl-5-nitronaphthalene 187.2 <0.491 <0.418 <0.454 <1.447 <1.233 <1.340

2-nitronaphthalene 173.2 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

2-nitrobiphenyl 199.2 <0.491 <0.419 <0.455 <1.447 <1.236 <1.342

2-methyl-4-nitronaphthalene 187.2 <0.491 <0.421 <0.456 <1.447 <1.243 <1.345

1-methyl-4-nitronaphthalene 187.2 <0.491 <0.435 <0.463 <1.447 <1.286 <1.367

1-methyl-6-nitronaphthalene 187.2 <0.491 <0.417 <0.454 <1.447 <1.230 <1.338

3-nitrobiphenyl 199.2 <0.422 <0.375 <0.399 <1.239 <1.110 <1.174

4-nitrobiphenyl 199.2 <1.613 <0.712 <1.163 <4.544 <2.080 <3.312

1,3-dinitronaphthalene 218.2 <0.969 <0.469 <0.719 <2.910 <1.391 <2.150

1,5-dinitronaphthalene 218.2 <0.388 <0.469 <0.429 <1.164 <1.391 <1.278

5-nitroacenaphthene 199.2 <0.525 <0.419 <0.472 <1.543 <1.244 <1.393

2-nitrofluorene 211.2 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

4-nitrophenanthrene 223.2 <0.436 <0.505 <0.470 <1.284 <1.490 <1.387

9-nitroanthracene 223.2 24.89±13.54 10.27±4.79 17.58±7.19 71.06±37.04 30.06±13.99 50.56±19.86

9-nitrophenanthrene 223.2 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

1,8-dinitronaphthalene 218.2 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

3-nitrophenanthrene 223.2 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

2-nitrophenanthrene 223.2 <0.491 <0.554 <0.522 <1.447 <1.642 <1.545

2-nitroanthracene 223.2 <0.491 <2.934 <1.712 <1.447 <8.633 <5.040

2-nitrofluoranthene 247.3 <0.434 <0.469 <0.451 <1.290 <1.391 <1.340

3-nitrofluoranthene 247.3 <0.491 <0.290 <0.390 <1.447 <0.883 <1.165

4-nitropyrene 247.3 <1.310 <1.147 <1.229 <3.815 <3.355 <3.585

1-nitropyrene 247.3 <0.493 <0.392 <0.442 <1.454 <1.164 <1.309

2-nitropyrene 247.3 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

2,7-dinitrofluorene 256.2 0.232±0.096 <0.231 <0.231 0.666±0.265 <0.666 <0.666

2,7-dinitrofluoren-9-one 270.2 <0.710 <0.556 <0.633 <2.062 <1.647 <1.854

7-nitrobenz(a)anthracene 273.3 <0.773 <0.469 <0.621 <2.239 <1.391 <1.815

6-nitrochrysene 273.3 <0.627 <0.360 <0.493 <1.824 <1.075 <1.449

3-nitrobenzanthrone 275.3 <0.489 <0.469 <0.479 <1.442 <1.391 <1.417

1,3-dinitropyrene 292.3 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

1,6-dinitropyrene 292.3 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

1,8-dinitropyrene 292.3 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

3-nitrobenzo[e]pryene 297.3 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

6a+1e-nitrobenzopyrene 297.3 <0.491 <0.469 <0.480 <1.447 <1.391 <1.419

Page 101: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-47

Table 4-12b. Stack B wet basis concentrations and ERs of nitro-PAHs. (Data were averaged from six runs of cold dilution and eight warm dilutions. Cells with “<” indicate the compounds were below the analytical minimum detection limits [MDLs]. Data were reported as average ± standard error of multiple runs.)

Compound MW Stack B Concentration (ng/m3) Stack B Emission Rate (mg/hr)

Winter Cold Winter Warm Winter Average Winter Cold Winter Warm Winter Average

1-nitronaphthalene 173.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1-methyl-5-nitronaphthalene 187.2 <0.754 <0.558 <0.642 <1.315 <0.955 <1.109

2-nitronaphthalene 173.2 <0.587 <0.459 <0.514 <1.025 <0.785 <0.888

2-nitrobiphenyl 199.2 1.629±0.191 <0.921 <1.224 2.850±0.346 <1.582 <2.125

2-methyl-4-nitronaphthalene 187.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1-methyl-4-nitronaphthalene 187.2 <1.218 <0.634 <0.884 <2.110 <1.085 <1.524

1-methyl-6-nitronaphthalene 187.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

3-nitrobiphenyl 199.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

4-nitrobiphenyl 199.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1,3-dinitronaphthalene 218.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1,5-dinitronaphthalene 218.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

5-nitroacenaphthene 199.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

2-nitrofluorene 211.2 <0.766 <0.590 <0.665 <1.335 <1.010 <1.149

4-nitrophenanthrene 223.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

9-nitroanthracene 223.2 <0.677 <0.634 <0.652 <1.181 <1.085 <1.126

9-nitrophenanthrene 223.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1,8-dinitronaphthalene 218.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

3-nitrophenanthrene 223.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

2-nitrophenanthrene 223.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

2-nitroanthracene 223.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

2-nitrofluoranthene 247.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

3-nitrofluoranthene 247.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

4-nitropyrene 247.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1-nitropyrene 247.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

2-nitropyrene 247.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

2,7-dinitrofluorene 256.2 <0.249 <0.318 <0.289 <0.432 <0.541 <0.494

2,7-dinitrofluoren-9-one 270.2 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

7-nitrobenz(a)anthracene 273.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

6-nitrochrysene 273.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

3-nitrobenzanthrone 275.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1,3-dinitropyrene 292.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1,6-dinitropyrene 292.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

1,8-dinitropyrene 292.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

3-nitrobenzo[e]pryene 297.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

6a+1e-nitrobenzopyrene 297.3 <0.754 <0.634 <0.685 <1.315 <1.085 <1.184

Page 102: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

4-48

Table 4-13. Hg wet basis concentrations and ERs of Hg from a) Stack A and b) Stack B. a)

Stack A

Run Concentration (ng/m3) Emission Rate (mg/hr) Filter Trap Filter Trap

1 1.09±0.07 19.84±1.18 3.28±0.27 59.54±4.64 2 0.38±0.03 2.64±0.20 1.15±0.10 7.91±0.71 3 1.39±0.09 16.01±1.40 4.17±0.34 48.05±4.85 4 0.41±0.03 1.52±0.14 1.23±0.11 4.58±0.48 5 0.35±0.02 1.18±0.09 1.05±0.09 3.55±0.33 6 0.17±0.01 0.00±0.04 0.50±0.04 0.00±0.12 7 1.00±0.07 0.15±0.05 3.01±0.25 0.45±0.14 8 0.38±0.03 0.92±0.08 1.15±0.10 2.77±0.28

Average 0.65±0.16 5.28±2.80 1.94±0.47 15.86±8.40 Total 5.93±2.80 17.80±8.41

b)

Stack B

Run Concentration (ng/m3) Emission Rate (mg/hr) Filter Trap Filter Trap

1 0.30±0.02 0.00±0.05 0.52±0.05 0.00±0.08 2 0.27±0.02 2.65±0.18 0.46±0.04 4.57±0.38 3 0.28±0.02 9.94±0.60 0.48±0.04 17.16±1.35 4 0.50±0.03 5.30±0.33 0.86±0.07 9.16±0.73 5 0.15±0.01 5.65±0.35 0.25±0.02 9.76±0.78 6 0.39±0.03 10.06±0.61 0.67±0.06 17.37±1.37 7 0.30±0.02 12.04±0.72 0.52±0.04 20.80±1.63 8 0.21±0.02 15.55±0.93 0.36±0.03 26.86±2.10

Average 0.30±0.04 7.65±1.82 0.51±0.07 13.21±3.15 Total 7.95±1.82 13.73±3.15

Page 103: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-1

5 Source Profiles This section reports chemical source profiles for gases and PM2.5. To be consistent with

most profiles in the U.S. EPA (2008b) SPECIATE database, concentrations for NMHC and halocarbon compounds are reported in ppbC and normalized to the sum of 55 PAMS compounds (Watson et al., 2001). PM2.5 components are normalized to gravimetric PM2.5 mass. PM2.5 organic constituents are also normalized to total OC. Carbonyl compounds are normalized to both the sum of 55 PAMS compounds and the sum of the 14 measured carbonyls. These profiles can be used to develop speciated emission inventories (Chow et al., 2011), serve as model input for the effective variance (EV) solution to the chemical mass balance (CMB) source apportionment model (Watson, 1984; Watson et al., 1991; Watson et al., 2001; Watson et al., 2002; Watson et al., 2008; Watson and Chow, 2004; Watson and Chow, 2005; Watson and Chow, 2007), and to associate source types with the source factors derived from the positive matrix factorization (PMF) and UNMIX solutions to the CMB model (Chen et al., 2011; Watson et al., 2008).

5.1 NMHC Source Profiles NMHC (C2-C11) profiles from Stacks A and B under 2011 cold and warm dilution

conditions as well as the grand average of each stack are presented in Table 5-1. The five most abundant species in Stack A were: ethene, ethane, propane, propylene, and n-butane, and the five most abundant species in Stack B were: trans-2-butene, 1,3-butadiene, n-nonane, cyclohexane, and benzene. Identified NMHCs are grouped into four categories: alkanes and cycloalkanes, alkenes, alkynes (only acetylene was detected), and aromatics and are plotted in Figure 5-1. Alkanes and cycloalkanes were the most abundant groups, accounting for 62% and 47% of PAMS for Stacks A and B, respectively. Alkenes accounted for 42% and 38% of PAMS for Stacks A and B, respectively. Aromatics accounted for ~6% and 26% of PAMS for Stacks A and B, respectively. Acetylene abundances from both stacks were low (<2%). The differences between cold and warm dilution were not important. Source profiles for species with average abundances >1% for at least one of two stacks are shown in Figure 5-2. Most species are lower than uncertainties.

Table 5-2 lists halocarbon abundances normalized to the sum of 55 PAMS compounds for Stacks A and B. Abundances of all halocarbons were low: the sum of all halocarbons was only 2.9% and 8.4% of the sum of PAMS compounds for Stacks A and B, respectively. Chloroform and 1,1,2,2-tetrachloroethane were the most abundant halocarbons in Stack A, while dichloromethane and trichloroethene were the most abundant halocarbons in Stack B.

Table 5-3 lists carbonyl abundances normalized to the sum of 55 PAMS compounds and the sum of 14 quantified carbonyls, respectively. Acetone and acetaldehyde are the most abundant species, accounting for 67% and 20% of total carbonyls for Stack A, and 71% and 24% for Stack B, respectively.

5.2 Inorganic Gases and PM2.5 Source Profiles Inorganic gases and PM2.5 source profiles are normalized to the gravimetric PM2.5 mass

measured from the Teflon®-membrane filter. PM2.5 organic constituents are also normalized to total OC mass from thermal/optical reflectance (TOR) carbon analysis (Chow et al., 1993; 2007a) of the quartz-fiber filters (Chow et al., 2007b; 2007c).

Page 104: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-2

Table 5-1. Source profiles for non-methane hydrocarbons (NMHC) normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant five species are highlighted in green for Stack A and in yellow for Stack B. (Data were averaged for six runs of cold and warm dilutions from Stack A, six runs of cold dilution and eight runs of warm dilution from Stack B. Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runsa).

Group Compound Stack A Stack B Winter Cold Winter Warm Winter Average Winter Cold Winter Warm Winter Average

Alk

anes

and

Cyl

coal

kane

s

Ethane 0.2103±0.2102 0.0415±0.0958 0.1259±0.1485 0.0145±2.5363 0.0157±0.2350 0.0152±1.0952 Propane 0.0949±0.0986 0.0686±0.0704 0.0818±0.0808 0.0000±0.8989 0.0545±0.1109 0.0311±0.3886

n-Butane 0.0741±0.0682 0.0282±0.0475 0.0511±0.0498 0.0000±0.5898 0.0440±0.1130 0.0251±0.2550 Isobutane 0.0446±0.0420 0.0177±0.0181 0.0312±0.0286 0.0000±0.2152 0.0257±0.0460 0.0147±0.0930 Cyclopentane 0.0016±0.0159 0.0009±0.0272 0.0013±0.0158 0.0187±0.1279 0.0188±0.0335 0.0187±0.0551

Isopentane 0.0002±0.0149 0.0002±0.0271 0.0002±0.0155 0.0000±0.2066 0.0551±0.0935 0.0315±0.0892 n-Pentane 0.0004±0.0522 0.0003±0.0898 0.0003±0.0520 0.0000±0.4927 0.0592±0.1071 0.0338±0.2130

Cyclohexane 0.0140±0.0641 0.0094±0.1177 0.0117±0.0670 0.0778±0.1905 0.0419±0.0426 0.0573±0.1236 Methylcyclopentane 0.0199±0.1802 0.0121±0.3064 0.0160±0.1778 0.0000±0.1012 0.0066±0.0106 0.0038±0.0438 2,2-Dimethylbutane 0.0022±0.0114 0.0015±0.0205 0.0018±0.0117 0.0000±0.0581 0.0005±0.0052 0.0003±0.0251

2,3-Dimethylbutane 0.0040±0.0602 0.0027±0.1007 0.0033±0.0587 0.0664±0.3142 0.0268±0.0299 0.0438±0.1350 n-Hexane 0.0222±0.2959 0.0147±0.4964 0.0184±0.2890 0.0000±0.2835 0.0087±0.0283 0.0050±0.1226

2-Methylpentane 0.0042±0.1152 0.0041±0.1960 0.0041±0.1137 0.0000±0.1430 0.0086±0.0144 0.0049±0.0619 3-Methylpentane 0.0042±0.1092 0.0032±0.1810 0.0037±0.1057 0.0011±0.1272 0.0073±0.0130 0.0046±0.0550

2-Methylhexane 0.0104±0.1154 0.0073±0.1981 0.0088±0.1146 0.0000±0.1029 0.0032±0.0105 0.0018±0.0445 Methylcyclohexane 0.0441±0.2371 0.0579±0.4025 0.0510±0.2336 0.0007±0.2164 0.0224±0.0310 0.0131±0.0936 1,3-Dimethylcyclopentane 0.0078±0.1112 0.0041±0.1827 0.0059±0.1069 0.0015±0.0815 0.0031±0.0074 0.0024±0.0352

3-Methylhexane 0.0215±0.1120 0.0127±0.2018 0.0171±0.1154 0.0000±0.1060 0.0047±0.0102 0.0027±0.0458 n-Heptane 0.0587±0.3198 0.0374±0.5584 0.0481±0.3217 0.0000±0.5159 0.0171±0.0522 0.0097±0.2231

2,3-Dimethylpentane 0.0069±0.1061 0.0045±0.1759 0.0057±0.1027 0.0015±0.0848 0.0019±0.0076 0.0017±0.0366 2,4-Dimethylpentane 0.0008±0.0094 0.0005±0.0173 0.0007±0.0099 0.0033±0.0675 0.0040±0.0105 0.0037±0.0291 2-Methylheptane 0.0309±0.0609 0.0539±0.1132 0.0424±0.0643 0.0000±0.1623 0.0189±0.0295 0.0108±0.0702

3-Methylheptane 0.0118±0.0305 0.0246±0.0539 0.0182±0.0310 0.0000±0.1097 0.0084±0.0143 0.0048±0.0474 4-Methylheptane 0.0071±0.0169 0.0130±0.0308 0.0101±0.0176 0.0000±0.0773 0.0068±0.0103 0.0039±0.0334

n-Octane 0.0246±0.0399 0.0631±0.0822 0.0438±0.0644 0.0000±0.2776 0.0414±0.0702 0.0237±0.1201 2,2,4-Trimethylpentane 0.0066±0.0424 0.0034±0.0734 0.0050±0.0424 0.0000±0.0772 0.0020±0.0069 0.0011±0.0333

2,3,4-Trimethylpentane 0.0013±0.0043 0.0012±0.0081 0.0012±0.0046 0.0031±0.0771 0.0026±0.0069 0.0028±0.0333 n-Nonane 0.0042±0.0069 0.0049±0.0101 0.0045±0.0078 0.0611±0.2191 0.0624±0.0752 0.0619±0.0947 n-Decane 0.0060±0.0110 0.0053±0.0214 0.0056±0.0117 0.0429±0.4205 0.0147±0.0188 0.0268±0.1803

n-Undecane 0.0010±0.0047 0.0072±0.0390 0.0041±0.0197 0.0025±0.1060 0.0099±0.0169 0.0067±0.0458

Alk

enes

Ethene 0.1768±0.1754 0.2879±0.8011 0.2323±0.4084 0.0561±0.5045 0.0432±0.0693 0.0487±0.2188

Propylene 0.0159±0.0281 0.1000±0.1221 0.0580±0.0952 0.0000±0.1754 0.0418±0.0451 0.0239±0.0788 1,2-Butadiene 0.0003±0.0017 0.0000±0.0032 0.0002±0.0018 0.0153±0.0423 0.0000±0.0035 0.0066±0.0246 1,3-Butadiene 0.0110±0.0103 0.0142±0.0619 0.0126±0.0314 0.1718±2.3580 0.0090±0.0174 0.0788±1.0106

1-Butene 0.0089±0.0105 0.0059±0.0062 0.0074±0.0084 0.0330±0.5386 0.0020±0.0048 0.0153±0.2309 cis-2-Butene 0.0014±0.0024 0.0031±0.0041 0.0022±0.0027 0.0287±0.0538 0.0027±0.0038 0.0139±0.0259

Isobutylene 0.0092±0.0082 0.0843±0.1047 0.0468±0.0809 0.0000±0.1254 0.0049±0.0120 0.0028±0.0542 trans-2-Butene 0.0034±0.0059 0.0089±0.0115 0.0062±0.0078 0.2835±0.5970 0.0123±0.0139 0.1286±0.2559

Isoprene 0.0012±0.0028 0.0003±0.0040 0.0008±0.0023 0.0012±0.0483 0.0281±0.0251 0.0165±0.0232 2-Methyl-1-Butene 0.0015±0.0039 0.0016±0.0040 0.0015±0.0030 0.0000±0.0482 0.0000±0.0043 0.0000±0.0208 2-Methyl-2-Butene 0.0011±0.0021 0.0042±0.0057 0.0026±0.0043 0.0000±0.0482 0.0025±0.0044 0.0014±0.0208

Page 105: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-3

Table 5-1 continued.

Alk

enes

Compound Stack A Stack B Winter Cold Winter Warm Winter Average Winter Cold Winter Warm Winter Average

cis-2-Pentene 0.0004±0.0021 0.0008±0.0040 0.0006±0.0022 0.0000±0.0482 0.0017±0.0044 0.0010±0.0208 1-Pentene 0.0035±0.0073 0.0026±0.0084 0.0030±0.0056 0.0210±0.0519 0.0082±0.0118 0.0137±0.0268 trans-2-Pentene 0.0012±0.0025 0.0023±0.0051 0.0018±0.0030 0.0000±0.0495 0.0004±0.0045 0.0002±0.0214 Cyclopentene 0.0032±0.0089 0.0052±0.0154 0.0042±0.0089 0.0000±0.0482 0.0038±0.0044 0.0022±0.0208 Cyclohexene 0.0107±0.0246 0.0059±0.0145 0.0083±0.0180 0.0018±0.0579 0.0004±0.0052 0.0010±0.0250 c-2-Hexene 0.0013±0.0050 0.0002±0.0072 0.0007±0.0044 0.0268±0.4394 0.0014±0.0052 0.0123±0.1883 1,3-Hexadiene 0.0047±0.0121 0.0005±0.0048 0.0026±0.0072 0.0000±0.0578 0.0001±0.0052 0.0001±0.0249 2-Methyl-1-Pentene 0.0019±0.0048 0.0012±0.0094 0.0015±0.0053 0.0000±0.0579 0.0180±0.0472 0.0103±0.0358 t-2-Hexene 0.0004±0.0028 0.0003±0.0059 0.0004±0.0033 0.0000±0.0578 0.0005±0.0052 0.0003±0.0250 1-Heptene 0.0190±0.1445 0.0170±0.2499 0.0180±0.1444 0.0000±0.1405 0.0042±0.0136 0.0024±0.0607 2,3-Dimethyl-2-Pentene 0.0001±0.0029 0.0003±0.0055 0.0002±0.0031 0.0000±0.0674 0.0011±0.0061 0.0007±0.0291 Alpha-Pinene 0.0074±0.0136 0.0045±0.0230 0.0060±0.0134 0.0000±0.0964 0.0024±0.0087 0.0014±0.0416

Alkyne Acetylene 0.0136±0.0179 0.0200±0.0221 0.0168±0.0188 0.0181±0.0770 0.0066±0.0071 0.0116±0.0331

Aro

mat

ics

Benzene 0.0035±0.0101 0.0232±0.0289 0.0133±0.0223 0.0963±0.6240 0.0225±0.0296 0.0541±0.2678 Toluene 0.0083±0.0267 0.0350±0.0636 0.0216±0.0459 0.0000±0.3470 0.0620±0.0740 0.0354±0.1501 Styrene 0.0020±0.0052 0.0001±0.0063 0.0011±0.0041 0.0010±0.0771 0.0007±0.0069 0.0009±0.0333 o-Xylene 0.0049±0.0080 0.0010±0.0074 0.0030±0.0059 0.0137±0.0807 0.0345±0.0353 0.0256±0.0378 Ethylbenzene 0.0033±0.0058 0.0020±0.0069 0.0027±0.0045 0.0043±0.0774 0.0197±0.0159 0.0131±0.0342 m/p-Xylene 0.0163±0.0262 0.0084±0.0398 0.0123±0.0238 0.0097±0.1274 0.0607±0.0530 0.0388±0.0578 Indan 0.0008±0.0039 0.0002±0.0072 0.0005±0.0041 0.0041±0.0868 0.0041±0.0079 0.0041±0.0375 1,2,4-Trimethylbenzene 0.0015±0.0045 0.0032±0.0208 0.0023±0.0107 0.0788±0.6450 0.0116±0.0171 0.0404±0.2765 1,2,3-Trimethylbenzene 0.0009±0.0040 0.0006±0.0073 0.0008±0.0042 0.0173±0.0916 0.0063±0.0109 0.0110±0.0395 1,3,5-Trimethylbenzene 0.0003±0.0038 0.0002±0.0072 0.0003±0.0041 0.0076±0.0876 0.0035±0.0079 0.0053±0.0378 Isopropylbenzene 0.0004±0.0038 0.0002±0.0071 0.0003±0.0041 0.0008±0.0867 0.0015±0.0078 0.0012±0.0374 m-Ethyltoluene 0.0018±0.0047 0.0009±0.0088 0.0014±0.0050 0.0026±0.0868 0.0060±0.0081 0.0046±0.0375 n-Propylbenzene 0.0006±0.0040 0.0006±0.0081 0.0006±0.0045 0.0007±0.0867 0.0020±0.0078 0.0014±0.0374 o-Ethyltoluene 0.0008±0.0039 0.0012±0.0101 0.0010±0.0054 0.0080±0.0877 0.0073±0.0089 0.0076±0.0379 p-Ethyltoluene 0.0002±0.0038 0.0007±0.0083 0.0005±0.0046 0.0037±0.0868 0.0041±0.0079 0.0039±0.0375 m-Diethylbenzene 0.0011±0.0045 0.0006±0.0087 0.0009±0.0049 0.0082±0.0970 0.0027±0.0087 0.0051±0.0419 p-Diethylbenzene 0.0002±0.0042 0.0001±0.0079 0.0002±0.0045 0.0122±0.1458 0.0029±0.0087 0.0069±0.0627

Total identified NMHC 1.0855±0.9102 1.1554±1.6019 1.1204±0.9212 1.2214±6.3984 1.0443±0.4096 1.1202±2.7521

aUncertainty of average (𝜎�̅�) is defined as 𝜎�̅� =�∑ 𝜎𝑥𝑖𝑖

𝑁, where 𝜎𝑥𝑖 is the uncertainty of individual measurement, and N is the

number of averaged measurement.

Page 106: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-4

a)

b)

Figure 5-1. Abundances of NMHC groups normalized to the sum of 55 photochemical assessment monitoring station (PAMS) compounds for: a) Stack A and b) Stack B under cold and warm dilution conditions. Error bars indicate the larger of the standard deviation or the uncertainty of average of multiple runs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Alkanes and Cylcoalkanes

Alkenes Alkyne Aromatics

Con

cent

ratio

n N

orm

aliz

ed to

Sum

of P

AMS

NMHC Group

Stack A-ColdStack A-WarmStack A-Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Alkanes and Cylcoalkanes

Alkenes Alkyne AromaticsCon

cent

ratio

n N

orm

aliz

ed to

Sum

of P

AMS

NMHC Group

Stack B-ColdStack B-WarmStack B-Average

Page 107: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-5

a)

b)

Figure 5-2. Averaged NMHC source profiles from Stacks A and B for species with abundances >1% of the sum of 55 PAMS compounds for at least one of the stacks. (The height of each bar indicates the averaged fractional abundance for the indicated NMHC [normalized to the total of 55 PAMS compounds], while the dot shows the larger of the standard deviation or the uncertainty of the average for multiple runs.)

Etha

ne

Pr

opan

e

n-Bu

tane

Is

obut

ane

Cycl

open

tane

Cycl

ohex

ane

Met

hylc

yclo

pent

ane

2,

3-Di

met

hylb

utan

e

n-He

xane

M

ethy

lcyc

lohe

xane

3-M

ethy

lhex

ane

n-

Hept

ane

2-M

ethy

lhep

tane

3-

Met

hylh

epta

ne

4-M

ethy

lhep

tane

n-

Oct

ane

n-

Nona

ne

n-De

cane

Ethy

lene

Prop

ylen

e

1,

3-Bu

tadi

ene

1-

Bute

ne

cis-

2-Bu

tene

Isob

utyl

ene

trans

-2-B

uten

e

1-Pe

nten

e

2-M

ethy

l-1-P

ente

ne

1-

Hept

ene

Acet

ylen

e

Be

nzen

e

Tolu

ene

o-

Xyle

ne

Ethy

lben

zene

m/p

-Xyl

ene

1,2,

4-Tr

imet

hylb

enze

ne

0.001

0.010

0.100

1.000N

MH

C A

bund

ance

Nor

aliz

ed to

tota

l PAM

S

NMHC Species

Stack A

Alkanes Alkenes Aromatics

Etha

ne

Pr

opan

e

n-Bu

tane

Is

obut

ane

Cycl

open

tane

Isop

enta

ne

n-

Pent

ane

Cycl

ohex

ane

Met

hylc

yclo

pent

ane

2,

3 -Di

met

hylb

utan

e

n-He

xane

M

ethy

lcyc

lohe

xane

3-M

ethy

lhex

ane

n-

Hept

ane

2-M

ethy

lhep

tane

3-

Met

hylh

epta

ne

4-M

ethy

lhep

tane

n-

Oct

ane

n-

Nona

ne

n-De

cane

Et

hyle

ne

Prop

ylen

e

1,

3-Bu

tadi

ene

1-

Bute

ne

cis-

2-Bu

tene

Isob

utyl

ene

tra

ns-2

-But

ene

Is

opre

ne

1-Pe

nten

e

c-

2-He

xene

2-

Met

hyl-1

-Pen

tene

1-He

pten

e

Ac

etyl

ene

Benz

ene

To

luen

e

o-Xy

lene

Et

hylb

enze

ne

m

/p-X

ylen

e

1,

2,4-

Trim

ethy

lben

zene

1,

2,3-

Trim

ethy

lben

zene

0.001

0.010

0.100

1.000

NM

HC

Abu

ndan

ce N

oral

ized

to to

tal P

AMS

NMHC Species

Stack B

Alkanes Alkenes Aromatics

Page 108: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-6

Table 5-2. Halocarbon abundances normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant species are highlighted in green. (Data were averaged from six runs of cold and warm dilutions from Stack A, six runs of cold dilution and eight runs of warm dilution from Stack B. Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound Stack A Stack B

Winter Cold Winter Warm Winter Average Winter Cold Winter Warm Winter Average

vinyl chloride 0.00000 ± 0.00084 0.00000 ± 0.00158 0.00000 ± 0.00089 0.00000 ± 0.01927 0.00000 ± 0.00173 0.00000 ± 0.00832

dichloromethane 0.00093 ± 0.00205 0.00120 ± 0.00560 0.00107 ± 0.00298 0.09216 ± 1.10561 0.00385 ± 0.00578 0.04170 ± 0.47384

chloroprene 0.00012 ± 0.00176 0.00011 ± 0.00339 0.00012 ± 0.00191 0.00000 ± 0.03853 0.00007 ± 0.00347 0.00004 ± 0.01663

bromomethane 0.00004 ± 0.00042 0.00123 ± 0.00191 0.00063 ± 0.00143 0.00000 ± 0.00964 0.00000 ± 0.00087 0.00000 ± 0.00416

cis-1,2-dichloroethene 0.00000 ± 0.00084 0.00000 ± 0.00158 0.00000 ± 0.00089 0.00000 ± 0.01927 0.00000 ± 0.00173 0.00000 ± 0.00832

1,1-dichloroethene 0.00000 ± 0.00084 0.00000 ± 0.00158 0.00000 ± 0.00089 0.00000 ± 0.01927 0.00001 ± 0.00173 0.00000 ± 0.00832

trans-1,2-dichloroethene 0.00000 ± 0.00084 0.00000 ± 0.00158 0.00000 ± 0.00089 0.00000 ± 0.01927 0.00001 ± 0.00173 0.00001 ± 0.00832

1,1-dichloroethane 0.00000 ± 0.00084 0.00000 ± 0.00158 0.00000 ± 0.00089 0.00000 ± 0.01927 0.00001 ± 0.00173 0.00000 ± 0.00832

1,2-dichloroethane 0.00027 ± 0.00096 0.00004 ± 0.00158 0.00016 ± 0.00092 0.00444 ± 0.02821 0.00231 ± 0.00412 0.00322 ± 0.01228

cis-1,3-dichloropropene 0.00056 ± 0.00188 0.00006 ± 0.00237 0.00031 ± 0.00151 0.00000 ± 0.02890 0.00000 ± 0.00260 0.00000 ± 0.01247

t-1,3-dichloropropene 0.00000 ± 0.00125 0.00000 ± 0.00237 0.00000 ± 0.00134 0.00000 ± 0.02890 0.00000 ± 0.00260 0.00000 ± 0.01247

chlorobenzene 0.00051 ± 0.00288 0.00002 ± 0.00474 0.00027 ± 0.00277 0.00361 ± 0.06043 0.00109 ± 0.00568 0.00217 ± 0.02610

1,2-dichloropropane 0.00000 ± 0.00125 0.00000 ± 0.00237 0.00000 ± 0.00134 0.00000 ± 0.02890 0.00001 ± 0.00260 0.00000 ± 0.01247

chloroform 0.00516 ± 0.01177 0.01031 ± 0.05067 0.00773 ± 0.02568 0.00000 ± 0.00964 0.00002 ± 0.00087 0.00001 ± 0.00416

dichlorodifluoromethane (F-12) 0.00195 ± 0.00472 0.00059 ± 0.00377 0.00127 ± 0.00302 0.00073 ± 0.04423 0.00041 ± 0.00402 0.00055 ± 0.01910

benzyl chloride 0.00000 ± 0.00292 0.00001 ± 0.00553 0.00000 ± 0.00313 0.00000 ± 0.06743 0.00000 ± 0.00607 0.00000 ± 0.02911

bromochloromethane 0.00006 ± 0.00070 0.00003 ± 0.00125 0.00005 ± 0.00072 0.00000 ± 0.00963 0.00001 ± 0.00087 0.00001 ± 0.00416

trichloroethene 0.00142 ± 0.00221 0.00243 ± 0.01074 0.00193 ± 0.00548 0.01654 ± 0.22198 0.00249 ± 0.00442 0.00851 ± 0.09516

1,1,1-trichloroethane 0.00000 ± 0.00084 0.00001 ± 0.00158 0.00000 ± 0.00089 0.00002 ± 0.01927 0.00002 ± 0.00173 0.00002 ± 0.00832

1,1,2-trichloroethane 0.00010 ± 0.00085 0.00019 ± 0.00163 0.00015 ± 0.00092 0.00000 ± 0.01927 0.00004 ± 0.00173 0.00002 ± 0.00832

trichlorofluoromethane (F-11) 0.00117 ± 0.00294 0.00048 ± 0.00188 0.00082 ± 0.00174 0.00221 ± 0.02686 0.00138 ± 0.00240 0.00173 ± 0.01159

1,3-dichlorobenzene 0.00217 ± 0.00462 0.00006 ± 0.00474 0.00111 ± 0.00331 0.00000 ± 0.05781 0.00230 ± 0.00595 0.00132 ± 0.02501

o-dichlorobenzene 0.00000 ± 0.00251 0.00000 ± 0.00474 0.00000 ± 0.00268 0.00000 ± 0.05780 0.00071 ± 0.00542 0.00040 ± 0.02496

p-dichlorobenzene 0.00000 ± 0.00251 0.00006 ± 0.00474 0.00003 ± 0.00268 0.00000 ± 0.05781 0.00000 ± 0.00520 0.00000 ± 0.02495

tetrachloromethane 0.00016 ± 0.00055 0.00036 ± 0.00149 0.00026 ± 0.00080 0.00906 ± 0.08020 0.00153 ± 0.00201 0.00476 ± 0.03439

bromodichloromethane 0.00590 ± 0.00583 0.00318 ± 0.01131 0.00454 ± 0.00597 0.00902 ± 0.12102 0.00136 ± 0.00290 0.00464 ± 0.05188

tetrachloroethene 0.00051 ± 0.00115 0.00131 ± 0.00746 0.00091 ± 0.00377 0.01725 ± 0.26739 0.00099 ± 0.00204 0.00796 ± 0.11460

1,1,2,2-tetrachloroethane 0.00728 ± 0.00867 0.00534 ± 0.01481 0.00631 ± 0.00858 0.00112 ± 0.02021 0.00358 ± 0.00440 0.00253 ± 0.00874

1,2-dichlorotetrafluoroethane (F-114) 0.00008 ± 0.00086 0.00001 ± 0.00158 0.00005 ± 0.00090 0.00064 ± 0.01933 0.00014 ± 0.00173 0.00035 ± 0.00834

1,2,4-trichlorobenzene 0.00000 ± 0.00251 0.00014 ± 0.00474 0.00007 ± 0.00268 0.00417 ± 0.06355 0.00071 ± 0.00542 0.00219 ± 0.02741

1,1,2-trichloro-1,2,2-trifluoroethane 0.00132 ± 0.00278 0.00011 ± 0.00198 0.00071 ± 0.00170 0.00000 ± 0.02775 0.00003 ± 0.00235 0.00002 ± 0.01197

1,2-dibromoethane 0.00001 ± 0.00084 0.00001 ± 0.00158 0.00001 ± 0.00089 0.00000 ± 0.01927 0.00000 ± 0.00173 0.00000 ± 0.00832

dibromochloromethane 0.00000 ± 0.00042 0.00000 ± 0.00079 0.00000 ± 0.00045 0.00000 ± 0.00963 0.00000 ± 0.00087 0.00000 ± 0.00416

bromoform 0.00000 ± 0.00042 0.00000 ± 0.00079 0.00000 ± 0.00045 0.00000 ± 0.00963 0.00000 ± 0.00087 0.00000 ± 0.00416

hexachloro-1,3-butadiene 0.00000 ± 0.00167 0.00000 ± 0.00316 0.00000 ± 0.00179 0.00269 ± 0.03857 0.00165 ± 0.00497 0.00209 ± 0.01677

Sum of halocarbons 0.02973 ± 0.02662 0.02730 ± 0.05789 0.02851 ± 0.03150 0.16366 ± 1.18340 0.02472 ± 0.03116 0.08426 ± 0.50729

Page 109: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-7

Table 5-3a. Carbonyl abundances normalized to the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant species are highlighted in green. (Data were averaged from six runs of cold and warm dilutions from Stack A, six runs of cold dilution and eight runs of warm dilution from Stack B. Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound Stack A Stack B

Winter Cold Winter Warm Winter Average Winter Cold Winter Warm Winter Average

Formaldehyde 0.1931 ± 0.4228 0.3240 ± 1.8254 0.2585 ± 0.9368 0.0000 ± 0.0873 0.0000 ± 0.0078 0.0000 ± 0.0377

acetaldehyde 1.0843 ± 1.6391 2.6406 ± 13.1713 1.8624 ± 6.6364 1.5001 ± 16.8920 0.0865 ± 0.1479 0.6924 ± 7.2397

Acrolein 0.0000 ± 0.0055 0.0053 ± 0.0150 0.0026 ± 0.0080 0.0000 ± 0.1344 0.0000 ± 0.0121 0.0000 ± 0.0580

Glyoxal 0.0000 ± 0.0036 0.0000 ± 0.0070 0.0000 ± 0.0039 0.3250 ± 5.2756 0.0181 ± 0.0512 0.1496 ± 2.2611

acetone 3.3636 ± 5.0836 8.1406 ± 38.3668 5.7521 ± 19.3511 2.9053 ± 32.7715 0.2647 ± 0.4698 1.3964 ± 14.0466

Propionaldehyde 0.1755 ± 0.2648 0.5101 ± 2.5493 0.3428 ± 1.2815 0.2798 ± 3.3720 0.0147 ± 0.0359 0.1283 ± 1.4453

Crotonaldehyde 0.0414 ± 0.0655 0.0467 ± 0.2640 0.0441 ± 0.1360 0.0000 ± 0.1433 0.0000 ± 0.0129 0.0000 ± 0.0619

Methacrolein 0.0000 ± 0.0074 0.4059 ± 2.4013 0.2029 ± 1.2007 0.0000 ± 0.1791 0.0000 ± 0.0161 0.0000 ± 0.0773

n-butyraldehyde 0.0000 ± 0.0057 0.2380 ± 1.2245 0.1190 ± 0.6123 0.0000 ± 0.1394 0.0000 ± 0.0126 0.0000 ± 0.0602

2-Butanone (MEK) 0.1961 ± 0.2892 0.5860 ± 2.6929 0.3911 ± 1.3542 0.0000 ± 0.1394 0.0002 ± 0.0126 0.0001 ± 0.0602

Valeraldehyde 0.0000 ± 0.0060 0.0000 ± 0.0117 0.0000 ± 0.0066 0.0000 ± 0.1457 0.0000 ± 0.0131 0.0000 ± 0.0629

Hexaldehyde 0.0000 ± 0.0062 0.0000 ± 0.0121 0.0000 ± 0.0068 0.0000 ± 0.1504 0.0000 ± 0.0136 0.0000 ± 0.0649

benzaldehyde 0.0000 ± 0.0068 0.0000 ± 0.0133 0.0000 ± 0.0075 0.0000 ± 0.1656 0.0000 ± 0.0149 0.0000 ± 0.0715

m-Tolualdehyde 0.0000 ± 0.0069 0.0000 ± 0.0135 0.0000 ± 0.0076 0.0000 ± 0.1675 0.0000 ± 0.0151 0.0000 ± 0.0723 Table 5-3b. Carbonyl abundances normalized by the sum of 14 carbonyls. The most abundant species are highlighted in green.

Compound Stack A Stack B

Winter Cold Winter Warm Winter Average Winter Cold Winter Warm Winter Average

Formaldehyde 0.0209 ± 0.0221 0.0447 ± 0.0530 0.0339 ± 0.0419 0.0000 ± 0.0387 0.0000 ± 0.0154 0.0000 ± 0.0188

acetaldehyde 0.2087 ± 0.0237 0.1979 ± 0.0123 0.2028 ± 0.0182 0.2655 ± 0.1366 0.2129 ± 0.1360 0.2354 ± 0.1337

Acrolein 0.0000 ± 0.0007 0.0006 ± 0.0008 0.0003 ± 0.0006 0.0000 ± 0.0567 0.0000 ± 0.0226 0.0000 ± 0.0275

Glyoxal 0.0000 ± 0.0004 0.0000 ± 0.0004 0.0000 ± 0.0003 0.0152 ± 0.0372 0.0087 ± 0.0247 0.0115 ± 0.0295

acetone 0.6863 ± 0.0351 0.6482 ± 0.0476 0.6655 ± 0.0450 0.6638 ± 0.1908 0.7433 ± 0.1527 0.7093 ± 0.1604

Propionaldehyde 0.0328 ± 0.0068 0.0352 ± 0.0055 0.0341 ± 0.0059 0.0555 ± 0.0561 0.0244 ± 0.0220 0.0377 ± 0.0292

Crotonaldehyde 0.0088 ± 0.0014 0.0053 ± 0.0038 0.0069 ± 0.0033 0.0000 ± 0.0605 0.0000 ± 0.0241 0.0000 ± 0.0293

Methacrolein 0.0000 ± 0.0009 0.0241 ± 0.0271 0.0131 ± 0.0229 0.0000 ± 0.0756 0.0000 ± 0.0301 0.0000 ± 0.0367

n-butyraldehyde 0.0000 ± 0.0007 0.0080 ± 0.0093 0.0044 ± 0.0078 0.0000 ± 0.0588 0.0000 ± 0.0234 0.0000 ± 0.0285

2-Butanone (MEK) 0.0425 ± 0.0387 0.0361 ± 0.0163 0.0390 ± 0.0273 0.0000 ± 0.0588 0.0106 ± 0.0265 0.0061 ± 0.0285

Valeraldehyde 0.0000 ± 0.0008 0.0000 ± 0.0006 0.0000 ± 0.0005 0.0000 ± 0.0615 0.0000 ± 0.0245 0.0000 ± 0.0298

Hexaldehyde 0.0000 ± 0.0008 0.0000 ± 0.0006 0.0000 ± 0.0005 0.0000 ± 0.0635 0.0000 ± 0.0253 0.0000 ± 0.0308

benzaldehyde 0.0000 ± 0.0009 0.0000 ± 0.0007 0.0000 ± 0.0005 0.0000 ± 0.0699 0.0000 ± 0.0278 0.0000 ± 0.0339

m-Tolualdehyde 0.0000 ± 0.0009 0.0000 ± 0.0007 0.0000 ± 0.0006 0.0000 ± 0.0706 0.0000 ± 0.0281 0.0000 ± 0.0343

Page 110: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-8

Average inorganic gas and PM2.5 chemical abundances (% of PM2.5 mass) for Stacks A and B under cold and warm dilution conditions in 2011 are summarized in Table 5-4. Abundances measured in 2008 are also listed for comparison. For Stack A, NH3 was below the detection limit (1.5 µg/filter) for all runs in March, 2011. In contrast, NH3 was 34% of PM2.5 mass in August, 2008. For Stack B, both NH3 and SO2 were more abundant in summer (1025% and 9205% of PM2.5, respectively) than winter (3.1% and 429% of PM2.5, respectively). The H2S concentration was <0.1% of PM2.5.

Figure 5-3 and Figure 5-4 compare the most abundant (>0.1% of PM2.5 in August, 2008 or March, 2011 tests at either stack) chemical components for Stacks A and B, respectively. Figure 5-5 shows the PM2.5 abundances for: 1) geological materials (including Al2O3, SiO2, CaO, Fe2O3, and TiO2 estimated from XRF measurements of Al, Si, Ca, Fe, and Ti respectively) (Malm et al., 1994); 2) organics (= OC × 1.2); 3) elemental carbon (EC); 4) NH4

+; 5) SO4=; 6)

other water-soluble ions (Cl-, NO2-, NO3

-, PO4≡, Na+, Mg++, K+, and Ca++); 7) other elements (all

elements measured by XRF in Table 5-4 from P to U, excluding S, Ca, Fe, and Ti); and 8) unidentified species. Soluble SO4

= is the most abundant species for all test conditions, contributing 39.2 %, 67.9 %, and 49.7% to PM2.5 mass for Stacks A, B, and C in 2008, respectively, and 47.6% and 72.7% for Stacks A and B in 2011, respectively. Note that the 2008 and 2011 PM2.5 profiles differ for Stack A. From August, 2008 to March, 2011, NH4

+ dropped from 15.1% to 0.9%, EC dropped from 7.2% to 0.6%, geological elements dropped from 21.7% to 3.4%, while unidentified mass increased from 6.1% to 39.7%. As discussed in Section 3.1, (NH4)2SO4 was the major composition of PM2.5 in Stack A for the 2008 tests, while H2SO4 in droplets was the major component during the 2011 tests.

From ion balance, it is estimated that (NH4)2SO4 was 53.9% of PM2.5 in 2008 and H2SO4 was 46.0% of PM2.5 in 2011. Assuming the unbalanced SO4

= was in the thermodynamic equilibrium form of H2SO4•5.48 H2O under the filter-conditioning laboratory conditions (21.5 ± 1.5 °C and 35 ± 5% RH), particle-bound water would have a mass of 1.03×[SO4

=], which is 46.3% of PM2.5. Therefore, the 39.7% unidentified mass in Figure 5-5b is likely particle-bound water, and the H2SO4•5.48 H2O composition accounted for 92.4% of PM2.5. Under the same assumption, H2SO4 was 47.8% of PM2.5 from Stack C in 2008, and particle-bound water accounts for 48.1% of PM2.5. The sum of H2SO4 and H2O was 95.9 % of PM2.5, which closes the mass balance in Figure 5-5e. Figure 5-6 shows fractions after accounting for particle-bound water for a) Stack A in 2011 and b) Stack C in 2008. The material balance slightly exceeds 100% of gravimetric mass (107% and 105% for Stacks A and C, respectively), which is within the uncertainty of the measurement system. The 2008 profile for Stack B is similar to that for 2011, with (NH4)2SO4 being the major component, accounting for 91.3% of PM2.5.

Trace element abundances are low (typically < 0.1%). Stack A PM2.5 contained Al, Si, S, and Fe for the 2008 and 2011 samples. Stack B also contained Al, S, and Fe. Si was more abundant in the 2008 tests, but it was not detected for the 2011 tests for Stack B.

Total carbon (TC; sum of OC and EC) constitutes 6.9% and 12.9% of PM2.5 from Stack A in 2011 and 2008, respectively and 1.2% and 6.9% for Stack B in 2011 and 2008, respectively. Figure 5-7 shows variable abundances for thermal carbon fractions between the 2011 and 2008 samples from Stacks A and B. For Stack A in 2011, most carbon was in the OP and EC1 fractions, while most carbon was in the OC1, OC2, and EC1 fractions in 2008. For Stack B in 2011, most of the carbon was in the OC1 and OC2 fractions, while in 2008, most carbon was in the OC2 and EC1 fractions. Overall, the TC abundance was lower in 2011 than in 2008.

Page 111: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-9

Table 5-4. Average inorganic gas and PM chemical abundances (as % of PM2.5 mass) for Stacks A and B for winter 2011 and summer 2008 samples. Winter measurements include cold and warm dilutions. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runsa.)

Chemical Species Stack A Stack B

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

NH3 gas 0.000 ± 0.004 0.000 ± 0.004 0.000 ± 0.003 34.206 ± 10.527 1.298 ± 1.494 4.667 ± 6.734 3.112 ± 5.234 1025.278 ± 636.566

SO2 gas 4078.69 ± 591.00 4446.95 ± 849.41 4262.82 ± 723.67 >2226c 338.95 ± 289.32 505.68 ± 173.57 428.73 ± 238.11 9205.47 ± 4661.73

H2S gas 0.065 ± 0.049 0.108 ± 0.070 0.087 ± 0.062 0.038 ± 0.041 0.005 ± 0.008 0.001 ± 0.002 0.003 ± 0.005 0.026 ± 0.042

Cl- 0.094 ± 0.035 0.072 ± 0.054 0.083 ± 0.045 1.601 ± 0.995 1.140 ± 0.262 0.925 ± 0.296 1.024 ± 0.289 0.157 ± 0.207

NO2- 0.000 ± 0.005 0.003 ± 0.005 0.001 ± 0.004 0.000 ± 0.019 0.001 ± 0.010 0.002 ± 0.007 0.001 ± 0.006 0.032 ± 0.085

NO3- 0.001 ± 0.005 0.016 ± 0.038 0.008 ± 0.027 0.069 ± 0.039 0.265 ± 0.141 0.396 ± 0.324 0.336 ± 0.277 0.234 ± 0.142

PO4≡ 0.020 ± 0.017 0.030 ± 0.053 0.025 ± 0.038 0.008 ± 0.020 0.000 ± 0.014 0.009 ± 0.018 0.005 ± 0.015 0.411 ± 0.749

SO4= 46.813 ± 6.306 48.306 ± 7.986 47.560 ± 6.905 39.167 ± 4.867 70.900 ± 15.207 74.303 ± 12.650 72.732 ± 13.529 67.893 ± 2.453

NH4+ 0.988 ± 0.414 0.835 ± 0.251 0.911 ± 0.336 15.148 ± 2.007 25.434 ± 4.685 24.418 ± 8.266 24.887 ± 6.946 24.893 ± 1.103

Na+ 0.007 ± 0.005 0.012 ± 0.006 0.010 ± 0.006 0.051 ± 0.017 0.010 ± 0.011 0.011 ± 0.010 0.010 ± 0.010 0.040 ± 0.028

Mg++ 0.020 ± 0.010 0.021 ± 0.010 0.020 ± 0.007 0.022 ± 0.008 0.000 ± 0.020 0.000 ± 0.014 0.000 ± 0.012 0.042 ± 0.007

K+ 0.019 ± 0.005 0.022 ± 0.005 0.020 ± 0.005 0.046 ± 0.013 0.020 ± 0.048 0.006 ± 0.010 0.012 ± 0.032 0.033 ± 0.022

Ca++ 0.026 ± 0.012 0.032 ± 0.012 0.029 ± 0.012 0.115 ± 0.046 0.032 ± 0.015 0.015 ± 0.008 0.023 ± 0.014 0.108 ± 0.059

OC1b 1.212 ± 1.428 0.676 ± 0.496 0.944 ± 1.057 2.144 ± 2.280 0.222 ± 0.205 0.728 ± 1.069 0.495 ± 0.849 0.100 ± 0.212

OC2 b 0.759 ± 0.650 0.416 ± 0.131 0.587 ± 0.482 2.804 ± 1.022 0.267 ± 0.183 0.544 ± 0.223 0.416 ± 0.243 3.625 ± 0.614

OC3 b 1.275 ± 1.549 0.744 ± 0.462 1.009 ± 1.125 0.284 ± 0.361 0.000 ± 0.040 0.086 ± 0.153 0.046 ± 0.123 0.659 ± 0.325

OC4 b 1.073 ± 0.247 0.800 ± 0.271 0.937 ± 0.285 0.526 ± 0.188 0.067 ± 0.048 0.102 ± 0.067 0.086 ± 0.061 0.554 ± 0.206

OPT b 3.521 ± 3.962 3.053 ± 2.276 3.287 ± 3.090 0.000 ± 0.079 0.122 ± 0.080 0.158 ± 0.135 0.141 ± 0.111 1.066 ± 0.390

OPR b 3.047 ± 3.691 2.548 ± 2.121 2.798 ± 2.882 0.000 ± 0.024 0.059 ± 0.077 0.081 ± 0.108 0.071 ± 0.093 0.116 ± 0.306

OC b 7.362 ± 7.404 5.181 ± 3.140 6.272 ± 5.540 5.750 ± 2.835 0.544 ± 0.453 1.522 ± 1.481 1.070 ± 1.248 4.741 ± 0.980

EC1 b 2.981 ± 3.826 2.624 ± 2.199 2.802 ± 2.981 6.513 ± 1.097 0.038 ± 0.046 0.065 ± 0.057 0.052 ± 0.053 2.004 ± 0.598

EC2 b 0.684 ± 0.241 0.553 ± 0.168 0.618 ± 0.210 0.672 ± 0.250 0.098 ± 0.046 0.142 ± 0.094 0.122 ± 0.076 0.359 ± 0.197

EC3 b 0.023 ± 0.015 0.015 ± 0.014 0.019 ± 0.014 0.003 ± 0.007 0.000 ± 0.003 0.002 ± 0.003 0.001 ± 0.002 0.000 ± 0.024

EC b 0.640 ± 0.393 0.644 ± 0.272 0.642 ± 0.322 7.158 ± 1.052 0.077 ± 0.024 0.128 ± 0.058 0.104 ± 0.049 2.146 ± 0.433

TC b 8.002 ± 7.752 5.825 ± 3.393 6.914 ± 5.817 12.908 ± 2.305 0.620 ± 0.458 1.650 ± 1.514 1.175 ± 1.279 6.887 ± 0.590

Page 112: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-10

Table 5-4 continued.

Chemical Species

Stack A Stack B Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Na 0.000 ± 0.044 0.000 ± 0.045 0.000 ± 0.031 0.900 ± 0.228 0.000 ± 0.087 0.000 ± 0.062 0.000 ± 0.052 1.597 ± 0.277

Mg 0.001 ± 0.005 0.001 ± 0.006 0.001 ± 0.004 0.137 ± 0.047 0.000 ± 0.013 0.000 ± 0.008 0.000 ± 0.007 0.173 ± 0.088

Al 0.078 ± 0.021 0.105 ± 0.031 0.091 ± 0.029 1.008 ± 0.116 0.194 ± 0.066 0.176 ± 0.071 0.184 ± 0.069 0.285 ± 0.040

Si 1.075 ± 0.140 0.976 ± 0.256 1.026 ± 0.204 4.656 ± 1.791 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.389 ± 0.044

P 0.001 ± 0.001 0.001 ± 0.002 0.001 ± 0.001 0.000 ± 0.002 0.000 ± 0.000 0.006 ± 0.007 0.003 ± 0.006 0.000 ± 0.006

S 9.629 ± 1.935 10.059 ± 1.345 9.844 ± 1.605 13.209 ± 1.937 16.107 ± 5.536 14.877 ± 5.948 15.445 ± 5.700 19.921 ± 0.904

Cl 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 1.220 ± 0.751 0.183 ± 0.083 0.180 ± 0.157 0.181 ± 0.126 0.249 ± 0.201

K 0.016 ± 0.003 0.020 ± 0.006 0.018 ± 0.005 0.165 ± 0.022 0.005 ± 0.002 0.004 ± 0.002 0.004 ± 0.002 0.058 ± 0.020

Ca 0.021 ± 0.006 0.027 ± 0.011 0.024 ± 0.009 0.182 ± 0.036 0.001 ± 0.002 0.003 ± 0.004 0.002 ± 0.003 0.139 ± 0.029

Sc 0.001 ± 0.003 0.001 ± 0.003 0.001 ± 0.002 0.002 ± 0.004 0.004 ± 0.007 0.002 ± 0.004 0.003 ± 0.004 0.001 ± 0.012

Ti 0.029 ± 0.005 0.037 ± 0.010 0.033 ± 0.009 0.465 ± 0.073 0.002 ± 0.001 0.003 ± 0.003 0.002 ± 0.002 0.103 ± 0.023

V 0.010 ± 0.002 0.014 ± 0.005 0.012 ± 0.004 0.150 ± 0.021 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.042 ± 0.012

Cr 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.020 ± 0.043

Mn 0.006 ± 0.001 0.008 ± 0.002 0.007 ± 0.002 0.088 ± 0.014 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.036 ± 0.015

Fe 0.203 ± 0.042 0.258 ± 0.086 0.231 ± 0.070 2.862 ± 0.383 0.075 ± 0.079 0.121 ± 0.087 0.100 ± 0.082 1.633 ± 0.544

Co 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Ni 0.004 ± 0.001 0.005 ± 0.001 0.004 ± 0.001 0.078 ± 0.027 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.250 ± 0.224

Cu 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.000 0.030 ± 0.031 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.079 ± 0.108

Zn 0.002 ± 0.001 0.001 ± 0.000 0.002 ± 0.001 0.026 ± 0.020 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.063 ± 0.076

Ga 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.001 ± 0.002 0.000 ± 0.002 0.000 ± 0.001 0.000 ± 0.001 0.004 ± 0.006

As 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Se 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.004

Br 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.007 ± 0.003 0.005 ± 0.003 0.005 ± 0.002 0.005 ± 0.002 0.006 ± 0.004

Rb 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.002

Sr 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.012 ± 0.002 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.006 ± 0.004

Page 113: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-11

Table 5-4 continued.

Chemical Species

Stack A Stack B Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Y 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.004 ± 0.001 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.003 ± 0.003

Zr 0.001 ± 0.000 0.001 ± 0.001 0.001 ± 0.000 0.017 ± 0.004 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.007 ± 0.007

Nb 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.002 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.005

Mo 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.011 ± 0.003 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.005 ± 0.005

Pd 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.003 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.009

Ag 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.003 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.008

Cd 0.000 ± 0.000 0.000 ± 0.001 0.000 ± 0.000 0.001 ± 0.003 0.001 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.003 ± 0.010

In 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.002 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.002 ± 0.006

Sn 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.000 0.001 ± 0.003 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.002 ± 0.008

Sb 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.001 ± 0.005 0.000 ± 0.002 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.015

Cs 0.000 ± 0.002 0.000 ± 0.002 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.004 0.000 ± 0.002 0.000 ± 0.002 0.000 ± 0.002

Ba 0.001 ± 0.002 0.001 ± 0.002 0.001 ± 0.001 0.000 ± 0.000 0.001 ± 0.004 0.001 ± 0.003 0.001 ± 0.002 0.000 ± 0.001

La 0.000 ± 0.002 0.001 ± 0.003 0.000 ± 0.002 0.000 ± 0.001 0.001 ± 0.005 0.000 ± 0.003 0.000 ± 0.003 0.001 ± 0.002

Ce 0.000 ± 0.002 0.001 ± 0.002 0.001 ± 0.002 0.000 ± 0.001 0.002 ± 0.005 0.001 ± 0.003 0.001 ± 0.003 0.000 ± 0.003

Sm 0.001 ± 0.004 0.000 ± 0.004 0.001 ± 0.003 0.001 ± 0.001 0.001 ± 0.009 0.000 ± 0.006 0.000 ± 0.005 0.002 ± 0.004

Eu 0.004 ± 0.006 0.001 ± 0.006 0.002 ± 0.004 0.000 ± 0.004 0.009 ± 0.013 0.007 ± 0.008 0.008 ± 0.008 0.000 ± 0.013

Tb 0.001 ± 0.004 0.000 ± 0.005 0.001 ± 0.003 0.000 ± 0.001 0.001 ± 0.010 0.002 ± 0.006 0.002 ± 0.006 0.000 ± 0.004

Hf 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.001 0.001 ± 0.009 0.000 ± 0.003 0.001 ± 0.002 0.001 ± 0.002 0.000 ± 0.029

Ta 0.000 ± 0.001 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.008 0.000 ± 0.002 0.000 ± 0.001 0.000 ± 0.001 0.007 ± 0.024

W 0.000 ± 0.002 0.000 ± 0.002 0.000 ± 0.001 0.006 ± 0.011 0.000 ± 0.004 0.000 ± 0.003 0.000 ± 0.002 0.007 ± 0.035

Ir 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.002 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.003 ± 0.007

Au 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.005 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.004 ± 0.016

Hg 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.005

Tl 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.005

Pb 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.005 ± 0.004 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.012 ± 0.009

U 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.003 0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.007 ± 0.008

Page 114: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-12

Table 5-4 continued.

Chemical Species

Stack A Stack B Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Summer Average

(2008) Sum of Speciesd 57.31 ± 8.68 56.51 ± 10.93 56.91 ± 9.42 78.38 ± 4.25 97.72 ± 20.42 101.30 ± 13.04 99.65 ± 15.97 103.86 ± 3.69

a For Stack A, winter 2011 cold dilution: 6 runs; warm dilution: 6 runs; winter 2011 average: 12 runs; and summer 2008 average: 6 runs. For Stack B, winter 2011 cold dilution: 6 runs, warm dilution:8 runs; winter 2011 average: 14 runs; and summer 2008 average: 7 runs.

b OC1, OC2, OC3, and OC4 are organic carbon thermal fractions evolved at 140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere EC1, EC2, and EC3 are elemental carbon evolved at 580, 740, and 840 °C, respectively, in a 98% He / 2% O2 atmosphere OP is pyrolyzed organic carbon by reflectance (OPR) or transmittance (OPT) OC = (OC1 + OC2 + OC3 + OC4) + OPR EC = (EC1 + EC2 + EC3) – OPR TC = OC + EC

c Potassium carbonate-impregnated filters were saturated with SO2 in 2008 measurement, causing data biased low.

d Including TC, Na+, Mg++, K, Cl, Ca, PO4≡, and SO4

= Excluding OC and EC fractions, OC, EC, Na, Mg, P, S, CO3

=, K+, Cl- , and Ca++

Page 115: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-13

a)

b)

Figure 5-3. PM2.5 chemical abundances for Stack A in: a) March 2011 (winter) and b) August 2008 (summer) for species with abundance >0.1% of PM2.5 mass for either Stack A or Stack B. The height of each bar indicates the average percent abundance for the indicated chemical species normalized to PM2.5 mass concentration, while the dot shows the uncertainty (higher of standard deviation or uncertainty of the mean of multiple runs).

Cl-

NO2-

NO3-

PO4≡

SO4=

NH4+

Na+

Mg++

K+

Ca++

OC

EC

Mg

Al

Si

S

KCaTi

VMn

Fe

Ni

ZnSr Zr Mo

Ba

Eu

0.001

0.01

0.1

1

10

100

Che

mic

al A

bund

ance

(% o

f of P

M2.

5)

Chemical Species

Stack A-03/2011

Cl-

NO3-

PO4≡

SO4=

NH4+

Na+

Mg++

K+Ca++

OCEC

Na

Mg

Al

Si

S

Cl

KCa

Sc

Ti

V

Cr

Mn

Fe

Ni

Cu Zn

BrSr

Y

ZrMo

Sn

W

Au

Pb

U

0.001

0.01

0.1

1

10

100

Che

mic

al A

bund

ance

(% o

f PM

2.5)

Chemical Species

Stack A-08/2008

Page 116: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-14

a)

b)

Figure 5-4. PM2.5 chemical abundances from Stack B in: a) March 2011 (winter) and b) August 2008 (summer) for species with abundance >0.1% of PM2.5 mass for either Stack A or Stack B. The height of each bar indicates the averaged percent abundance for the indicated chemical species normalized to PM2.5 mass concentration, while the dot shows the uncertainty (higher of standard deviation or uncertainty of the mean of multiple runs).

Cl-

NO2-

NO3-

PO4≡

SO4=

NH4+

Na+ K+

Ca++

OC

ECAl

P

S

Cl

KCa

Sc

Ti

Fe

CuZn

BrBa

CeEu

Tb

0.001

0.01

0.1

1

10

100

Che

mic

al A

bund

ance

(% o

f PM

2.5)

Chemical Species

Stack B-03/2011

Cl-

NO2-

NO3-

PO4≡

SO4=

NH4+

Na+Mg++

K+

Ca++

OC

ECNa

MgAl

Si

S

Cl

K

Ca Ti

V

CrMn

Fe

Ni

CuZn

Ga BrSrY

Zr

NbMo

CdInSn

SmTaW

IrAu

PbU

0.001

0.01

0.1

1

10

100

Che

mic

al A

bund

ance

(% o

f PM

2.5)

Chemical Species

Stack B-08/2008

Page 117: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-15

a)

b)

c)

d)

e)

Figure 5-5. PM2.5 material balance for: a) Stack A in summer 2008; b) Stack A in winter 2011; c) Stack B in summer 2008; d) Stack B in winter 2011; and e) Stack C in summer. Geological material includes Al2O3, SiO2, CaO, and Fe2O3 (Geological material = 2.2 × [Al] + 2.49 × [Si] + 1.63 × [Ca] + 2.42 × [Fe] + 1.94 × [Ti]); other soluble ions include Cl-, NO2

-, NO3-, PO4

≡, Na+, Mg++, K+, and Ca++, and elements include all elements measured by XRF in Table 5-4 from P to U, excluding S, Ca, Fe, and Ti.

Geological21.7%

SO4=

39.2%

Other ions1.9%Elements

1.8%NH4

+

15.1%

Organics6.9%

Elemental carbon7.2%

Stack A-08/2008

Unidentified6.1%

Geological3.4%

SO4=

47.6%

Other ions0.2%

Elements0.0%

NH4+, 0.9%

Organics7.5%

Elemental carbon0.6%

Stack A-03/2011

Unidentified 39.7%

Geological5.8%

SO4=

67.9%

Other ions1.1%

Elements0.7%

NH4+

24.9%

Organics5.7%

Elemental carbon2.1%

Stack B-08/2008

Geological0.6%

SO4=

72.7%

Other ions1.4%

Elements0.2%

NH4+

24.9%

Organics1.3%

Elemental carbon0.1%

Stack B-03/2011

Geological4.0%

SO4=

49.7%

Other ions0.3%

Elements0.5%

NH4+, 0.9%

Organics1.1%

Elemental carbon0.4%

Stack C-08/2008

Unidentified,43.1%

Page 118: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-16

a)

b)

Figure 5-6. PM2.5 material balance for: a) Stack A in winter 2011 and b) Stack C in summer 2008 after accounting for water associated with un-neutralized H2SO4 assuming thermodynamic equilibrium under the filter-conditioning environment.

Geological3.4%

SO4=

47.6%

Other ions0.2%

Elements0.0%

NH4+ 0.9%

Organics7.5%

Elemental carbon0.6%

Stack A-03/2011

Particle-bound H2O46.3%

Geological4.0%

SO4=

49.7%

Other ions0.3%

Elements0.5%

NH4+, 0.9%

Organics1.1%

Elemental carbon0.4%

Stack C-08/2008

Particle-bound H2O48.1%

Page 119: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-17

a)

b)

Figure 5-7. Abundance of carbon fractions (percentage of PM2.5) for: a) Stack A and b) Stack B. OC1 to OC4 are organic carbon fractions evolved in a 100% helium (He) atmosphere at 140, 280, 480, and 580 °C, respectively. EC1 to EC3 are elemental carbon fractions evolved in a 98% He/2% O2 atmosphere at 580, 740, and 840 °C, respectively. OP is pyrolyzed carbon by reflectance (OPR) or transmittance (OPT). Thermal analysis followed the IMPROVE_A thermal/optical reflectance analysis (TOR) protocol (Chow et al., 2007a).

0

2

4

6

8

OC1 OC2 OC3 OC4 OP EC1 EC2 EC3

Abun

danc

e (%

of P

M2.

5)

Carbon Fractions

Stack A-03/2011Stack A-08/2008

0

1

2

3

4

5

OC1 OC2 OC3 OC4 OP EC1 EC2 EC3

Abun

danc

e (%

of P

M2.

5)

Carbon Fractions

Stack B-03/2011Stack B-08/2008

Page 120: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-18

Figure 5-8 shows PM2.5 source profiles from oil extraction and refining emissions acquired in other studies (i.e., a gas-fired boiler, fluidized catalytic cracking unit [FCCU], and a process heater) (API, 2002; England et al., 2001a; England, 2004). The gas-fired boiler and the process heater used refinery process gas and were not equipped with NOx, SO2 or PM air pollution controls. The catalytic cracker was equipped with a CO heater fired by refinery process gas and an electrostatic precipitator (ESP). The gas-fired boiler profile shows SO4

= being the most abundant (20%) component, followed by EC (10%), NH4

+ (9%), S (6%), and OC (5%). The FCCU source profile is dominated by SO4

= (91%), followed by Si (6%) and Al (3.6%), with TC constituting <1%. The NH4

+ abundance is only 0.8%, which does not balance the high SO4=,

indicating that particles are acidic. Furthermore, S (1.2%) is much lower than SO4=, indicating

evaporation of SO4= during the vacuum of XRF elemental analysis. This profile is similar to the

winter 2011 Stack A profile (Figure 5-3a) for major components. The process heater source profile is dominated by OC (35%) and EC (27%), with SO4

= constituting only ~4%. Abundances of Cs, Ba, rare earth elements, and Pb (measured by ICP/MS) are listed in

Table 5-5. All these elements contribute <0.01% to PM2.5, but they are often useful markers that distinguish among different emission sources. Abundances of the stable Pb isotopes (normalized to the sum of all isotopes) measured by the ICP/MS are plotted in Figure 5-9, along with their natural abundances (Lide, 1993). The differences between stack and natural abundances are summarized in Table 5-6. The abundance of 204Pb from Stack B in 2011 was 23.4% higher than the natural abundance, and other samples agree with natural abundances within 10%. For Stack A, 2011 samples have 2-5% higher abundances in 204Pb and 208Pb and 1-3% lower abundances in 206Pb and 207Pb than 2008 samples. For Stack B, 2011 samples have 30% and 3% higher abundance in 204Pb and 208Pb, respectively, and 3-5% lower abundances in 206Pb and 207Pb than 2008 samples. Figure 5-10 shows Pb isotope ratios. Note that both Stacks A and B have higher 208Pb /207Pb ratios in March, 2011 than during August, 2008. Stack B also has higher 204Pb /207Pb ratios in 2011.

Table 5-7 lists abundances for 113 non-polar organic compounds normalized to PM2.5 and OC for Stacks A and B, respectively. There were large variabilities in non-polar compound abundances among different runs. For Stack A, the sum of non-polar compounds accounts for 0.558±0.622% and 0.029±0.016% of PM2.5, and 14.3±16.6% and 0.52±0.18% of OC in 2011 and 2008, respectively. For Stack B, the sum of non-polar compounds accounts for 0.002±0.004% and 0.038±0.009% of PM2.5, and 0.273±0.729% and 0.839±0.293% of OC in 2011 and 2008, respectively. For Stack A, retene was the most abundant species in 2011, accounting for 95% of the sum of quantified non-polar compounds; while n-alkanes was the most abundant category in 2008, accounting for 68% of non-polar compounds. For Stack B, branched alkanes and n-alkanes are the most abundant categories, accounting for 31% and 75% of measured non-polar compounds from Stack B in 2011 and 2008, respectively. Figures 5-11a and 5-11b plot the source profile of the most abundant (>0.0003% of PM2.5) non-polar compounds for Stacks A and B, respectively. For Stack A, 2011 OC has higher PAH abundances, especially retene (13.7% of OC in winter) and cyclopenta[cd]pyrene (0.19% of OC in winter) as compared to <0.002% of OC in summer. On the other hand, 2008 samples had higher abundances for other categories, especially n-alkanes. For Stack B, winter sample also had more abundance in retene (0.035% of OC) than summer (0.008% of OC). Winter samples also had more pristine and phytane, while summer samples had higher abundances for most of the other compounds.

Page 121: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-19

Tables 5-8a and 5-8b list abundances for carbohydrates, organic acids and WSOC for Stacks A and B, respectively. For Stack A, the most abundant carbohydrates were glycerol (1.36% of OC) in winter 2011 and xylitol (0.36% of OC) in summer 2008. The most abundant organic acids were succinic acid (2.01% of OC) in 2011 and methanesulfonic acid (4.33% of OC) in 2008. WSOC accounted for 29.8% of OC in 2011 but only 0.26% in 2008. For Stack B, glycerol was the only carbohydrates above the MDL, accounting for 3.71% and 0.04% of OC in 2011 and 2008, respectively. The most abundant organic acids were lactic acid (7.16% of OC) and acetic acid (6.91% of OC) in 2011 and methanesulfonic acid (7.92% of OC) in 2008. WSOC was 60.2% and 16.8% of OC in winter and summer, respectively.

Tables 5-9a and 5-9b list the abundances for nitro-PAHs and their abundance were <0.0005% of OC for Stacks A and B, respectively. For Stack A, the most abundant nitro-PAHs were 9-nitroanthracene, 2-nitroanthracene, and 4-nitropyrene; for Stack B, the most abundant species were 2-nitrobiphenyl, 2-nitrofluorene, and 2,7-dinitrofluorene.

Page 122: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-20

Figure 5-8. Composite PM2.5 source profiles from a gas-fired boiler, a fluidized catalytic cracking unit, and a process heater at two oil refineries (API, 2002; Chang and England, 2004a; Chang and England, 2004b; England et al., 2001a; England et al., 2001b; England et al., 2001c).

Cl-NO3-

SO4=

NH4+OC

EC

Mg

AlSi

P

S

Cl

K

Ca

Cr

Mn

Fe

Co

Ni

Cu Zn

Se

Br Sr

Ba

La

U

0.001

0.01

0.1

1

10

100

Che

mic

al A

bund

ance

(%)

Chemical Species

A-MainGas-fired Boiler

Na

Ti

Va

Pb

Cl-

NO3-

SO4=

NH4+

OC

EC

AlSi

S

KCa

TiVa

Cr Mn

Fe

Co

Ni

Cu

Zn

Sr

SbBa

La

Pb

0.001

0.01

0.1

1

10

100

Che

mic

al A

bund

ance

(%)

Chemical Species

A-MainFluidized Catalytic Cracking Units

U

Na

Mg P

Cl

Se

Br

Cl-

NO3-

SO4=

NH4+

OCEC

Na

Al

Si

S

Cl

K

Ca

Ti

Va

Cr

Fe

Co

Ni

Cu

Zn

Br

Ba

La

Pb

U

0.001

0.01

0.1

1

10

100

Che

mic

al A

bund

ance

(%)

Chemical Species

A-MainProcess Heater

Mg

P

Mn

Se Sr

Page 123: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-21

Table 5-5. Abundances of ICP/MS measured Cs, Ba, rare earth elements, and Pb (% of PM2.5 mass) from: a) Stack A and b) Stack B. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.) a)

Element Stack A

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Cs 0.00E+0 ± 1.45E-6 0.00E+0 ± 1.51E-6 0.00E+0 ± 1.05E-6 0.00E+00 ± 5.62E-06

Ba 8.48E-4 ± 2.30E-4 1.03E-3 ± 3.84E-4 9.40E-4 ± 3.04E-4 7.83E-03 ± 1.59E-03

La 2.00E-4 ± 5.35E-5 2.49E-4 ± 7.75E-5 2.25E-4 ± 6.59E-5 2.83E-03 ± 5.70E-04

Ce 4.15E-4 ± 1.10E-4 5.14E-4 ± 1.62E-4 4.65E-4 ± 1.37E-4 5.80E-03 ± 1.17E-03

Pr 4.80E-5 ± 1.39E-5 5.97E-5 ± 1.91E-5 5.39E-5 ± 1.61E-5 6.47E-04 ± 1.36E-04

Nd 1.79E-4 ± 5.22E-5 2.22E-4 ± 7.08E-5 2.00E-4 ± 5.98E-5 2.43E-03 ± 5.13E-04

Sm 3.17E-5 ± 1.39E-5 3.95E-5 ± 1.63E-5 3.56E-5 ± 1.07E-5 4.35E-04 ± 1.05E-04

Eu 4.29E-6 ± 3.90E-6 6.16E-6 ± 4.53E-6 5.22E-6 ± 2.99E-6 8.12E-05 ± 2.89E-05

Gd 2.27E-5 ± 9.47E-6 3.02E-5 ± 5.85E-5 2.64E-5 ± 2.96E-5 3.24E-04 ± 2.45E-04

Tb 2.93E-6 ± 2.64E-6 3.80E-6 ± 3.39E-6 3.36E-6 ± 2.15E-6 4.55E-05 ± 2.87E-05

Dy 1.66E-5 ± 7.70E-6 2.08E-5 ± 9.42E-6 1.87E-5 ± 6.08E-6 2.31E-04 ± 2.19E-04

Ho 2.60E-6 ± 3.30E-6 3.67E-6 ± 3.60E-6 3.13E-6 ± 2.44E-6 4.27E-05 ± 3.75E-05

Er 8.15E-6 ± 4.60E-6 1.08E-5 ± 6.15E-6 9.46E-6 ± 3.84E-6 1.21E-04 ± 1.51E-04

Tm 4.38E-7 ± 1.92E-6 1.08E-6 ± 3.00E-6 7.57E-7 ± 1.78E-6 1.58E-05 ± 2.70E-05

Yb 4.72E-6 ± 3.61E-6 6.61E-6 ± 3.97E-6 5.67E-6 ± 2.68E-6 9.67E-05 ± 9.02E-05

Lu 2.19E-7 ± 1.61E-6 6.17E-7 ± 2.34E-6 4.18E-7 ± 1.42E-6 1.25E-05 ± 1.17E-05

Pb 2.86E-4 ± 8.01E-5 3.39E-4 ± 9.90E-5 3.13E-4 ± 9.02E-5 3.93E-03 ± 1.01E-03

b)

Element Stack B

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Cs 0.00E+0 ± 3.26E-6 0.00E+0 ± 2.02E-6 0.00E+0 ± 1.81E-6 0.00E+00 ± 1.56E-05

Ba 5.53E-5 ± 1.35E-4 2.44E-5 ± 5.04E-5 3.77E-5 ± 9.32E-5 2.79E-03 ± 7.29E-04

La 2.84E-6 ± 5.76E-6 9.36E-6 ± 1.52E-5 6.57E-6 ± 1.18E-5 6.84E-04 ± 1.68E-04

Ce 1.29E-5 ± 1.64E-5 2.10E-5 ± 2.96E-5 1.75E-5 ± 2.44E-5 1.44E-03 ± 3.81E-04

Pr 2.38E-7 ± 3.35E-6 1.86E-6 ± 3.77E-6 1.16E-6 ± 2.91E-6 1.59E-04 ± 4.48E-05

Nd 3.72E-6 ± 8.82E-6 8.95E-6 ± 1.32E-5 6.71E-6 ± 1.02E-5 6.00E-04 ± 1.57E-04

Sm 1.52E-7 ± 4.94E-6 1.08E-6 ± 2.91E-6 6.84E-7 ± 2.69E-6 1.11E-04 ± 5.59E-05

Eu 0.00E+0 ± 3.26E-6 0.00E+0 ± 2.02E-6 0.00E+0 ± 1.81E-6 3.27E-06 ± 2.03E-05

Gd 0.00E+0 ± 3.26E-6 3.05E-7 ± 2.10E-6 1.74E-7 ± 1.84E-6 0.00E+00 ± 1.56E-05

Tb 0.00E+0 ± 3.26E-6 0.00E+0 ± 2.02E-6 0.00E+0 ± 1.81E-6 1.20E-05 ± 2.22E-05

Dy 0.00E+0 ± 3.26E-6 4.06E-7 ± 2.26E-6 2.32E-7 ± 1.90E-6 5.39E-05 ± 5.32E-05

Ho 0.00E+0 ± 3.26E-6 0.00E+0 ± 2.02E-6 0.00E+0 ± 1.81E-6 1.20E-05 ± 2.71E-05

Er 0.00E+0 ± 3.26E-6 1.63E-7 ± 2.10E-6 9.29E-8 ± 1.84E-6 2.59E-05 ± 4.02E-05

Tm 0.00E+0 ± 3.26E-6 0.00E+0 ± 2.02E-6 0.00E+0 ± 1.81E-6 0.00E+00 ± 1.56E-05

Yb 0.00E+0 ± 3.26E-6 0.00E+0 ± 2.02E-6 0.00E+0 ± 1.81E-6 5.50E-06 ± 3.08E-05

Lu 0.00E+0 ± 3.26E-6 0.00E+0 ± 2.02E-6 0.00E+0 ± 1.81E-6 0.00E+00 ± 1.56E-05

Pb 1.04E-4 ± 1.07E-4 6.65E-5 ± 6.77E-5 8.26E-5 ± 8.52E-5 7.11E-03 ± 1.17E-02

Page 124: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-22

Figure 5-9. Abundance of stable lead isotopes in the stack samples vs. their natural abundances.

0%

10%

20%

30%

40%

50%

60%

204Pb 206Pb 207Pb 208Pb

Rel

ativ

e A

bund

ance

Isotopes of Lead

Stack A WinterStack A SummerStack B WinterStack B SummerStack C SummerNatural Abundance

Page 125: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-23

Table 5-6. Differences in lead isotope abundances from stack emissions relative to their s between stack emissions and natural abundances.

Pb Isotope

Stack A Winter (2011)

Stack A Summer (2008)

Stack B Winter (2011)

Stack B Summer (2008)

Stack C Summer (2008)

204Pb 1.8% -3.2% 23.4% -5.2% -8.2% 206Pb 3.2% 6.4% 0.0% 5.4% 6.2% 207Pb -7.4% -6.0% -8.1% -5.2% -7.0% 208Pb 1.6% -0.3% 2.8% -0.2% 0.3%

Page 126: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-24

a)

b)

Figure 5-10. Lead isotope ratios of a) 204Pb/207Pb vs 206Pb/207Pb and b) 208Pb/207Pb vs 206Pb/207Pb .

0.05

0.06

0.07

0.08

0.09

0.10

0.11

1.1 1.15 1.2 1.25 1.3

204 P

b/20

7 Pb

206Pb/207Pb

Stack A-08/2008

Stack A-03/2011

Stack B-08/2008

Stack B-03/2011

Stack C-08/2008

2.45

2.50

2.55

2.60

2.65

2.70

2.75

1.1 1.15 1.2 1.25 1.3

208 P

b/20

7 Pb

206Pb/207Pb

Stack A-08/2008

Stack A 03/2011

Stack B08/2008

Stack B 03/2011

Stack C

Page 127: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-25

Table 5-7a. Stack A abundances (% of PM2.5 and OC mass) for non-polar PM2.5 organic compounds.. Retene is the most abundant PAH in winter and highlighted in yellow. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound MW

Stack A Profile (%) Normalized to PM2.5 Stack A Profile (%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs

acenaphthylene 152 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0003 0.0000±0.0022 0.0000±0.0033 0.0000±0.0020 0.0001±0.0070 acenaphthene 154 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0007 0.0000±0.0010 0.0000±0.0006 0.0001±0.0038 fluorene 166 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0001±0.0003 0.0001±0.0003 0.0001±0.0003 0.0002±0.0026

phenanthrene 178 0.0002±0.0002 0.0001±0.0001 0.0002±0.0002 0.0001±0.0001 0.0027±0.0005 0.0017±0.0014 0.0022±0.0011 0.0036±0.0028 anthracene 178 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0018 0.0000±0.0027 0.0000±0.0017 0.0010±0.0007

fluoranthene 202 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0000 0.0001±0.0005 0.0002±0.0008 0.0002±0.0005 0.0007±0.0007 pyrene 202 0.0005±0.0013 0.0001±0.0001 0.0003±0.0009 0.0001±0.0001 0.0023±0.0057 0.0010±0.0015 0.0016±0.0040 0.0023±0.0014

benzo[a]anthracene 228 0.0005±0.0004 0.0022±0.0029 0.0014±0.0022 0.0001±0.0001 0.0109±0.0078 0.0677±0.1080 0.0393±0.0788 0.0023±0.0023 chrysene 228 0.0011±0.0014 0.0009±0.0011 0.0010±0.0012 0.0002±0.0001 0.0276±0.0343 0.0247±0.0328 0.0262±0.0320 0.0037±0.0029 benzo[b]fluoranthene 252 0.0006±0.0008 0.0003±0.0003 0.0004±0.0006 0.0000±0.0001 0.0116±0.0178 0.0074±0.0090 0.0095±0.0136 0.0006±0.0024

benzo[j+k]fluoranthene 252 0.0010±0.0011 0.0005±0.0008 0.0007±0.0009 0.0001±0.0001 0.0227±0.0248 0.0124±0.0232 0.0175±0.0235 0.0008±0.0013 benzo[a]fluoranthene 252 0.0002±0.0002 0.0002±0.0002 0.0002±0.0002 0.0000±0.0001 0.0047±0.0036 0.0043±0.0062 0.0045±0.0048 0.0000±0.0012

benzo[e]pyrene 252 0.0004±0.0006 0.0001±0.0002 0.0003±0.0005 0.0000±0.0001 0.0088±0.0149 0.0028±0.0041 0.0058±0.0109 0.0001±0.0026 benzo[a]pyrene 252 0.0003±0.0003 0.0002±0.0002 0.0002±0.0003 0.0001±0.0001 0.0063±0.0098 0.0037±0.0070 0.0050±0.0082 0.0007±0.0027 perylene 252 0.0002±0.0003 0.0001±0.0002 0.0001±0.0002 0.0006±0.0014 0.0034±0.0056 0.0025±0.0044 0.0030±0.0048 0.0068±0.0166

indeno[1,2,3-cd]pyrene 276 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0002 0.0000±0.0003 0.0000±0.0002 0.0004±0.0013 dibenzo[a,h]anthracene 278 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0001±0.0002 0.0000±0.0002 0.0001±0.0001 0.0000±0.0028

benzo[ghi]perylene 276 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0003 0.0000±0.0005 0.0000±0.0003 0.0001±0.0018 coronene 300 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0002 0.0000±0.0003 0.0000±0.0002 0.0000±0.0022

dibenzo[a,e]pyrene 302 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0000 0.0002±0.0004 0.0000±0.0001 0.0001±0.0003 0.0000±0.0008 9-fluorenone 180 0.0004±0.0003 0.0006±0.0008 0.0005±0.0006 0.0002±0.0001 0.0096±0.0054 0.0085±0.0059 0.0091±0.0054 0.0045±0.0038

dibenzothiophene 184 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0003±0.0005 0.0001±0.0003 0.0000±0.0005 0.0000±0.0003 0.0065±0.0122

1 methyl phenanthrene 192 0.0001±0.0001 0.0000±0.0001 0.0000±0.0001 0.0001±0.0001 0.0005±0.0005 0.0004±0.0008 0.0005±0.0006 0.0028±0.0021

2 methyl phenanthrene 192 0.0002±0.0005 0.0001±0.0001 0.0002±0.0004 0.0000±0.0000 0.0013±0.0023 0.0010±0.0013 0.0012±0.0018 0.0009±0.0009

3,6 dimethyl phenanthrene 206 0.0015±0.0013 0.0008±0.0006 0.0011±0.0010 0.0001±0.0002 0.0322±0.0265 0.0253±0.0239 0.0287±0.0243 0.0012±0.0026

Page 128: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-26

Table 5-7a continued.

Compound MW Stack A Profile (%) Normalized to PM2.5 Stack A Profile(%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs

methylfluoranthene 216 0.0006±0.0006 0.0004±0.0005 0.0005±0.0006 0.0000±0.0000 0.0134±0.0172 0.0125±0.0171 0.0129±0.0164 0.0000±0.0008 retene 219 0.6708±0.7612 0.3911±0.4754 0.5309±0.6224 0.0001±0.0002 14.4912±16.1783 12.9548±17.9331 13.7230±16.3032 0.0012±0.0036

benzo(ghi)fluoranthene 226 0.0002±0.0003 0.0005±0.0007 0.0004±0.0005 0.0002±0.0002 0.0054±0.0070 0.0170±0.0256 0.0112±0.0189 0.0036±0.0056

benzo(c)phenanthrene 228 0.0003±0.0003 0.0009±0.0011 0.0006±0.0008 0.0000±0.0002 0.0083±0.0093 0.0293±0.0414 0.0188±0.0306 0.0001±0.0037

benzo(b)naphtho[1,2-d]thiophene 234 0.0003±0.0004 0.0002±0.0003 0.0003±0.0004 0.0000±0.0003 0.0066±0.0100 0.0071±0.0101 0.0068±0.0096 0.0005±0.0080

cyclopenta[cd]pyrene 226 0.0049±0.0031 0.0096±0.0068 0.0073±0.0056 0.0000±0.0000 0.0999±0.0898 0.2741±0.2479 0.1870±0.1997 0.0000±0.0008 benz[a]anthracene-7,12-dione 258 0.0011±0.0015 0.0024±0.0041 0.0018±0.0030 0.0002±0.0006 0.0241±0.0285 0.0854±0.1520 0.0547±0.1091 0.0028±0.0070

methylchrysene 242 0.0004±0.0007 0.0004±0.0004 0.0004±0.0005 0.0001±0.0001 0.0098±0.0159 0.0096±0.0119 0.0097±0.0134 0.0006±0.0013

benzo(b)chrysene 278 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0002 0.0000±0.0003 0.0000±0.0002 0.0000±0.0053 picene 278 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0002 0.0000±0.0003 0.0000±0.0002 0.0000±0.0031

anthanthrene 276 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0006 0.0000±0.0008 0.0000±0.0005 0.0000±0.0052

Alkane/Alkene/Phthalate

n-alkane n-pentadecane (n-C15) 212 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0001±0.0001 0.0000±0.0018 0.0007±0.0027 0.0003±0.0016 0.0013±0.0026

n-hexadecane (n-C16) 226 0.0000±0.0001 0.0001±0.0001 0.0000±0.0001 0.0001±0.0001 0.0000±0.0022 0.0008±0.0032 0.0004±0.0019 0.0027±0.0029 n-heptadecane (n-C17) 240 0.0001±0.0003 0.0001±0.0001 0.0001±0.0002 0.0004±0.0004 0.0006±0.0026 0.0008±0.0038 0.0007±0.0023 0.0100±0.0104 n-octadecane (n-C18) 254 0.0004±0.0009 0.0002±0.0003 0.0003±0.0006 0.0007±0.0006 0.0016±0.0040 0.0029±0.0032 0.0023±0.0035 0.0154±0.0161

n-nonadecane (n-C19) 268 0.0002±0.0005 0.0002±0.0003 0.0002±0.0004 0.0008±0.0011 0.0010±0.0028 0.0023±0.0040 0.0016±0.0030 0.0183±0.0304 n-icosane (n-C20) 282 0.0002±0.0002 0.0003±0.0003 0.0002±0.0002 0.0005±0.0007 0.0024±0.0020 0.0044±0.0034 0.0034±0.0028 0.0062±0.0063

n-heneicosane (n-C21) 296 0.0003±0.0004 0.0003±0.0002 0.0003±0.0003 0.0019±0.0016 0.0041±0.0022 0.0060±0.0017 0.0050±0.0022 0.0288±0.0116 n-docosane (n-C22) 310 0.0005±0.0005 0.0005±0.0003 0.0005±0.0004 0.0005±0.0004 0.0071±0.0028 0.0089±0.0021 0.0080±0.0025 0.0102±0.0111 n-tricosane (n-C23) 324 0.0007±0.0005 0.0007±0.0004 0.0007±0.0005 0.0008±0.0004 0.0093±0.0037 0.0120±0.0027 0.0106±0.0034 0.0177±0.0103

n-tetracosane (n-C24) 338 0.0007±0.0005 0.0008±0.0006 0.0007±0.0005 0.0050±0.0052 0.0105±0.0045 0.0140±0.0035 0.0122±0.0042 0.0963±0.0942 n-pentacosane (n-C25) 352 0.0007±0.0004 0.0009±0.0006 0.0008±0.0005 0.0036±0.0053 0.0115±0.0050 0.0160±0.0050 0.0138±0.0053 0.0525±0.0595

n-hexacosane (n-C26) 366 0.0007±0.0006 0.0006±0.0004 0.0006±0.0005 0.0020±0.0023 0.0087±0.0032 0.0121±0.0041 0.0104±0.0039 0.0320±0.0313 n-heptacosane (n-C27) 380 0.0005±0.0005 0.0007±0.0006 0.0006±0.0005 0.0007±0.0007 0.0066±0.0027 0.0121±0.0039 0.0093±0.0043 0.0127±0.0085

n-octacosane (n-C28) 394 0.0003±0.0003 0.0005±0.0004 0.0004±0.0003 0.0001±0.0001 0.0046±0.0018 0.0080±0.0025 0.0063±0.0027 0.0021±0.0022 n-nonacosane (n-C29) 408 0.0003±0.0003 0.0004±0.0004 0.0004±0.0003 0.0002±0.0001 0.0036±0.0014 0.0072±0.0024 0.0054±0.0027 0.0029±0.0025 n-triacontane (n-C30) 422 0.0002±0.0003 0.0002±0.0003 0.0002±0.0002 0.0001±0.0001 0.0022±0.0019 0.0033±0.0028 0.0028±0.0023 0.0026±0.0029

n-hentriacotane (n-C31) 436 0.0001±0.0002 0.0002±0.0002 0.0001±0.0002 0.0001±0.0001 0.0007±0.0010 0.0020±0.0023 0.0013±0.0018 0.0016±0.0023

Page 129: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-27

Table 5-7a continued.

Compound MW Stack A Profile (%) Normalized to PM2.5 Stack A Profile(%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

n-dotriacontane (n-C32) 450 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0012 0.0004±0.0018 0.0002±0.0011 0.0008±0.0027

n-tritriactotane (n-C33) 464 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0001±0.0001 0.0000±0.0013 0.0003±0.0019 0.0002±0.0012 0.0020±0.0017 n-tetratriactoane (n-C34) 478 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0011 0.0000±0.0017 0.0000±0.0010 0.0006±0.0020

n-pentatriacontane (n-C35) 492 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0001±0.0001 0.0000±0.0014 0.0000±0.0022 0.0000±0.0013 0.0012±0.0021 n-hexatriacontane (n-C36) 506 0.0000±0.0002 0.0000±0.0002 0.0000±0.0002 0.0000±0.0001 0.0000±0.0041 0.0000±0.0062 0.0000±0.0037 0.0005±0.0026

n-heptatriacontane (n-C37) 521 0.0000±0.0014 0.0000±0.0014 0.0000±0.0010 0.0001±0.0001 0.0000±0.0254 0.0000±0.0380 0.0000±0.0228 0.0008±0.0026

n-octatriacontane (n-C38) 535 0.0000±0.0021 0.0000±0.0021 0.0000±0.0015 0.0005±0.0004 0.0000±0.0387 0.0000±0.0579 0.0000±0.0348 0.0087±0.0095

n-nonatriacontane (n-C39) 549 0.0000±0.0018 0.0000±0.0018 0.0000±0.0013 0.0008±0.0006 0.0000±0.0336 0.0000±0.0502 0.0000±0.0302 0.0135±0.0126

n-tetracontane (n-C40) 563 0.0000±0.0019 0.0000±0.0019 0.0000±0.0013 0.0002±0.0004 0.0000±0.0350 0.0000±0.0523 0.0000±0.0315 0.0015±0.0038

iso/anteiso-alkane iso-nonacosane (iso-C29) 408 0.0001±0.0003 0.0002±0.0004 0.0002±0.0004 0.0000±0.0002 0.0006±0.0015 0.0017±0.0042 0.0012±0.0031 0.0007±0.0050

anteiso-nonacosane (anteiso-C29) 408 0.0001±0.0003 0.0002±0.0004 0.0002±0.0004 0.0000±0.0002 0.0006±0.0015 0.0017±0.0042 0.0012±0.0031 0.0007±0.0050 iso-triacontane (iso-C30) 422 0.0001±0.0003 0.0001±0.0003 0.0001±0.0003 0.0000±0.0001 0.0005±0.0012 0.0011±0.0027 0.0008±0.0020 0.0005±0.0034

anteiso-triacontane (anteiso-C30) 422 0.0001±0.0003 0.0001±0.0003 0.0001±0.0003 0.0000±0.0001 0.0005±0.0012 0.0011±0.0027 0.0008±0.0020 0.0004±0.0034 iso-hentriacotane (iso-C31) 436 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0003 0.0000±0.0009 0.0000±0.0014 0.0000±0.0008 0.0004±0.0062

anteiso-hentriacotane (anteiso-C31) 436 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0003 0.0000±0.0009 0.0000±0.0014 0.0000±0.0008 0.0003±0.0062 iso-dotriacontane (iso-C32) 450 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0001±0.0003 0.0000±0.0012 0.0000±0.0018 0.0000±0.0011 0.0012±0.0059 anteiso-dotriacontane (anteiso-C32) 450 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0003 0.0000±0.0012 0.0000±0.0018 0.0000±0.0011 0.0005±0.0059

iso-tritriactotane (iso-C33) 464 0.0001±0.0001 0.0000±0.0001 0.0001±0.0001 0.0000±0.0002 0.0003±0.0013 0.0004±0.0019 0.0003±0.0012 0.0002±0.0047 anteiso-tritriactotane (anteiso-C33) 464 0.0001±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0002 0.0003±0.0013 0.0004±0.0019 0.0003±0.0012 0.0003±0.0047

hopane 22,29,30-trisnorneophopane (Ts) 370 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0001±0.0001 0.0003±0.0003 0.0003±0.0005 0.0003±0.0004 0.0021±0.0026 22,29,30-trisnorphopane (Tm) 370 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0001±0.0001 0.0004±0.0002 0.0004±0.0003 0.0004±0.0003 0.0015±0.0026

αβ-norhopane (C29αβ-hopane) 398 0.0001±0.0000 0.0000±0.0000 0.0001±0.0000 0.0002±0.0002 0.0008±0.0002 0.0008±0.0003 0.0008±0.0002 0.0031±0.0027 22,29,30-norhopane (29Ts) 398 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0003±0.0001 0.0003±0.0001 0.0003±0.0001 0.0012±0.0027

αα- + βα-norhopane (C29αα- + βα -hopane) 398 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0005±0.0005 0.0002±0.0001 0.0002±0.0002 0.0002±0.0001 0.0084±0.0062 αβ-hopane (C30αβ -hopane) 412 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0006±0.0001 0.0007±0.0003 0.0007±0.0002 0.0021±0.0025

αα-hopane (30αα-hopane) 412 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0000 0.0008±0.0030 βα-hopane (C30βα -hopane) 412 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0001±0.0001 0.0000±0.0001 0.0001±0.0001 0.0007±0.0030 αβS-homohopane (C31αβS-hopane) 426 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0002±0.0001 0.0002±0.0002 0.0002±0.0001 0.0024±0.0028

αβR-homohopane (C31αβR-hopane) 426 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0002±0.0001 0.0002±0.0002 0.0002±0.0001 0.0014±0.0032

Page 130: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-28

Table 5-7a continued.

Compound MW Stack A Profile (%) Normalized to PM2.5 Stack A Profile(%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

αβS-bishomohopane (C32αβS-hopane) 440 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0005±0.0007

αβR-bishomohopane (C32αβR-hopane) 440 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0006±0.0009 22S-trishomohopane (C33) 454 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0003±0.0007

22R-trishomohopane (C33) 454 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0003±0.0009 22S-tretrahomohopane (C34) 468 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0003±0.0007 22R-tetrashomohopane (C34) 468 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0003±0.0009

22S-pentashomohopane(C35) 482 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0003±0.0007 22R-pentashomohopane(C35) 482 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0000 0.0003±0.0009

sterane ααα 20S-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0003±0.0003 0.0003±0.0002 0.0003±0.0002 0.0003±0.0018 αββ 20R-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0001±0.0001 0.0001±0.0001 0.0001±0.0001 0.0010±0.0010

αββ 20s-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0002±0.0001 0.0002±0.0001 0.0002±0.0001 0.0008±0.0009 ααα 20R-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0003±0.0001 0.0004±0.0003 0.0003±0.0002 0.0002±0.0009

ααα 20S 24S-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0005±0.0002 0.0003±0.0001 0.0004±0.0002 0.0006±0.0010 αββ 20R 24S-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0001±0.0001 0.0001±0.0001 0.0002±0.0010

αββ 20S 24S-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0001±0.0002 0.0001±0.0002 0.0004±0.0010 ααα 20R 24R-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0001±0.0000 0.0001±0.0001 0.0001±0.0001 0.0018±0.0037 ααα 20S 24R/S-Ethylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0003±0.0008 0.0001±0.0000 0.0001±0.0001 0.0001±0.0000 0.0086±0.0210

αββ 20R 24R-Ethylcholestane 400 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0001±0.0001 0.0001±0.0001 0.0001±0.0008 αββ 20S 24R-Ethylcholestane 400 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0002±0.0001 0.0002±0.0002 0.0002±0.0002 0.0007±0.0008

ααα 20R 24R-Ethylcholestane 400 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0002±0.0001 0.0002±0.0002 0.0002±0.0002 0.0000±0.0021

methyl-alkane 2-methylnonadecane 282 0.0007±0.0018 0.0000±0.0000 0.0004±0.0013 0.0007±0.0006 0.0033±0.0082 0.0001±0.0003 0.0017±0.0058 0.0116±0.0087

3-methylnonadecane 282 0.0007±0.0016 0.0003±0.0008 0.0005±0.0012 0.0004±0.0004 0.0030±0.0071 0.0102±0.0241 0.0066±0.0173 0.0078±0.0069

branched-alkane

pristane 268 0.0001±0.0001 0.0001±0.0001 0.0001±0.0001 0.0005±0.0002 0.0006±0.0012 0.0029±0.0019 0.0017±0.0019 0.0112±0.0086 phytane 282 0.0000±0.0000 0.0001±0.0000 0.0000±0.0000 0.0006±0.0004 0.0002±0.0009 0.0015±0.0010 0.0008±0.0009 0.0139±0.0109

squalane 422 0.0001±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0002 0.0004±0.0005 0.0002±0.0002 0.0003±0.0004 0.0007±0.0045

cycloalkane octylcyclohexane 196 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0003 0.0000±0.0003 0.0000±0.0004 0.0000±0.0003 0.0000±0.0076

decylcyclohexane 224 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0003 0.0000±0.0003 0.0000±0.0005 0.0000±0.0003 0.0002±0.0065

Page 131: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-29

Table 5-7a continued.

Compound MW Stack A Profile (%) Normalized to PM2.5 Stack A Profile(%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

tridecylcyclohexane 266 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0002 0.0002±0.0004 0.0000±0.0005 0.0001±0.0003 0.0009±0.0049

n-heptadecylcyclohexane 322 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0002 0.0004±0.0002 0.0006±0.0002 0.0005±0.0002 0.0016±0.0039 nonadecylcyclohexane 350 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0002±0.0002 0.0001±0.0002 0.0001±0.0002 0.0008±0.0036

alkene 1-octadecene 252 0.0016±0.0033 0.0004±0.0007 0.0010±0.0023 0.0015±0.0014 0.0114±0.0132 0.0053±0.0064 0.0084±0.0104 0.0347±0.0388

Sum of categories

PAHs 0.6859±0.7605 0.4117±0.4885 0.5488±0.6260 0.0027±0.0029 14.8038±16.1976 13.5534±18.4922 14.1786±16.5867 0.0482±0.0331 n-alkane 0.0059±0.0063 0.0066±0.0051 0.0063±0.0055 0.0194±0.0118 0.0746±0.0674 0.1142±0.1009 0.0944±0.0607 0.3430±0.1397

iso/anteiso-alkane 0.0006±0.0015 0.0007±0.0016 0.0006±0.0015 0.0003±0.0007 0.0028±0.0069 0.0064±0.0157 0.0046±0.0117 0.0052±0.0162 hopane 0.0003±0.0003 0.0002±0.0003 0.0002±0.0003 0.0016±0.0013 0.0031±0.0007 0.0033±0.0020 0.0032±0.0015 0.0267±0.0151 sterane 0.0002±0.0002 0.0001±0.0002 0.0002±0.0002 0.0007±0.0008 0.0022±0.0004 0.0021±0.0012 0.0022±0.0009 0.0146±0.0236

methyl-alkane 0.0014±0.0034 0.0004±0.0008 0.0009±0.0024 0.0011±0.0009 0.0064±0.0153 0.0103±0.0240 0.0083±0.0193 0.0194±0.0151 branched-alkane 0.0001±0.0002 0.0002±0.0001 0.0002±0.0002 0.0011±0.0004 0.0012±0.0015 0.0046±0.0027 0.0029±0.0027 0.0258±0.0173

cycloalkane 0.0001±0.0002 0.0000±0.0000 0.0001±0.0001 0.0002±0.0005 0.0007±0.0006 0.0007±0.0008 0.0007±0.0005 0.0034±0.0123 alkene 0.0016±0.0033 0.0004±0.0007 0.0010±0.0023 0.0015±0.0014 0.0114±0.0132 0.0053±0.0064 0.0084±0.0104 0.0347±0.0388

Sum of all non-polar species 0.6961±0.7550 0.4204±0.4842 0.5582±0.6216 0.0285±0.0156 14.9064±16.1806 13.7003±18.4607 14.3034±16.5623 0.5210±0.1763

Page 132: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-30

Table 5-7b. Stack B abundances (% of PM2.5 and OC mass) for non-polar PM2.5 organic compounds. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound MW

Stack B Profile (%) Normalized to PM2.5 Stack B Profile (%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs

acenaphthylene 152 0.0000±0.0002 0.0000±0.0001 0.0000±0.0001 0.0000±0.0009 0.0000±0.0506 0.0000±0.0177 0.0000±0.0240 0.0002±0.0230 acenaphthene 154 0.0000±0.0001 0.0000±0.0000 0.0000±0.0000 0.0000±0.0005 0.0000±0.0150 0.0000±0.0053 0.0000±0.0071 0.0000±0.0125 fluorene 166 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0004 0.0000±0.0043 0.0000±0.0015 0.0000±0.0020 0.0022±0.0087

phenanthrene 178 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0002 0.0000±0.0119 0.0000±0.0042 0.0000±0.0056 0.0014±0.0041 anthracene 178 0.0000±0.0002 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0417 0.0000±0.0146 0.0000±0.0197 0.0012±0.0017

fluoranthene 202 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0001 0.0000±0.0119 0.0000±0.0042 0.0000±0.0056 0.0016±0.0025 pyrene 202 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0002±0.0002 0.0000±0.0115 0.0000±0.0040 0.0000±0.0055 0.0039±0.0040

benzo[a]anthracene 228 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0003 0.0000±0.0057 0.0000±0.0020 0.0000±0.0027 0.0008±0.0075 chrysene 228 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0101 0.0000±0.0035 0.0000±0.0048 0.0010±0.0039 benzo[b]fluoranthene 252 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0003 0.0000±0.0062 0.0000±0.0020 0.0000±0.0029 0.0002±0.0081

benzo[j+k]fluoranthene 252 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0117 0.0000±0.0040 0.0000±0.0055 0.0002±0.0028 benzo[a]fluoranthene 252 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0060 0.0000±0.0020 0.0000±0.0028 0.0000±0.0040

benzo[e]pyrene 252 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0053 0.0000±0.0018 0.0000±0.0025 0.0001±0.0086 benzo[a]pyrene 252 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0113 0.0000±0.0039 0.0000±0.0053 0.0006±0.0089 perylene 252 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0004 0.0000±0.0234 0.0000±0.0082 0.0000±0.0111 0.0000±0.0095

indeno[1,2,3-cd]pyrene 276 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0041 0.0000±0.0014 0.0000±0.0020 0.0000±0.0041 dibenzo[a,h]anthracene 278 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0025 0.0000±0.0009 0.0000±0.0012 0.0000±0.0092

benzo[ghi]perylene 276 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0003 0.0000±0.0071 0.0000±0.0025 0.0000±0.0033 0.0000±0.0061 coronene 300 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0003 0.0000±0.0041 0.0000±0.0014 0.0000±0.0019 0.0000±0.0072

dibenzo[a,e]pyrene 302 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0012 0.0000±0.0004 0.0000±0.0005 0.0000±0.0028 9-fluorenone 180 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0002±0.0004 0.0000±0.0098 0.0000±0.0034 0.0000±0.0046 0.0060±0.0097

dibenzothiophene 184 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0005±0.0016 0.0000±0.0077 0.0000±0.0027 0.0000±0.0037 0.0119±0.0401

1 methyl phenanthrene 192 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0005±0.0006 0.0000±0.0068 0.0007±0.0023 0.0004±0.0032 0.0116±0.0157

2 methyl phenanthrene 192 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0082 0.0000±0.0029 0.0000±0.0039 0.0008±0.0015

3,6 dimethyl phenanthrene 206 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0047 0.0000±0.0015 0.0000±0.0022 0.0000±0.0086

Page 133: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-31

Table 5-7b continued.

Compound MW Stack B Profile (%) Normalized to PM2.5 Stack B Profile (%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

PAHs

methylfluoranthene 216 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0048 0.0000±0.0016 0.0000±0.0022 0.0000±0.0028 retene 219 0.0002±0.0001 0.0003±0.0002 0.0002±0.0002 0.0000±0.0005 0.0425±0.0471 0.0289±0.0197 0.0347±0.0333 0.0008±0.0119

benzo(ghi)fluoranthene 226 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0008 0.0000±0.0047 0.0000±0.0015 0.0000±0.0022 0.0006±0.0185

benzo(c)phenanthrene 228 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0005 0.0000±0.0045 0.0000±0.0015 0.0000±0.0021 0.0000±0.0122

benzo(b)naphtho[1,2-d]thiophene 234 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0011 0.0000±0.0045 0.0000±0.0015 0.0000±0.0021 0.0000±0.0264

cyclopenta[cd]pyrene 226 0.0000±0.0004 0.0000±0.0003 0.0000±0.0003 0.0000±0.0001 0.0000±0.1151 0.0000±0.0403 0.0000±0.0545 0.0000±0.0028 benz[a]anthracene-7,12-dione 258 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0048 0.0000±0.0016 0.0000±0.0023 0.0000±0.0100

methylchrysene 242 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0054 0.0000±0.0018 0.0000±0.0025 0.0000±0.0041

benzo(b)chrysene 278 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0007 0.0000±0.0042 0.0000±0.0015 0.0000±0.0020 0.0000±0.0175 picene 278 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0053 0.0000±0.0018 0.0000±0.0025 0.0000±0.0102

anthanthrene 276 0.0000±0.0001 0.0000±0.0000 0.0000±0.0000 0.0000±0.0007 0.0000±0.0135 0.0000±0.0045 0.0000±0.0063 0.0000±0.0172

Alkane/Alkene/Phthalate

n-alkane n-pentadecane (n-C15) 212 0.0000±0.0002 0.0000±0.0001 0.0000±0.0001 0.0002±0.0003 0.0000±0.0417 0.0000±0.0146 0.0000±0.0197 0.0053±0.0085

n-hexadecane (n-C16) 226 0.0000±0.0002 0.0000±0.0001 0.0000±0.0001 0.0017±0.0012 0.0000±0.0492 0.0000±0.0172 0.0000±0.0233 0.0354±0.0214 n-heptadecane (n-C17) 240 0.0000±0.0002 0.0000±0.0002 0.0000±0.0001 0.0011±0.0016 0.0000±0.0596 0.0061±0.0178 0.0035±0.0275 0.0267±0.0442 n-octadecane (n-C18) 254 0.0000±0.0002 0.0001±0.0001 0.0000±0.0001 0.0017±0.0019 0.0000±0.0494 0.0092±0.0149 0.0052±0.0227 0.0390±0.0530

n-nonadecane (n-C19) 268 0.0000±0.0002 0.0000±0.0002 0.0000±0.0001 0.0016±0.0010 0.0000±0.0635 0.0000±0.0223 0.0000±0.0300 0.0361±0.0256 n-icosane (n-C20) 282 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0003±0.0002 0.0000±0.0296 0.0012±0.0103 0.0007±0.0140 0.0076±0.0060

n-heneicosane (n-C21) 296 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0008±0.0007 0.0000±0.0189 0.0011±0.0066 0.0006±0.0089 0.0193±0.0198 n-docosane (n-C22) 310 0.0000±0.0001 0.0001±0.0001 0.0000±0.0001 0.0015±0.0013 0.0000±0.0216 0.0037±0.0073 0.0021±0.0101 0.0364±0.0373 n-tricosane (n-C23) 324 0.0000±0.0000 0.0001±0.0002 0.0001±0.0001 0.0024±0.0009 0.0000±0.0119 0.0101±0.0114 0.0057±0.0098 0.0517±0.0210

n-tetracosane (n-C24) 338 0.0000±0.0000 0.0001±0.0001 0.0000±0.0001 0.0057±0.0019 0.0026±0.0124 0.0042±0.0084 0.0035±0.0074 0.1186±0.0364 n-pentacosane (n-C25) 352 0.0000±0.0000 0.0002±0.0001 0.0001±0.0002 0.0032±0.0013 0.0000±0.0084 0.0256±0.0171 0.0147±0.0182 0.0668±0.0234

n-hexacosane (n-C26) 366 0.0000±0.0000 0.0003±0.0001 0.0002±0.0002 0.0025±0.0011 0.0000±0.0104 0.0302±0.0202 0.0172±0.0215 0.0528±0.0215 n-heptacosane (n-C27) 380 0.0000±0.0000 0.0002±0.0001 0.0001±0.0001 0.0020±0.0009 0.0000±0.0106 0.0183±0.0182 0.0105±0.0163 0.0431±0.0194

n-octacosane (n-C28) 394 0.0000±0.0000 0.0001±0.0001 0.0000±0.0001 0.0015±0.0005 0.0000±0.0121 0.0094±0.0148 0.0054±0.0119 0.0319±0.0119 n-nonacosane (n-C29) 408 0.0000±0.0000 0.0001±0.0001 0.0000±0.0001 0.0010±0.0004 0.0000±0.0125 0.0076±0.0149 0.0043±0.0116 0.0215±0.0085 n-triacontane (n-C30) 422 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0005±0.0004 0.0000±0.0168 0.0046±0.0109 0.0026±0.0083 0.0108±0.0095

n-hentriacotane (n-C31) 436 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0002±0.0003 0.0000±0.0213 0.0041±0.0116 0.0023±0.0100 0.0047±0.0077

Page 134: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-32

Table 5-7b continued.

Compound MW Stack B Profile (%) Normalized to PM2.5 Stack B Profile (%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

n-dotriacontane (n-C32) 450 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0001±0.0004 0.0000±0.0274 0.0000±0.0096 0.0000±0.0129 0.0014±0.0088

n-tritriactotane (n-C33) 464 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0001±0.0002 0.0000±0.0295 0.0000±0.0103 0.0000±0.0140 0.0011±0.0056 n-tetratriactoane (n-C34) 478 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0003 0.0000±0.0252 0.0000±0.0088 0.0000±0.0119 0.0007±0.0066

n-pentatriacontane (n-C35) 492 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0003 0.0000±0.0329 0.0000±0.0115 0.0000±0.0155 0.0006±0.0071 n-hexatriacontane (n-C36) 506 0.0000±0.0004 0.0000±0.0003 0.0000±0.0002 0.0000±0.0003 0.0000±0.0940 0.0000±0.0330 0.0000±0.0445 0.0002±0.0085

n-heptatriacontane (n-C37) 521 0.0000±0.0022 0.0000±0.0016 0.0000±0.0013 0.0000±0.0004 0.0000±0.5761 0.0000±0.2019 0.0000±0.2725 0.0004±0.0086

n-octatriacontane (n-C38) 535 0.0000±0.0033 0.0000±0.0024 0.0000±0.0020 0.0002±0.0005 0.0000±0.8788 0.0000±0.3081 0.0000±0.4157 0.0047±0.0124

n-nonatriacontane (n-C39) 549 0.0000±0.0029 0.0000±0.0021 0.0000±0.0017 0.0003±0.0007 0.0000±0.7618 0.0000±0.2671 0.0000±0.3604 0.0067±0.0178

n-tetracontane (n-C40) 563 0.0000±0.0030 0.0000±0.0022 0.0000±0.0018 0.0000±0.0003 0.0000±0.7939 0.0000±0.2783 0.0000±0.3756 0.0000±0.0083

iso/anteiso-alkane iso-nonacosane (iso-C29) 408 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0007 0.0000±0.0125 0.0000±0.0044 0.0000±0.0059 0.0009±0.0164

anteiso-nonacosane (anteiso-C29) 408 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0007 0.0000±0.0125 0.0000±0.0044 0.0000±0.0059 0.0010±0.0164 iso-triacontane (iso-C30) 422 0.0000±0.0001 0.0000±0.0000 0.0000±0.0000 0.0000±0.0005 0.0000±0.0168 0.0000±0.0059 0.0000±0.0079 0.0007±0.0111

anteiso-triacontane (anteiso-C30) 422 0.0000±0.0001 0.0000±0.0000 0.0000±0.0000 0.0001±0.0005 0.0000±0.0168 0.0000±0.0059 0.0000±0.0079 0.0012±0.0111 iso-hentriacotane (iso-C31) 436 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0008 0.0000±0.0214 0.0000±0.0075 0.0000±0.0101 0.0005±0.0206

anteiso-hentriacotane (anteiso-C31) 436 0.0000±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0008 0.0000±0.0214 0.0000±0.0075 0.0000±0.0101 0.0004±0.0206 iso-dotriacontane (iso-C32) 450 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0008 0.0000±0.0274 0.0000±0.0096 0.0000±0.0129 0.0005±0.0193 anteiso-dotriacontane (anteiso-C32) 450 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0008 0.0000±0.0274 0.0000±0.0096 0.0000±0.0129 0.0006±0.0193

iso-tritriactotane (iso-C33) 464 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0006 0.0000±0.0295 0.0000±0.0103 0.0000±0.0140 0.0002±0.0153 anteiso-tritriactotane (anteiso-C33) 464 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0006 0.0000±0.0295 0.0000±0.0103 0.0000±0.0140 0.0002±0.0153

hopane 22,29,30-trisnorneophopane (Ts) 370 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0003 0.0002±0.0009 0.0003±0.0008 0.0002±0.0006 0.0017±0.0085 22,29,30-trisnorphopane (Tm) 370 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0003 0.0000±0.0011 0.0004±0.0007 0.0002±0.0005 0.0016±0.0085

αβ-norhopane (C29αβ-hopane) 398 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0004 0.0000±0.0008 0.0003±0.0006 0.0002±0.0005 0.0028±0.0088 22,29,30-norhopane (29Ts) 398 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0004 0.0000±0.0008 0.0000±0.0002 0.0000±0.0004 0.0026±0.0088

αα- + βα-norhopane (C29αα- + βα -hopane) 398 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0005 0.0000±0.0014 0.0000±0.0003 0.0000±0.0006 0.0019±0.0127 αβ-hopane (C30αβ -hopane) 412 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0003 0.0000±0.0014 0.0002±0.0004 0.0001±0.0007 0.0019±0.0084

αα-hopane (30αα-hopane) 412 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0010 0.0000±0.0003 0.0000±0.0004 0.0001±0.0099 βα-hopane (C30βα -hopane) 412 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0016 0.0000±0.0002 0.0000±0.0007 0.0003±0.0099 αβS-homohopane (C31αβS-hopane) 426 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0014 0.0001±0.0003 0.0000±0.0006 0.0006±0.0091

αβR-homohopane (C31αβR-hopane) 426 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0004 0.0000±0.0012 0.0001±0.0002 0.0000±0.0005 0.0006±0.0106

Page 135: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-33

Table 5-7b continued.

Compound MW Stack B Profile (%) Normalized to PM2.5 Stack B Profile (%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

αβS-bishomohopane (C32αβS-hopane) 440 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0034 0.0000±0.0006 0.0000±0.0015 0.0000±0.0024

αβR-bishomohopane (C32αβR-hopane) 440 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0030 0.0000±0.0004 0.0000±0.0013 0.0000±0.0028 22S-trishomohopane (C33) 454 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0034 0.0000±0.0006 0.0000±0.0015 0.0000±0.0024

22R-trishomohopane (C33) 454 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0030 0.0000±0.0003 0.0000±0.0013 0.0000±0.0028 22S-tretrahomohopane (C34) 468 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0034 0.0000±0.0006 0.0000±0.0015 0.0000±0.0024 22R-tetrashomohopane (C34) 468 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0030 0.0000±0.0003 0.0000±0.0013 0.0000±0.0028

22S-pentashomohopane(C35) 482 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0034 0.0000±0.0006 0.0000±0.0015 0.0000±0.0024 22R-pentashomohopane(C35) 482 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0030 0.0000±0.0003 0.0000±0.0013 0.0000±0.0028

sterane ααα 20S-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0007±0.0016 0.0004±0.0007 0.0005±0.0011 0.0007±0.0058 αββ 20R-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0004 0.0001±0.0001 0.0000±0.0002 0.0004±0.0025

αββ 20s-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0007 0.0002±0.0004 0.0001±0.0004 0.0003±0.0029 ααα 20R-Cholestane 372 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0011±0.0009 0.0011±0.0014 0.0011±0.0012 0.0005±0.0029

ααα 20S 24S-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0008±0.0010 0.0007±0.0005 0.0008±0.0007 0.0005±0.0033 αββ 20R 24S-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0005 0.0002±0.0003 0.0001±0.0003 0.0002±0.0033

αββ 20S 24S-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0005±0.0007 0.0005±0.0007 0.0005±0.0007 0.0003±0.0033 ααα 20R 24R-Methylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0002 0.0000±0.0005 0.0001±0.0003 0.0001±0.0002 0.0002±0.0039 ααα 20S 24R/S-Ethylcholestane 386 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0001±0.0005 0.0003±0.0004 0.0002±0.0003 0.0008±0.0032

αββ 20R 24R-Ethylcholestane 400 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0006±0.0009 0.0001±0.0002 0.0003±0.0006 0.0000±0.0026 αββ 20S 24R-Ethylcholestane 400 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001 0.0000±0.0003 0.0002±0.0002 0.0001±0.0002 0.0001±0.0026

ααα 20R 24R-Ethylcholestane 400 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0003 0.0000±0.0006 0.0001±0.0002 0.0000±0.0003 0.0000±0.0069

methyl-alkane 2-methylnonadecane 282 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0007±0.0006 0.0061±0.0083 0.0011±0.0023 0.0033±0.0060 0.0150±0.0139

3-methylnonadecane 282 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0008±0.0004 0.0063±0.0102 0.0007±0.0021 0.0031±0.0071 0.0169±0.0093

branched-alkane

pristane 268 0.0003±0.0003 0.0001±0.0002 0.0002±0.0002 0.0007±0.0005 0.0629±0.0949 0.0104±0.0148 0.0329±0.0657 0.0152±0.0093 phytane 282 0.0004±0.0003 0.0001±0.0001 0.0002±0.0003 0.0006±0.0004 0.1029±0.0937 0.0121±0.0180 0.0510±0.0757 0.0138±0.0104

squalane 422 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0006 0.0000±0.0019 0.0017±0.0039 0.0010±0.0030 0.0009±0.0149

cycloalkane octylcyclohexane 196 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0010 0.0000±0.0067 0.0000±0.0024 0.0000±0.0032 0.0000±0.0250

decylcyclohexane 224 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0000±0.0009 0.0116±0.0180 0.0000±0.0024 0.0050±0.0127 0.0004±0.0213

Page 136: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-34

Table 5-7b continued.

Compound MW Stack B Profile (%) Normalized to PM2.5 Stack B Profile (%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

tridecylcyclohexane 266 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0007 0.0000±0.0074 0.0000±0.0026 0.0000±0.0035 0.0016±0.0161

n-heptadecylcyclohexane 322 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0005 0.0000±0.0017 0.0009±0.0011 0.0005±0.0009 0.0028±0.0127 nonadecylcyclohexane 350 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0001±0.0005 0.0000±0.0031 0.0003±0.0011 0.0002±0.0015 0.0015±0.0117

alkene 1-octadecene 252 0.0000±0.0001 0.0008±0.0005 0.0005±0.0005 0.0035±0.0018 0.0185±0.0452 0.0863±0.0600 0.0572±0.0628 0.0775±0.0485

Sum of categories

PAHs 0.0002±0.0005 0.0003±0.0004 0.0003±0.0003 0.0019±0.0030 0.0425±0.1421 0.0296±0.0495 0.0351±0.0671 0.0451±0.0734 n-alkane 0.0000±0.0058 0.0013±0.0042 0.0007±0.0035 0.0284±0.0070 0.0026±1.5312 0.1353±0.5365 0.0784±0.7243 0.6236±0.2158

iso/anteiso-alkane 0.0000±0.0003 0.0000±0.0002 0.0000±0.0002 0.0003±0.0022 0.0000±0.0709 0.0000±0.0248 0.0000±0.0335 0.0062±0.0533 hopane 0.0000±0.0001 0.0000±0.0000 0.0000±0.0000 0.0007±0.0013 0.0002±0.0098 0.0014±0.0021 0.0009±0.0043 0.0142±0.0313 sterane 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0002±0.0005 0.0038±0.0030 0.0041±0.0037 0.0039±0.0033 0.0039±0.0132

methyl-alkane 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0015±0.0007 0.0125±0.0185 0.0019±0.0035 0.0064±0.0129 0.0320±0.0167 branched-alkane 0.0007±0.0006 0.0002±0.0003 0.0004±0.0005 0.0014±0.0009 0.1658±0.1830 0.0242±0.0250 0.0849±0.1361 0.0299±0.0203

cycloalkane 0.0000±0.0001 0.0000±0.0000 0.0000±0.0001 0.0003±0.0017 0.0116±0.0180 0.0012±0.0044 0.0056±0.0124 0.0063±0.0405 alkene 0.0000±0.0001 0.0008±0.0005 0.0005±0.0005 0.0035±0.0018 0.0185±0.0452 0.0863±0.0600 0.0572±0.0628 0.0775±0.0485

Sum of all non-polar species 0.0010±0.0058 0.0027±0.0043 0.0020±0.0035 0.0381±0.0088 0.2574±1.5404 0.2840±0.5396 0.2726±0.7286 0.8387±0.2933

Page 137: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-35

Figure 5-11a. Stack A source profile of non-polar organic compounds as a percentage of organic carbon (OC). Only species with abundance >0.0003% of PM2.5 are plotted.

0.00

0.05

0.10

0.15

0.20

benz

o[a]

anth

race

nech

ryse

nebe

nzo[

b]flu

oran

then

ebe

nzo[

j+k]

fluor

anth

ene

pery

lene

9-flu

oren

one

dibe

nzot

hiop

hene

1 m

ethy

l phe

nant

hren

e3,

6 di

met

hyl p

hena

nthr

ene

met

hylfl

uora

nthe

nere

tene

benz

o(gh

i)flu

oran

then

ebe

nzo(

c)ph

enan

thre

necy

clop

enta

[cd]

pyre

nebe

nz[a

]ant

hrac

ene-

7,12

-dio

nem

ethy

lchr

ysen

en-

hexa

deca

ne (n

-C16

)n-

hept

adec

ane

(n-C

17)

n-oc

tade

cane

(n-C

18)

n-no

nade

cane

(n-C

19)

n-ic

osan

e (n

-C20

)n-

hene

icos

ane

(n-C

21)

n-do

cosa

ne (n

-C22

)n-

tric

osan

e (n

-C23

)n-

tetr

acos

ane

(n-C

24)

n-pe

ntac

osan

e (n

-C25

)n-

hexa

cosa

ne (n

-C26

)n-

hept

acos

ane

(n-C

27)

n-oc

taco

sane

(n-C

28)

n-no

naco

sane

(n-C

29)

n-tr

iaco

ntan

e (n

-C30

)n-

octa

tria

cont

ane

(n-C

38)

n-no

natr

iaco

ntan

e (n

-C39

)αα

-+ β

α-no

rhop

ane

(C29

αα-+

…αα

α 20

S 24

R/S

-Eth

ylch

oles

tane

2-

met

hyln

onad

ecan

e3-

met

hyln

onad

ecan

epr

ista

neph

ytan

e1-

octa

dece

ne

Mas

s Pe

rcen

tage

of O

rgan

ic C

arbo

n (%

)

Non-polar Organic Compounds

Stack A WinterStack A Summer

PAH n-alkane others13.7

Page 138: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-36

Figure 5-11b. Stack B source profile of non-polar organic compounds as a percentage of organic carbon (OC). Only species with abundance >0.0003% of PM2.5 are plotted.

0.00

0.05

0.10

0.15

0.20

benz

o[a]

anth

race

nech

ryse

nebe

nzo[

b]flu

oran

then

ebe

nzo[

j+k]

fluor

anth

ene

pery

lene

9-flu

oren

one

dibe

nzot

hiop

hene

1 m

ethy

l phe

nant

hren

e3,

6 di

met

hyl p

hena

nthr

ene

met

hylfl

uora

nthe

nere

tene

benz

o(gh

i)flu

oran

then

ebe

nzo(

c)ph

enan

thre

necy

clop

enta

[cd]

pyre

nebe

nz[a

]ant

hrac

ene-

7,12

-dio

nem

ethy

lchr

ysen

en-

hexa

deca

ne (n

-C16

)n-

hept

adec

ane

(n-C

17)

n-oc

tade

cane

(n-C

18)

n-no

nade

cane

(n-C

19)

n-ic

osan

e (n

-C20

)n-

hene

icos

ane

(n-C

21)

n-do

cosa

ne (n

-C22

)n-

tric

osan

e (n

-C23

)n-

tetr

acos

ane

(n-C

24)

n-pe

ntac

osan

e (n

-C25

)n-

hexa

cosa

ne (n

-C26

)n-

hept

acos

ane

(n-C

27)

n-oc

taco

sane

(n-C

28)

n-no

naco

sane

(n-C

29)

n-tr

iaco

ntan

e (n

-C30

)n-

octa

tria

cont

ane

(n-C

38)

n-no

natr

iaco

ntan

e (n

-C39

)αα

- + β

α-no

rhop

ane

(C29

αα-+

βα

-…αα

α 20

S 24

R/S

-Eth

ylch

oles

tane

2-

met

hyln

onad

ecan

e3-

met

hyln

onad

ecan

epr

ista

neph

ytan

e1-

octa

dece

ne

Mas

s Pe

rcen

tage

of O

rgan

ic C

arbo

n (%

)

Non-polar Organic Compounds

Stack B WinterStack B Summer

PAH n-alkane others

Page 139: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-37

Table 5-8a. Stack A abundances (% of PM2.5 and OC mass) for PM2.5 carbohydrate, organic acids and water-soluble organic carbon (WSOC). (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound MW Stack A Profile (%) Normalized to PM2.5 Stack A Profile(%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Carbohydrates

Glycerol (C3H8O3 ) 92 0.0753±0.0718 0.0369±0.0107 0.0561±0.0529 0.0040±0.0023 1.7091±1.6395 1.0020±0.6422 1.3555±1.2432 0.0690±0.0301

Inositol (C6H12O6) 180 0.0000±0.0003 0.0000±0.0003 0.0000±0.0002 0.0000±0.0011 0.0000±0.0060 0.0000±0.0077 0.0000±0.0049 0.0000±0.0259

Erythritol (C4H10O4) 122 0.0000±0.0005 0.0000±0.0005 0.0000±0.0003 0.0000±0.0017 0.0000±0.0090 0.0000±0.0116 0.0000±0.0073 0.0000±0.0389

Xylitol (C5H12O5 ) 152 0.0000±0.0003 0.0000±0.0003 0.0000±0.0002 0.0253±0.0162 0.0000±0.0060 0.0000±0.0077 0.0000±0.0049 0.3647±0.2313

Levoglucosan (C6H10O5 ) 162 0.0000±0.0006 0.0000±0.0006 0.0000±0.0004 0.0132±0.0132 0.0000±0.0120 0.0000±0.0154 0.0000±0.0098 0.1317±0.1317

Arabitol (C5H12O5) 152 0.0000±0.0005 0.0000±0.0005 0.0000±0.0003 0.0000±0.0028 0.0000±0.0090 0.0000±0.0116 0.0000±0.0073 0.0000±0.0648

Sorbitol (C6H14O6 ) 182 0.0012±0.0014 0.0008±0.0012 0.0010±0.0012 0.0000±0.0028 0.0256±0.0286 0.0186±0.0307 0.0221±0.0286 0.0000±0.0648

Mannosan (C6H10O5 ) 162 0.0000±0.0005 0.0000±0.0005 0.0000±0.0003 0.0000±0.0017 0.0000±0.0090 0.0000±0.0116 0.0000±0.0073 0.0000±0.0389

Trehalose (C12H22O11 ) 342 0.0000±0.0006 0.0000±0.0006 0.0000±0.0004 0.0000±0.0023 0.0000±0.0120 0.0000±0.0154 0.0000±0.0098 0.0000±0.0518

Mannitol (C6H14O6 ) 182 0.0000±0.0005 0.0000±0.0005 0.0000±0.0003 0.0000±0.0017 0.0000±0.0090 0.0000±0.0116 0.0000±0.0073 0.0000±0.0389

Arabinose (C5H10O5) 150 0.0000±0.0005 0.0000±0.0005 0.0000±0.0003 0.0000±0.0017 0.0000±0.0090 0.0000±0.0116 0.0000±0.0073 0.0000±0.0389

Glucose (C6H12O6 )/Xylose (C5H10O5) 180 0.0092±0.0185 0.0023±0.0029 0.0057±0.0131 0.0075±0.0075 0.0678±0.1050 0.0424±0.0473 0.0551±0.0788 0.2042±0.2042

Galactose (C6H12O6 ) 180 0.0000±0.0006 0.0000±0.0006 0.0000±0.0004 0.0000±0.0023 0.0000±0.0120 0.0000±0.0154 0.0000±0.0098 0.0000±0.0518

Maltitol (C12H24O11)/Fructose (C6H12O6) 344 0.0000±0.0008 0.0000±0.0008 0.0000±0.0006 0.0000±0.0028 0.0000±0.0150 0.0000±0.0193 0.0000±0.0122 0.0000±0.0648

Organic Acids

Lactic acid (C3H6O3) 90 0.0280±0.0121 0.0427±0.0315 0.0353±0.0240 0.0465±0.0281 0.4932±0.1541 0.8190±0.1974 0.6561±0.2397 0.7849±0.3401

Acetic acid (C2H4O2 ) 60 0.0183±0.0128 0.0215±0.0189 0.0199±0.0155 0.0049±0.0049 0.2815±0.1519 0.4555±0.4262 0.3685±0.3183 0.0860±0.0860

Formic acid (CH2O ) 46 0.0085±0.0047 0.0068±0.0073 0.0077±0.0059 0.0000±0.0034 0.1879±0.1171 0.2271±0.2559 0.2075±0.1908 0.0000±0.0778

Methanesulfonic acid (CH4SO3 ) 96 0.0000±0.0006 0.0000±0.0006 0.0000±0.0004 0.2023±0.0367 0.0000±0.0120 0.0000±0.0154 0.0000±0.0098 4.3300±0.8239

Glutaric acid (C5H8O4) 132 0.0320±0.0219 0.0286±0.0136 0.0303±0.0175 0.0000±0.0028 0.5029±0.2103 0.5973±0.1865 0.5501±0.1958 0.0000±0.0648

Succinic acid (C4H6O4 ) 118 0.1155±0.0420 0.0854±0.0305 0.1005±0.0384 0.0000±0.0022 2.1342±0.9414 1.8882±0.7014 2.0112±0.8018 0.0000±0.0519

Malonic acid (C3H4O4) 104 0.0000±0.0010 0.0000±0.0009 0.0000±0.0007 0.0000±0.0034 0.0000±0.0180 0.0000±0.0231 0.0000±0.0146 0.0000±0.0778

Maleic acid (C4H4O4 ) 116 0.0000±0.0008 0.0000±0.0008 0.0000±0.0006 0.0000±0.0028 0.0000±0.0150 0.0000±0.0193 0.0000±0.0122 0.0000±0.0648

Oxalic acid (C2H2O4) 90 0.0046±0.0012 0.0059±0.0011 0.0052±0.0012 0.0132±0.0037 0.0875±0.0342 0.1459±0.0715 0.1167±0.0615 0.2678±0.0716

WSOC 1.7903±1.0994 1.4315±0.6206 1.6109±0.8715 0.0212±0.2433 28.9706±5.9270 30.5678±6.7427 29.7692±6.1097 0.2552±5.6108

Page 140: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-38

Table 5-8b. Stack B abundances (% of PM2.5 and OC mass) for PM2.5 carbohydrate, organic acids and water-soluble organic carbon (WSOC). (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound MW

Stack B Profile (%) Normalized to PM2.5 Stack B Profile (%) Normalized to OC

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Winter Cold (2011)

Winter Warm (2011)

Winter Average (2011)

Summer Average (2008)

Carbohydrates

Glycerol (C3H8O3 ) 92 0.0098±0.0023 0.0312±0.0145 0.0221±0.0153 0.0023±0.0037 3.0609±2.1283 4.1927±3.4237 3.7077±2.8968 0.0427±0.0861

Inositol (C6H12O6) 180 0.0000±0.0006 0.0000±0.0004 0.0000±0.0003 0.0000±0.0035 0.0000±0.1478 0.0000±0.0477 0.0000±0.0690 0.0000±0.0855

Erythritol (C4H10O4) 122 0.0000±0.0009 0.0000±0.0006 0.0000±0.0005 0.0000±0.0053 0.0000±0.2217 0.0000±0.0715 0.0000±0.1034 0.0000±0.1282

Xylitol (C5H12O5 ) 152 0.0000±0.0006 0.0000±0.0004 0.0000±0.0003 0.0000±0.0035 0.0000±0.1478 0.0000±0.0477 0.0000±0.0690 0.0000±0.0855

Levoglucosan (C6H10O5) 162 0.0000±0.0012 0.0000±0.0008 0.0000±0.0007 0.0000±0.0070 0.0000±0.2956 0.0000±0.0954 0.0000±0.1379 0.0000±0.1709

Arabitol (C5H12O5) 152 0.0000±0.0009 0.0000±0.0006 0.0000±0.0005 0.0000±0.0070 0.0000±0.2217 0.0000±0.0715 0.0000±0.1034 0.0000±0.1709

Sorbitol (C6H14O6 ) 182 0.0000±0.0015 0.0000±0.0009 0.0000±0.0008 0.0000±0.0088 0.0000±0.3695 0.0000±0.1192 0.0000±0.1724 0.0000±0.2137

Mannosan (C6H10O5 ) 162 0.0000±0.0009 0.0000±0.0006 0.0000±0.0005 0.0000±0.0053 0.0000±0.2217 0.0000±0.0715 0.0000±0.1034 0.0000±0.1282

Trehalose (C12H22O11 ) 342 0.0000±0.0012 0.0000±0.0008 0.0000±0.0007 0.0000±0.0070 0.0000±0.2956 0.0000±0.0954 0.0000±0.1379 0.0000±0.1709

Mannitol (C6H14O6 ) 182 0.0000±0.0009 0.0000±0.0006 0.0000±0.0005 0.0000±0.0053 0.0000±0.2217 0.0000±0.0715 0.0000±0.1034 0.0000±0.1282

Arabinose (C5H10O5) 150 0.0000±0.0009 0.0000±0.0006 0.0000±0.0005 0.0000±0.0053 0.0000±0.2217 0.0000±0.0715 0.0000±0.1034 0.0000±0.1282

Glucose (C6H12O6 )/Xylose (C5H10O5) 180 0.0000±0.0006 0.0000±0.0004 0.0000±0.0003 0.0000±0.0035 0.0000±0.1478 0.0000±0.0477 0.0000±0.0690 0.0000±0.0855

Galactose (C6H12O6 ) 180 0.0000±0.0012 0.0000±0.0008 0.0000±0.0007 0.0000±0.0070 0.0000±0.2956 0.0000±0.0954 0.0000±0.1379 0.0000±0.1709 Maltitol (C12H24O11)/Fructose (C6H12O6) 344 0.0000±0.0015 0.0000±0.0009 0.0000±0.0008 0.0000±0.0088 0.0000±0.3695 0.0000±0.1192 0.0000±0.1724 0.0000±0.2137

Organic Acids

Lactic acid (C3H6O3) 90 0.0422±0.0160 0.0385±0.0116 0.0401±0.0132 0.0248±0.0107 10.8772±6.1883 4.3692±3.1774 7.1583±5.5978 0.5312±0.1995

Acetic acid (C2H4O2 ) 60 0.0512±0.0290 0.0290±0.0163 0.0385±0.0244 0.0627±0.0323 10.9134±2.7711 3.9125±4.7239 6.9129±5.2817 1.3841±0.4544

Formic acid (CH2O ) 46 0.0000±0.0018 0.0131±0.0125 0.0075±0.0114 0.0000±0.0105 0.0000±0.4435 1.5344±2.5228 0.8768±2.0120 0.0000±0.2564

Methanesulfonic acid (CH4SO3 ) 96 0.0000±0.0012 0.0000±0.0008 0.0000±0.0007 0.3403±0.2129 0.0000±0.2956 0.0000±0.0954 0.0000±0.1379 7.9184±3.6892

Glutaric acid (C5H8O4) 132 0.0181±0.0141 0.0070±0.0106 0.0118±0.0130 0.0000±0.0088 6.7148±6.0822 1.2392±2.1436 3.5859±4.9608 0.0000±0.2137

Succinic acid (C4H6O4 ) 118 0.0000±0.0012 0.0000±0.0008 0.0000±0.0007 0.0000±0.0070 0.0000±0.2956 0.0000±0.0954 0.0000±0.1379 0.0000±0.1709

Malonic acid (C3H4O4) 104 0.0000±0.0018 0.0000±0.0011 0.0000±0.0010 0.0000±0.0105 0.0000±0.4435 0.0000±0.1431 0.0000±0.2069 0.0000±0.2564

Maleic acid (C4H4O4 ) 116 0.0000±0.0015 0.0000±0.0009 0.0000±0.0008 0.0000±0.0088 0.0000±0.3695 0.0000±0.1192 0.0000±0.1724 0.0000±0.2137

Oxalic acid (C2H2O4) 90 0.0009±0.0013 0.0032±0.0020 0.0023±0.0020 0.0243±0.0107 0.1786±0.3110 0.3038±0.3021 0.2502±0.2453 0.5000±0.1964

WSOC 0.3489±0.1440 0.3773±0.1131 0.3651±0.1228 0.8224±0.8384 82.7891±29.107 43.3347±33.831 60.2437±36.779 16.8181±19.2403

Page 141: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-39

Table 5-9a. Stack A abundances (% of PM2.5 and OC mass) for nitro-PAHs. Data are expressed as a percentage of the Teflon® filter PM2.5 mass concentration and organic carbon (OC) concentration. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound MW

Stack A Profile (%) Normalized to PM2.5 Stack A Profile (%) Normalized to OC Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011)

1-nitronaphthalene 173 4.23E-09 ± 8.22E-08

1.82E-09 ± 7.89E-08

3.02E-09 ± 5.70E-08

1.89E-08 ± 1.55E-06

5.41E-08 ± 2.10E-06

3.65E-08 ± 1.31E-06

1-methyl-5-nitronaphthalene 187 0.00E+00 ±

8.22E-08 1.14E-08 ± 7.89E-08

5.68E-09 ± 5.70E-08

0.00E+00 ± 1.55E-06

3.38E-07 ± 2.10E-06

1.69E-07 ± 1.31E-06

2-nitronaphthalene 173 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

2-nitrobiphenyl 199 0.00E+00 ± 8.22E-08

1.27E-08 ± 7.89E-08

6.36E-09 ± 5.70E-08

0.00E+00 ± 1.55E-06

3.79E-07 ± 2.10E-06

1.89E-07 ± 1.31E-06

2-methyl-4-nitronaphthalene 187 0.00E+00 ±

8.22E-08 1.54E-08 ± 7.89E-08

7.72E-09 ± 5.70E-08

0.00E+00 ± 1.55E-06

4.60E-07 ± 2.10E-06

2.30E-07 ± 1.31E-06

1-methyl-4-nitronaphthalene 187 0.00E+00 ±

8.22E-08 3.32E-08 ± 8.12E-08

1.66E-08 ± 5.74E-08

0.00E+00 ± 1.55E-06

9.87E-07 ± 2.42E-06

4.93E-07 ± 1.71E-06

1-methyl-6-nitronaphthalene 187 0.00E+00 ±

8.22E-08 1.00E-08 ± 7.89E-08

5.00E-09 ± 5.70E-08

0.00E+00 ± 1.55E-06

2.97E-07 ± 2.10E-06

1.49E-07 ± 1.31E-06

3-nitrobiphenyl 199 1.50E-07 ± 3.08E-07

1.47E-07 ± 2.07E-07

1.48E-07 ± 2.50E-07

1.06E-06 ± 1.64E-06

2.76E-06 ± 4.00E-06

1.91E-06 ± 3.05E-06

4-nitrobiphenyl 199 1.55E-06 ± 3.58E-06

4.75E-07 ± 7.37E-07

1.01E-06 ± 2.53E-06

8.28E-06 ± 1.58E-05

6.62E-06 ± 1.08E-05

7.45E-06 ± 1.30E-05

1,3-dinitronaphthalene 218 6.37E-07 ± 1.56E-06

0.00E+00 ± 7.89E-08

3.18E-07 ± 1.10E-06

1.37E-05 ± 3.36E-05

0.00E+00 ± 2.10E-06

6.86E-06 ± 2.37E-05

1,5-dinitronaphthalene 218 3.10E-08 ± 8.22E-08

0.00E+00 ± 7.89E-08

1.55E-08 ± 5.70E-08

1.39E-07 ± 1.55E-06

0.00E+00 ± 2.10E-06

6.94E-08 ± 1.31E-06

5-nitroacenaphthene 199 1.90E-07 ± 4.67E-07

3.23E-08 ± 7.90E-08

1.11E-07 ± 3.30E-07

8.52E-07 ± 2.09E-06

3.08E-07 ± 2.10E-06

5.80E-07 ± 1.52E-06

2-nitrofluorene 211 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

4-nitrophenanthrene 223 1.27E-07 ± 2.18E-07

1.24E-07 ± 3.04E-07

1.25E-07 ± 2.52E-07

2.43E-06 ± 4.05E-06

2.32E-06 ± 5.69E-06

2.38E-06 ± 4.71E-06

9-nitroanthracene 223 2.86E-05 ± 3.85E-05

1.35E-05 ± 1.81E-05

2.11E-05 ± 2.97E-05

3.20E-04 ± 1.22E-04

2.01E-04 ± 1.38E-04

2.61E-04 ± 1.39E-04

9-nitrophenanthrene 223 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

1,8-dinitronaphthalene 218 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

3-nitrophenanthrene 223 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

2-nitrophenanthrene 223 0.00E+00 ± 8.22E-08

2.38E-07 ± 5.83E-07

1.19E-07 ± 4.12E-07

0.00E+00 ± 1.55E-06

2.27E-06 ± 5.57E-06

1.14E-06 ± 3.94E-06

2-nitroanthracene 223 0.00E+00 ± 8.22E-08

2.89E-06 ± 7.08E-06

1.44E-06 ± 5.00E-06

0.00E+00 ± 1.55E-06

4.14E-05 ± 1.01E-04

2.07E-05 ± 7.16E-05

2-nitrofluoranthene 247 8.39E-08 ± 2.06E-07

0.00E+00 ± 7.89E-08

4.20E-08 ± 1.45E-07

3.75E-07 ± 1.55E-06

0.00E+00 ± 2.10E-06

1.88E-07 ± 1.31E-06

3-nitrofluoranthene 247 0.00E+00 ± 8.22E-08

1.36E-07 ± 2.68E-07

6.78E-08 ± 1.94E-07

0.00E+00 ± 1.55E-06

1.42E-06 ± 2.55E-06

7.11E-07 ± 1.87E-06

4-nitropyrene 247 1.45E-06 ± 1.35E-06

1.24E-06 ± 1.38E-06

1.35E-06 ± 1.30E-06

1.97E-05 ± 1.13E-05

1.85E-05 ± 1.58E-05

1.91E-05 ± 1.31E-05

1-nitropyrene 247 1.53E-07 ± 3.75E-07

1.38E-07 ± 3.11E-07

1.46E-07 ± 3.28E-07

6.84E-07 ± 1.68E-06

1.37E-06 ± 2.96E-06

1.03E-06 ± 2.32E-06

2-nitropyrene 247 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

2,7-dinitrofluorene 256 2.63E-07 ± 2.71E-07

1.48E-07 ± 2.06E-07

2.05E-07 ± 2.37E-07

3.50E-06 ± 2.85E-06

2.36E-06 ± 3.10E-06

2.93E-06 ± 2.90E-06

2,7-dinitrofluoren-9-one 270 5.70E-07 ±

8.63E-07 4.26E-07 ± 5.57E-07

4.98E-07 ± 6.96E-07

6.09E-06 ± 6.81E-06

6.18E-06 ± 6.87E-06

6.14E-06 ± 6.52E-06

7-nitrobenz(a)anthracene 273 5.43E-07 ±

1.03E-06 0.00E+00 ±

7.89E-08 2.72E-07 ± 7.51E-07

4.48E-06 ± 7.05E-06

0.00E+00 ± 2.10E-06

2.24E-06 ± 5.30E-06

Page 142: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-40

Table 5-9a continued

Compound MW

Stack A Profile (%) Normalized to PM2.5 Stack A Profile (%) Normalized to OC Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011)

6-nitrochrysene 273 3.09E-07 ± 7.57E-07

1.95E-07 ± 2.60E-07

2.52E-07 ± 5.43E-07

1.38E-06 ± 3.38E-06

2.59E-06 ± 3.34E-06

1.99E-06 ± 3.27E-06

3-nitrobenzanthrone 275 1.48E-07 ± 3.63E-07

0.00E+00 ± 7.89E-08

7.41E-08 ± 2.57E-07

6.62E-07 ± 1.62E-06

0.00E+00 ± 2.10E-06

3.31E-07 ± 1.31E-06

1,3-dinitropyrene 292 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

1,6-dinitropyrene 292 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

1,8-dinitropyrene 292 0.00E+00 ± 8.22E-08

0.00E+00 ± 7.89E-08

0.00E+00 ± 5.70E-08

0.00E+00 ± 1.55E-06

0.00E+00 ± 2.10E-06

0.00E+00 ± 1.31E-06

3-nitrobenzo[e]pryene 297 0.00E+00 ±

8.22E-08 0.00E+00 ±

7.89E-08 0.00E+00 ±

5.70E-08 0.00E+00 ±

1.55E-06 0.00E+00 ±

2.10E-06 0.00E+00 ±

1.31E-06 6a+1e-nitrobenzopyrene 0.00E+00 ±

8.22E-08 0.00E+00 ±

7.89E-08 0.00E+00 ±

5.70E-08 0.00E+00 ±

1.55E-06 0.00E+00 ±

2.10E-06 0.00E+00 ±

1.31E-06

Table 5-9b. Stack B abundances (% of PM2.5 and OC mass) for nitro-PAHs. (Data are reported as average ± uncertainty, where the uncertainty is the larger of standard deviation and uncertainty of average of multiple runs.)

Compound MW

Stack B Profile Normalized to PM2.5 Stack B Profile Normalized to OC Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011)

1-nitronaphthalene 173 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

1-methyl-5-nitronaphthalene 187 0.00E+00 ±

1.56E-07 1.34E-09 ± 9.85E-08

7.66E-10 ± 8.75E-08

0.00E+00 ± 3.75E-05

1.80E-07 ± 1.23E-05

1.03E-07 ± 1.76E-05

2-nitronaphthalene 173 1.25E-07 ± 2.01E-07

1.43E-07 ± 2.02E-07

1.35E-07 ± 1.94E-07

4.35E-05 ± 9.65E-05

1.06E-05 ± 1.86E-05

2.47E-05 ± 6.37E-05

2-nitrobiphenyl 199 2.14E-06 ± 5.34E-07

6.70E-07 ± 1.02E-06

1.30E-06 ± 1.11E-06

5.93E-04 ± 4.11E-04

3.97E-05 ± 5.59E-05

2.77E-04 ± 3.84E-04

2-methyl-4-nitronaphthalene 187 0.00E+00 ±

1.56E-07 0.00E+00 ±

9.85E-08 0.00E+00 ±

8.75E-08 0.00E+00 ±

3.75E-05 0.00E+00 ±

1.23E-05 0.00E+00 ±

1.76E-05 1-methyl-4-nitronaphthalene 187 6.41E-07 ±

1.57E-06 0.00E+00 ±

9.85E-08 2.75E-07 ± 1.03E-06

3.14E-04 ± 7.70E-04

0.00E+00 ± 1.23E-05

1.35E-04 ± 5.04E-04

1-methyl-6-nitronaphthalene 187 0.00E+00 ±

1.56E-07 0.00E+00 ±

9.85E-08 0.00E+00 ±

8.75E-08 0.00E+00 ±

3.75E-05 0.00E+00 ±

1.23E-05 0.00E+00 ±

1.76E-05

3-nitrobiphenyl 199 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

4-nitrobiphenyl 199 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

1,3-dinitronaphthalene 218 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

1,5-dinitronaphthalene 218 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

5-nitroacenaphthene 199 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

2-nitrofluorene 211 1.31E-07 ± 3.20E-07

4.29E-08 ± 1.21E-07

8.05E-08 ± 2.22E-07

6.83E-05 ± 1.67E-04

5.76E-06 ± 1.63E-05

3.26E-05 ± 1.09E-04

4-nitrophenanthrene 223 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

9-nitroanthracene 223 1.45E-08 ± 1.56E-07

0.00E+00 ± 9.85E-08

6.19E-09 ± 8.75E-08

7.55E-06 ± 3.78E-05

0.00E+00 ± 1.23E-05

3.24E-06 ± 1.77E-05

9-nitrophenanthrene 223 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

Page 143: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

5-41

Table 5-9b continued

Compound MW

Stack B Profile (%) Normalized to PM2.5 Stack B Profile (%) Normalized to OC Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) Winter Cold

(2011) Winter Warm

(2011) Winter Average

(2011) 1,8-dinitronaphthalene 218 0.00E+00 ±

1.56E-07 0.00E+00 ±

9.85E-08 0.00E+00 ±

8.75E-08 0.00E+00 ±

3.75E-05 0.00E+00 ±

1.23E-05 0.00E+00 ±

1.76E-05

3-nitrophenanthrene 223 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

2-nitrophenanthrene 223 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

2-nitroanthracene 223 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

2-nitrofluoranthene 247 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

3-nitrofluoranthene 247 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

4-nitropyrene 247 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

1-nitropyrene 247 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

2-nitropyrene 247 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

2,7-dinitrofluorene 256 1.77E-07 ± 1.56E-07

1.70E-07 ± 2.47E-07

1.73E-07 ± 1.98E-07

4.96E-05 ± 6.70E-05

1.50E-05 ± 1.57E-05

2.98E-05 ± 4.66E-05

2,7-dinitrofluoren-9-one 270 0.00E+00 ±

1.56E-07 0.00E+00 ±

9.85E-08 0.00E+00 ±

8.75E-08 0.00E+00 ±

3.75E-05 0.00E+00 ±

1.23E-05 0.00E+00 ±

1.76E-05 7-nitrobenz(a)anthracene

273 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

6-nitrochrysene 273 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

3-nitrobenzanthrone 275 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

1,3-dinitropyrene 292 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

1,6-dinitropyrene 292 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

1,8-dinitropyrene 292 0.00E+00 ± 1.56E-07

0.00E+00 ± 9.85E-08

0.00E+00 ± 8.75E-08

0.00E+00 ± 3.75E-05

0.00E+00 ± 1.23E-05

0.00E+00 ± 1.76E-05

3-nitrobenzo[e]pryene 297 0.00E+00 ±

1.56E-07 0.00E+00 ±

9.85E-08 0.00E+00 ±

8.75E-08 0.00E+00 ±

3.75E-05 0.00E+00 ±

1.23E-05 0.00E+00 ±

1.76E-05 6a+1e-nitrobenzopyrene 0.00E+00 ±

1.56E-07 0.00E+00 ±

9.85E-08 0.00E+00 ±

8.75E-08 0.00E+00 ±

3.75E-05 0.00E+00 ±

1.23E-05 0.00E+00 ±

1.76E-05

Page 144: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

6-1

6 Summary of Major Findings A dilution sampling and measurement system was deployed to measure emissions from

two stacks (Stacks A and B) in an Athabasca oil sands facility (Facility A) in March, 2011. Emissions from these two stacks were measured in August, 2008 by a similar dilution system.

Stack velocity was measured by a type-S pitot tube. Gases (i.e., total VOCs, CO, CO2, NO, NO2, and SO2), particle number concentration, and size-segregated mass concentrations including PM2.5 and PM10, BC, and UVC were measured in real time. CH4, NMHC, halocarbons, carbonyls, NH3, H2S, SO2, total Hg, PM2.5 mass, light transmission (babs), elements, isotopes, ions, carbon fractions, water-soluble organic carbon (WSOC), carbohydrates, organic acids, and speciated organic compounds were taken on canisters, DNPH cartridges, and gas- and particle-absorbing filters. Emission rates and chemical source profiles were derived from these measurements.

NMHC species with the highest ERs were ethene, propene, propane, ethane, and n-heptane for Stack A, and n-pentane, iso-pentane, n-butane, iso-butane, and toluene for Stack B. Stack A had higher carbonyl concentrations than ambient levels, and the three carbonyls with the highest ERs were acetone (5.5 kg/hr), acetaldehyde (1.9 kg/hr), and formaldehyde (0.4 kg/hr). Carbonyl concentrations in Stack B were similar to ambient levels, and the three species with the highest ERs were acetone (0.12 kg/hr), acetaldehyde (0.06 kg/hr), and propionaldehyde (0.01 kg/hr).

Among the GHGs, CO2 had the highest ERs: (4.99±0.06)×105 kg/hr and (2.61±0.05)×105 kg/hr for Stack A in 2011 and 2008, respectively, and (2.62±0.02)×105 kg/hr and (1.77±0.02)×105 kg/hr for Stack B in 2011 and 2008, respectively. Winter 2011 CO2 ERs were 1.9 and 1.5 times those of summer 2008 ERs for Stacks A and B, respectively. CH4 ERs were 6.4±1.9 kg/hr and 5.8±2.3 kg/hr for Stacks A and B in 2011, respectively. ERs of halocarbons were also very low from both stacks, with the sum of halocarbon ERs being 0.22 kg/hr and 0.11 kg/hr for Stacks A and B, respectively.

For the criteria pollutants, ERs of the sum of NMHC were 6.2±3.0 kg/hr and 5.3 ±3.4 kg/hr for Stacks A and B in 2011, respectively. CO has ERs of 301±47 kg/hr and 1599±54 kg/hr for Stack A in 2011 and 2008, respectively, and 87±7 kg/hr and 982±45 kg/hr for Stack B in 2011 and 2008, respectively. NO has ERs of 1072±37 kg/hr and 295±11 kg/hr for Stack A in 2011 and 2008, respectively, and 271±6 kg/hr and 133±3 kg/hr for Stack B in 2011 and 2008, respectively. SO2 has ERs of 9344±331 kg/hr and >1050 kg/hr for Stack A in 2011 and 2008, respectively, and 639±98 kg/hr and 727±132 kg/hr for Stack B in 2011 and 2008, respectively. PM2.5 (OPC) has ERs of 231±13 kg/hr and 49±5 kg/hr for Stack A in 2011 and 2008, respectively, and 128±7 kg/hr and 8.0±0.3 kg/hr for Stack B in 2011 and 2008, respectively. Lead (Pb) has ERs of 0.790±0.094 kg/hr and 1.861±0.139 kg/hr for Stack A in 2011 and 2008, respectively, and 0.110±0.028 kg/hr and 0.610±0.371 kg/hr for Stack B in 2011 and 2008, respectively.

The differences in ERs between cold and warm dilution were statistically insignificant for most species. However, there were important differences between winter 2011 and summer 2008 ERs: For Stack A, the ER of CO in winter 2011 was ~20% of that in summer 2008, and NH3 was below detection limit in winter 2011 but was 16.6 kg/hr in summer 2008. ERs of other species were higher in winter 2011 than summer 2008 with 2011/2008 ratios of: 1.9 for CO2, 3.6 for NO, 5.8 for H2S, and 4.7 for PM2.5. For Stack B, the ER of CO in winter 2011 was ~10% of that in

Page 145: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

6-2

summer 2008, and winter 2011 NH3 was only ~4% of summer 2008. Winter 2011 SO2 was ~90% of summer 2008. ERs of other species were higher in winter with winter/summer ratios of: 1.5 for CO2, 2.0 for NO, and 15.9 for PM2.5. These differences are probably caused by differences in the feedstock, stack operating conditions between the two tests periods rather than by the summer/winter temperature differences.

Stack A NOx, SO2, and PM25 ERs from dilution sampling in summer 2008 were 52%, >12%, and 18%, respectively, of NOx, SO2, and TSP ERs from 2007 compliance tests, while NOx and SO2 ERs from winter 2011 sampling were 90% and 6% higher than compliance tests, and PM2.5 was 6% lower than TSP. For Stack B, NOx from summer 2008 dilution testing was 45% higher than NOx from the compliance tests, and summer 2008 SO2 ERs were similar to those from the compliance tests. The PM2.5 ER from summer 2008 dilution sampling was only ~3% of the TSP or 21% of filterable PM from compliance tests. The NOx ER from winter 2011 dilution sampling was 3.2 times of that of compliance tests, while SO2 was 14% lower. The winter 2011 PM2.5 ER from dilution sampling was 4.5 times of the compliance test’s hot filter PM, and 39% lower than the TSP summed from the hot filter and impinger catches.

Soluble SO4= had the highest concentration and ER among all PM2.5 constituents for both

stacks, accounting for 39-73% of the PM2.5 emissions. For Stack A, SO4= ER in winter 2011 was

~6 times of that in summer 2008, while NH4+ ER in winter 2011 was 23% of that in summer

2008. For Stack B, SO4= ER in winter 2011 was ~20 times of that in summer 2008 and NH4

+ ER in winter 2011 was ~17 times of that in summer 2008. Stack emissions of rare earth elements were <5 g/hr.

Retene was the dominant non-polar organic species in PM2.5 from Stack A in winter 2011, with an ER of 1299.3±451.0 g/hr, which caused the total measured non-polar organic species in 2011 to be ~100 times of that of 2008. ERs for non-polar organic species were low (~3 g/hr) in Stack B PM2.5, and winter 2011 and summer 2008 ERs were comparable. ERs of PM2.5 carbohydrates and organic acids were <300 g/hr. Both stacks had higher total WSOC ERs in winter 2011 than in summer 2008. Most nitro-PAHs ERs were below detection limits except for 9-nitroanthracene in Stack A (50.6±19.9 mg/hr). Total Hg ERs were 17.80±8.41 mg/hr and 13.73±3.15 mg/hr for Stacks A and B, respectively.

The five most abundant NMHC species in Stack A were: ethene, ethane, propane, propylene, and n-butane, and the five most abundant species in Stack B were: trans-2-butene, 1,3-butadiene, n-nonane, cyclohexane, and benzene. Alkanes and cycloalkanes were the most abundant groups, accounting for 62% and 47% of PAMS for Stacks A and B, respectively. The sum of all halocarbons was 2.9% and 8.4% of the sum of PAMS compounds for Stacks A and B, respectively. Acetone and acetaldehyde are the most abundant carbonyls, accounting for 67% and 20% of total carbonyls for Stack A, and 71% and 24% for Stack B, respectively.

For Stack A, the summer 2008 NH3 abundance (34% of PM2.5) was higher than its winter 2011 abundance (<0.003% of PM2.5). For Stack B, both NH3 and SO2 were more abundant in summer 2008 (1025% and 9205% of PM2.5, respectively) than winter 2011 (3.1% and 429% of PM2.5, respectively).

For Stack A, the major chemical PM2.5 chemical component was (NH4)2SO4 in summer 2008 and H2SO4 droplets (i.e., mixed with liquid water) in winter 2011, accounting for 53.9% and 92.4% of PM2.5, respectively. For Stack B, (NH4)2SO4 was the major PM2.5 composition in both 2008 and 2011 (91.3% of PM2.5). The major PM2.5 component from Stack C in 2008 was H2SO4 droplets (95.9% of PM2.5). Trace element abundances were low (typically < 0.1%), but

Page 146: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

6-3

these are still useful as source markers. Among these elements, both stacks had highest abundances for Al, S, and Fe. Carbon accounted for a minor fraction of PM2.5, with TC being 6.9% and 12.9% of PM2.5 from Stack A in winter 2011 and summer 2008 and 1.2% and 6.9% for Stack B in winter and summer, respectively. Rare earth element abundances were low (<0.01% of PM2.5). Lead isotopic abundances were consistent with natural abundances within ±10% except that 204Pb from Stack B in 2011 was 23.4% higher than its natural abundance.

Non-polar organic compounds accounted for 0.558±0.622% and 0.029±0.016% of PM2.5 for Stack A, and 0.002±0.004% and 0.038±0.009% for Stack B in winter 2011 and summer 2008, respectively. For Stack A, retene was the most abundant species in winter 2011, accounting for 95% of the sum of quantified non-polar compounds, while n-alkane was the most abundant category in summer 2008, accounting for 68% of non-polar compounds. For Stack B, n-alkanes are the most abundant category, accounting for 31% and 75% of measured non-polar compounds from Stack B in winter and summer, respectively.

For Stack A, the most abundant carbohydrates were glycerol (1.36% of OC) in winter 2011 and xylitol (0.36% of OC) in summer 2008. The most abundant organic acids were succinic acid (2.01% of OC) in winter 2011 and methanesulfonic acid (4.33% of OC) in summer 2008. WSOC accounted for 29.8% of OC in winter but only 0.26% in summer. For Stack B, glycerol was the only carbohydrates above the MDL, accounting for 3.71% and 0.04% of OC in winter 2011 and summer 2008, respectively. The most abundant organic acids were lactic acid (7.16% of OC) and acetic acid (6.91% of OC) in winter 2011 and methanesulfonic acid (7.92% of OC) in summer 2008. WSOC was 60.2% and 16.8% of OC in winter 2011 and summer 2008, respectively. Abundances for nitro-PAHs were <0.0005% of OC for both stacks.

This study generates a rich database of emission rates of multipollutants and source profiles of NMHC and PM2.5. This data can be used for evaluating multieffects. For example, the criteria contaminants emission rates can be used to verify current emission estimates, and provide input for source-oriented dispersion modeling; the GHG emission rates can be used to estimate global warming potentials (GWP); emission rates of air toxics can be used to establish or evaluate toxics inventory and exposure risks; and source profiles can be used in receptor-oriented source apportionment modeling and identify contributions to ambient pollution concentrations and adverse ecosystem responses.

Future studies on stack emissions will focus on: 1) evaluate emission changes with new pollution control devices are added (e.g., Facility A is adding a new bag house); 2) conduct a side-by-side comparison of dilution sampling and compliance test to evaluate different test methods; 3) understand the relationship between feedstock, stack operation, and emission rates and chemical compositions.

Page 147: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

7-1

7 References Alberta Environment (1995). Alberta stack sampling code 1995. Report Number ISBN# 0773214062; prepared by

Alberta Environment, Edmondton, AB, Canada, http://www.qp.alberta.ca/570.cfm. API (2002). Test Report: Fluidized Catalytic Cracking Unit at a Refinery (Site A); Characterization of Fine

Particulate Emission Factors and Specification Profiles from Stationary Petroleum Industry Combustion Sources. Report Number 4713; prepared by American Petroleum Institute, Washington, DC.

Carpi, A. (1997). Mercury from Combustion Sources: A Review of the Chemical Species Emitted and Their Transport in the Atmosphere. Water, Air, and Soil Pollution, 98(3):241-254. http://dx.doi.org/10.1023/A:1026429911010.

Chang, M.C.; England, G.C. (2004a). Development of fine particulate emission factors and speciation profiles for oil and gas-fired combustion systems, Update: Critical review of source sampling and analysis methodologies for characterizing organic aerosol and fine particulate source emission profiles. prepared by GE Energy and Environmental Research Corp., Irvine, CA, for USDOE National Energy Technology Laboratory, Gas Research Institute, and American Petroleum Institute, Pittsburgh PA, Des Plaines IL, and Washington DC.

Chang, M.C.; England, G.C. (2004b). Development of fine particulate emission factors and speciation profiles for oil and gas-fired combustion systems. Other report: Pilot-scale dilution sampler design and validation tests (laboratory study). prepared by GE Energy and Environmental Research Corp., Irvine, CA, for USDOE National Energy Technology Laboratory, Gas Research Institute, and American Petroleum Institute, Pittsburgh PA, Des Plaines IL, and Washington DC.

Chang, M.-C.O.; Yi, S.M.; Hopke, P.K.; England, G.C.; Chow, J.C.; Watson, J.G. (2004). Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J. Air Waste Manage. Assoc., 54(12):1494-1505.

Chen, L.-W.A.; Watson, J.G.; Chow, J.C.; DuBois, D.W.; Herschberger, L. (2011). PM2.5 source apportionment: Reconciling receptor models for U.S. non-urban and urban long-term networks. J. Air Waste Manage. Assoc., 61(11):1204-1217.

Chow, J.C.; Watson, J.G. (2012). Aerosol chemical analysis on filters. In Aerosols Handbook : Measurement, Dosimetry, and Health Effects, 2; Ruzer, L., Harley, N. H., Eds.; CRC Press/Taylor & Francis: New York, NY, accepted.

Chow, J.C.; Watson, J.G.; Green, M.C.; Frank, N.H. (2010). Filter light attenuation as a surrogate for elemental carbon. JAWMA, 60(11):1365-1375.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Lowenthal, D.H.; Motallebi, N. (2011). PM2.5 source profiles for black and organic carbon emission inventories. Atmos. Environ., 45(31):5407-5414.

Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. (1993). The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmos. Environ., 27A(8):1185-1201.

Chow, J.C.; Fujita, E.M.; Watson, J.G.; Lu, Z.; Lawson, D.R.; Ashbaugh, L.L. (1994). Evaluation of filter-based aerosol measurements during the 1987 Southern California Air Quality Study. Environ. Mon. Assess., 30(1):49-80.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.L.; Kohl, S.D. (2007a). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. JAWMA, 57(9):1014-1023. http://pubs.awma.org/gsearch/journal/2007/9/10.3155-1047-3289.57.9.1014.pdf.

Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Zielinska, B.; Mazzoleni, L.R.; Magliano, K.L. (2007b). Evaluation of organic markers for chemical mass balance source apportionment at the Fresno supersite. Atmos. Chem. Phys., 7(7):1741-2754. http://www.atmos-chem-phys.net/7/1741/2007/acp-7-1741-2007.pdf.

Chow, J.C.; Yu, J.Z.; Watson, J.G.; Ho, S.S.H.; Bohannan, T.L.; Hays, M.D.; Fung, K.K. (2007c). The application of thermal methods for determining chemical composition of carbonaceous aerosols: A Review. Journal of Environmental Science and Health-Part A, 42(11):1521-1541.

Clearstone Engineering Ltd. (2006). An inventory of GHGs, CACs and H2S emissions by the Canadian bitumen industry: 1990 to 2003- Volume 2, CAC and H2S emissions. prepared by Clearstone Engineering, Ltd., Calgary, AB, Canada, Calgara, AB, Canada.

Page 148: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

7-2

Clearstone Engineering Ltd.; Golder Associates, I. (2003). A priority ranking of air emissions in the oilsands region. prepared by Clearstone Engineering, Ltd., Calgary, AB, Canada.

Clegg, S.L.; Brimblecombe, P.; Wexler, A.S. (1998). Thermodynamic model of the system H+-NH4+-Na+-SO4

2--NO3

--Cl--H2O at 298.15 K. J. Phys. Chem., 102(12):2155-2171. Code of Federal Regulations (2001a). 40 CFR Part 89, Control of emissions from new and in-use nonroad

compression-ignition engines. prepared by U.S. Government Printing Office, Washington, DC. Code of Federal Regulations (2001b). 40 Part 86, Control of emissions from new and in-use highway vehicles and

engines. prepared by U.S. Government Printing Office, Washington, DC. Corio, L.A.; Sherwell, J. (2000). In-stack condensible particulate matter measurements and issues. J. Air Waste

Manage. Assoc., 50(2):207-218. Dimashki, M.; Harrad, S.; Harrison, R.M. (2000a). Measurements of nitro-PAH in the atmospheres of two cities.

Atmos. Environ., 34(15):2459-2469. Dimashki, M.; Harrad, S.; Harrison, R.M. (2000b). Concentrations and phase distribution of nitro-PAH in the

Queensway road tunnel in Birmingham, United Kingdom. Polycyclic Aromatic Compounds, 20(1-4):205-223. ISI:000166199200016.

England, G.C. (2004). Development of fine particulate emission factors and speciation profiles for oil- and gas-fired combustion systems, Final report, 2004. Report Number NYSERDA Report No. 04-05; prepared by GE Energy and Environmental Research Corp., Irvine, CA, for USDOE National Energy Technology Laboratory, Gas Research Institute, and American Petroleum Institute, Pittsburgh PA, Des Plaines IL, and Washington DC.

England, G.C.; Zielinska, B.; Loos, K.; Crane, I.; Ritter, K. (2000). Characterizing PM2.5 emission profiles for stationary sources: Comparison of traditional and dilution sampling techniques. Fuel Processing Technology, 65:177-188.

England, G.C.; Wien, S.; Zimperman, R.; Zielinska, B.; McDonald, J. (2001a). Gas fired boiler test report site A: Characterization of fine particulate emission factors and speciation profiles from stationary petroleum industry combustion sources. Report Number 4703; prepared by American Petroleum Institute, Washington, DC, http://api-ep.api.org/filelibrary/ACF4B.pdf.

England, G.C.; Wien, S.; Zimperman, R.; Zielinska, B.; McDonald, J. (2001b). Gas fired heater test report site B: Characterization of fine particulate emission factors and speciation profiles from stationary petroleum industry combustion sources. Report Number 4704; prepared by American Petroleum Institute, Washington, DC, http://api-ep.api.org/filelibrary/ACF4B.pdf.

England, G.C.; Wien, S.; Zimperman, R.; Zielinska, B.; McDonald, J. (2001c). Gas fired steam heater test report site C: Characterization of fine particulate emission factors and speciation profiles from stationary petroleum industry combustion sources. Report Number 4712; prepared by American Petroleum Institute, Washington, DC, http://api-ep.api.org/filelibrary/ACF4B.pdf.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.-C.O.; Loos, K.R.; Hidy, G.M. (2007a). Dilution-based emissions sampling from stationary sources: Part 1. Compact sampler, methodology and performance. J. Air Waste Manage. Assoc., 57(1):65-78. http://pubs.awma.org/gsearch/journal/2007/1/england.pdf.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.-C.O.; Loos, K.R.; Hidy, G.M. (2007b). Dilution-based emissions sampling from stationary sources: Part 2. Gas-fired combustors compared with other fuel-fired systems. J. Air Waste Manage. Assoc., 57(1):79-93. http://pubs.awma.org/gsearch/journal/2007/1/england2.pdf.

Environment Canada (2011a). 2009 Air Pollutant Emissions for Alberta, National Pollutant Release Inventory. prepared by Environment Canada, Ottawa, Ontario, http://www.ec.gc.ca/pdb/websol/emissions/ap/ap_result_e.cfm?year=2009&substance=all&location=AB++++++++&sector=&submit=Search.

Environment Canada (2011b). 2009 detailed substance report for mercury (and its compounds) reported by Syncrude Canada Ltd. - Mildred Lake Plant Site. prepared by Environment Canada, Ottawa, ON, Canada, http://www.ec.gc.ca/pdb/websol/querysite/substance_details_e.cfm?opt_npri_id=0000002274&opt_cas_number=NA%20-%2010&opt_report_year=2009.

Gilmour, C.C.; Henry, E.A. (1991). env poll 71(2-4):131-169. Gustin, M.; Jaffe, D. (2010). Reducing the uncertainty in measurement and understanding of mercury in the

atmosphere. Environ. Sci. Technol., 44(7):2222-2227.

Page 149: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

7-3

Hansen, A.D.A. (2005). The aethalometer operating manual. prepared by Magee Scientific, Berkeley, CA, http://mageesci.com/support/downloads/Aethalometer_book_2005.07.03.pdf.

Kulkarni, P.; Baron, P.A.; Willeke, K. (2011). Aerosol Measurement Principles, Techniques and Applications, Third Edition. John Wiley & Sons, Inc.: Hoboken, NJ, USA.

Landis, M.S.; Stevens, R.K.; Schaedlich, F.; Prestbo, E.M. (2002). Environmental Science and Technology 36(13):3000-3009.

Landvik, N.E.; Gorria, M.; Arlt, V.M.; Asare, N.; Solhaug, A.; Lagadic-Gossmann, D.; Holme, J.A. (2007). Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: Possible implications for their mutagenic and carcinogenic effects. Toxicology, 231(2-3):159-174.

Lide, D.R. (1993). CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press: Boca Raton.

Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. (2000). Critical review: Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manage. Assoc., 50(9):1565-1618.

Lindberg, S.E.; Stratton, W.J. (1998). Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Enivron. Sci. Technol., 49-57.

Lindberg, S.E.; Meyers, T.P.; Taylor, G.E., Jr.; Turner, R.R.; Schroeder, W.H. (1992). Atmosphere-surface exchange of mercury in a forest: Results of modeling and gradient approaches. J. Geophys. Res., 97(D2):2519-2528.

Lynam, M.M.; Keeler, G.J. (2002). Comparison of methods for particulate phase mercury analysis: sampling and analysis. Anal. Bioanal. Chem., 374(6):1009-1014.

Malm, W.C.; Sisler, J.F.; Huffman, D.; Eldred, R.A.; Cahill, T.A. (1994). Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res., 99(D1):1347-1370.

Martin, S.T. (2000). Phase Transitions of Aqueous Atmospheric Particles. Chem. Rev., 100(9):3403-3454. http://dx.doi.org/10.1021/cr990034t.

Moosmüller, H.; Chakrabarty, R.K.; Ehlers, K.M.; Arnott, W.P. (2011). Absorption Angstrom coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles. Atmos. Chem. Phys., 11(3):1217-1225.

Richards, J.; Holder, T.; Goshaw, D. (2005). Optimized Method 202 Sampling Train to Minimize the Biases Associated with Method 202 Measurement of Condensable Particulate Matter Emissions. In Proceedings, Specialty Conference on Hazardous Waste Combustion, Air & Waste Management Association: Pittsburgh, PA, 1-9.

Richardson, C.B.; Hightower, R.L.; Pigg, A.L. (1986). Optical measurement of the evaporation of sulfuric acid droplets. Appl. Optics, 25(7):1226-1229.

Schuetzle, D.; Perez, J.M. (1983). Factors influencing the emissions of nitrated-polynuclear aromatic hydrocarbons (nitro-PAH) from diesel engines. J. Air Poll. Control Assoc., 33(8):751-755.

Seinfeld, J.H.; Pandis, S.N. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons: New York, NY.

Sheya, S.A.; Glowacki, C.; Chang, M.-C.O.; Chow, J.C.; Watson, J.G. (2008). Hot filter/impinger and dilution sampling for fine particulate matter characterization from ferrous metal casting processes. J. Air Waste Manage. Assoc., 58(4):553-561. http://pubs.awma.org/gsearch/journal/2008/4/10.3155-1047-3289.58.4.553.pdf.

Tang, I.N. (1996). Chemical and Size Effects of Hygroscopic Aerosols on Light Scattering Coefficients. Journal of Geophysical research, Vol. 101(No. D14):19,245-19,250.

Tokiwa, H.; Sera, N. (2000). Contribution of nitrated polycyclic aromatic hydrocarbons in diesel particles to human lung cancer induction. Polycyclic Aromatic Compounds, 21(1-4):231-245.

Tokiwa, H.; Kitamori, S.; Nakagawa, R.; Horikawa, K.; Matamala, L.V. (1983). Demonstration of a powerful mutagenic dinitropyrene in airborne particulate matter. Mutat. Res., 121:107-116.

U.S.EPA (1997). Mercury Study Report to Congress - Volume III: Fate and Transport of Mercury in the Environment . Report Number EPA-452/R-97-003 ; http://www.epa.gov/hpvis/rbp/Mercury_RBP_10.31.08_FINAL.pdf.

U.S.EPA (1999a). Compendium Method IO-5: Sampling and Analysis for Vapor and Particle Phase Mercury in Ambient Air Utilizing Cold Vapor Atomic Fluorescence Spectrometry (CVAFS). In Compendium of Methodsfor

Page 150: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

7-4

the Determination of Inorganic Compounds in Ambient Air, Chapter IO-5:Sampling and Analysis for Atmospheric Mercury, Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency.

U.S.EPA (1999b). Toxic organic compounds in Ambient Air Compendium Method TO-15: Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS). Report Number EPA/625/R-96/101b; prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC.

U.S.EPA (1999c). Toxic organic compounds in Ambient Air Compendium Method TO-11A: Determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography (HPLC). Report Number EPA/625/R-96/101b; prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC.

U.S.EPA (1999d). Compendium Method IO-4.1: Determination of the Strong Acidity of Atmospheric Fine-Particles (<2.5 µm). Report Number EPA/625/R-96/010a; prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, www.epa.gov/ttn/amtic/files/ambient/inorganic/mthd-4-1.pdf.

U.S.EPA. (2000). Method 5 - Determination of Particulate Matter Emissions from Stationary Sources (40 CFR 60. Appendix A to Part 60).

U.S.EPA. (2002). Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. Washington, DC, U.S. Environmental Protection Agency.

U.S.EPA (2004). Conditional test method (CTM) 039: Measurement of PM2.5 and PM10 emissions by dilution sampling (constant sampling rate procedures. prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, http://www.epa.gov/ttn/emc/ctm/ctm-039.pdf.

U.S.EPA (2006). EPA's Roadmap for Mercury. Report Number EPA-747-R-06-001; http://www.epa.gov/hg/pdfs/FINAL-Mercury-Roadmap-6-29.pdf.

U.S.EPA (2008a). Initial Risk-Based Prioritization of Mercury in Certain Products . prepared by U.S. Environmental Protection Agency, http://www.epa.gov/hg/pdfs/FINAL-Mercury-Roadmap-6-29.pdf.

U.S.EPA (2008b). SPECIATE Version 4.2. prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, http://www.epa.gov/ttn/chief/software/speciate/index.html.

U.S.EPA (2010a). Method 201A - Determination of PM10 and PM2.5 Emissions From Stationary Sources (Constant Sampling Rate Procedure): 55 FR 14246 04/17/90 (Appendix M of 40 CFR 51). prepared by U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Technical Support Division, Research Triangle Park, NC, http://www.epa.gov/ttn/emc/promgate/m-201a.pdf.

U.S.EPA (2010b). Method 202 - Dry Impinger Method for Determining Condensible Particulate Emissions from Stationary Sources: (Appendix M of 40 CFR 51). prepared by U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Technical Support Division, Research Triangle Park, NC, http://www.epa.gov/ttn/emc/promgate/m-202.pdf.

U.S.EPA. (2011). Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)(40 CFR 60. Appendix A to Part 60).

Vlasenko, A.; Sjogren, S.; Weingartner, E.; Gaggeler, H.W.; Ammann, A. (2005). Generation of submicron Arizona test dust aerosol: Chemical and hygroscopic properties. Aerosol Sci. Technol., 39(5):452-460.

Wang, X.L.; Watson, J.G.; Chow, J.C.; Gronstal, S.; Kohl, S.D. (2012a). An efficient multipollutant system for measuring real-world emissions from stationary and mobile sources. AAQR, 12(1):145-160. http://aaqr.org/VOL12_No2_April2012/1_AAQR-11-11-OA-0187_145-160.pdf.

Wang, X.L.; Chancellor, G.; Evenstad, J.; Farnsworth, J.E.; Hase, A.; Olson, G.M.; Sreenath, A.; Agarwal, J.K. (2009). A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Sci. Technol., 43:939-950.

Wang, X.L.; Watson, J.G.; Chow, J.C.; Kohl, S.D.; Chen, L.-W.A.; Sodeman, D.A.; Legge, A.H.; Percy, K.E. (2012b). Measurement of real-world stack emissions with a dilution sampling system. In Alberta Oil Sands: Energy, Industry, and the Environment, Percy, K. E., Ed.; Elsevier Press: Amsterdam, The Netherlands, 171-192.

Watson, J.G. (1984). Overview of receptor model principles. J. Air Poll. Control Assoc., 34(6):619-623. http://pubs.awma.org/gsearch/journal/1984/6/34_06_619.pdf.

Watson, J.G.; Chow, J.C. (2004). Receptor models for air quality management. EM, 10(Oct.):27-36.

Page 151: environmentalmonitoring.alberta.caenvironmentalmonitoring.alberta.ca/wp-content/... · Measurements of Real-World Stack Emissions in the Athabasca Oil Sands Region with a Dilution

7-5

Watson, J.G.; Chow, J.C. (2005). Receptor models. In Air Quality Modeling -Theories, Methodologies, Computational Techniques, and Available Databases and Software. Vol. II - Advanced Topics, Zannetti, P., Ed.; Air and Waste Management Association and the EnviroComp Institute: Pittsburgh, PA, 455-501.

Watson, J.G.; Chow, J.C. (2007). Receptor models for source apportionment of suspended particles. In Introduction to Environmental Forensics, 2nd Edition, 2; Murphy, B., Morrison, R., Eds.; Academic Press: New York, NY, 279-316.

Watson, J.G.; Chow, J.C.; Pace, T.G. (1991). Chemical mass balance. In Receptor Modeling for Air Quality Management, Hopke, P. K., Ed.; Elsevier Press: New York, NY, 83-116.

Watson, J.G.; Chow, J.C.; Fujita, E.M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ., 35(9):1567-1584.

Watson, J.G.; Chen, L.-W.A.; Chow, J.C.; Lowenthal, D.H.; Doraiswamy, P. (2008). Source apportionment: Findings from the U.S. Supersite Program. J. Air Waste Manage. Assoc., 58(2):265-288. http://pubs.awma.org/gsearch/journal/2008/2/10.3155-1047-3289.58.2.265.pdf.

Watson, J.G.; Chow, J.C.; Wang, X.L.; Kohl, S.D.; Sodeman, D.A. (2013). Measurement of real-world stack emissions in the Athabasca Oil Sands Region with a dilution sampling system during August, 2008. prepared by Desert Research Institute, Reno, NV USA.

Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.P.; Fujita, E.M.; Wilson, W.E. (2002). Receptor modeling application framework for particle source apportionment. Chemosphere, 49(9):1093-1136.

WBEA (2011). Wood Buffalo Environmental Association. prepared by Wood Buffalo Environmental Association, Ft McMurray, AB, Canada, http://www.wbea.org/.

Xiao, Z.; Sommar, J.; Wei, S.; Lindqvist, O. (1997). Fresenius' Journal of Analytical Chemistry 358(3):386-391. Zielinska, B.; Sagebiel, J.C.; Harshfield, G.; Pasek, R. (2001). Volatile organic compound measurements in the

California/Mexico border region during SCOS97. Sci. Total Environ., 276(1-3):19-31. Zwirner-Baier, I.; Neumann, H.G. (1999). Polycyclic nitroarenes (nitro-PAHs) as biomarkers of exposure to diesel

exhaust. Mutat. Res. -Genet. Toxicol. Environ. Mutag., 441(1):135-144.