enzyme 酵素 εν ζυημjuang.bst.ntu.edu.tw/files bc/bc2007/enz(5) 2007a.pdf · 2016-02-16 ·...

36
1 1 酵素的命名 E1 2 2 酵素的構成 E2 3 3 酵素動力學 E3 4 4 酵素的抑制 E4 5 5 酵素的催化機制 E5 6 6 酵素活性的調節 E6 7 7 細胞代謝與酵素調控 E7 8 8 酵素在生物技術上的應用 酵素 Enzyme Enzyme εν ζυημ εν ζυημ 調

Upload: others

Post on 14-May-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

  • ● 11 酵素的命名 E1● 22 酵素的構成 E2● 33 酵素動力學 E3● 44 酵素的抑制 E4● 55 酵素的催化機制 E5● 66 酵素活性的調節 E6● 77 細胞代謝與酵素調控 E7● 88 酵素在生物技術上的應用

    酵 素EnzymeEnzyme εν ζυημεν ζυημ

    基礎

    動力機制

    調節

    應用

  • HO

    H

    棒棒脢的催化機制及酸鹼催化Adapted from Nelson & Cox

    (2000) Lehninger Principles of

    Biochemistry (3e) p.252

    誘導生成過渡狀態

    CO=

    NH

    HCH

    NH

    +

    C- OOH

    OH

    HO

    H

    CO=

    NH

    HCH

    CO=

    NH

    HCH

    CO=

    NH

    HCH

    Slow Fast Fast Very Fast

    Acid-baseCatalysis Acidcatalysis

    Basecatalysis

    Both

    Ada

    pted

    from

    Alb

    erts

    et a

    l (20

    02) M

    olec

    ular

    Bio

    logy

    of t

    he C

    ell (

    4e) p

    .167

    NH

    +

    C- OO

    HO

    H

    吸引力

  • 5.1 基本反應機制

    三個基本動作 1) Bond Strain2) Acid-base transfer3) Orientation

    構形扭曲化學轉移空間方向

    Carboxypeptidase ACarboxypeptidase BCarboxypeptidase Y

    協同式

    順序式 ChymotrypsinTrypsinElastase

    non-polarRK

    non-specific

    YFWRKGA

    Ser-蛋白脢內切脢

    金屬蛋白脢外切脢

    Juang RH (2007) BCbasics

  • 協同式外切脢的催化機制

    1

    2

    3 4

    5

    O-H

    + HCOO-

    (270)Glu

    (248)Tyr

    O-H

    His(196)

    His (69)

    Glu(72)

    +Arg (145)

    Carboxypeptidase A

    C-terminus

    ACTIVESITE

    ACTIVESITE

    C-端確認區

    專一性確認區

    活性區口袋

    基質胜肽鏈

    RNCN C

    COO-O-

    C

    +Zn

    Juan

    g R

    H (2

    007)

    BC

    basi

    cs

  • Carboxypeptidase A

    Stryer (1995) Biochemistry (4e) p.220

    Arg 145

    Tyr 248

    Glu 270

  • Stryer (1995) Biochemistry (4e) p.220

    加入基質 - 活性區關閉 - 開始催化

  • Chymotrypsin 的分子模型

    Stry

    er(1

    995)

    Bio

    chem

    istry

    (4e)

    p.2

    07

    活性區的三個重要胺基酸

    Branden & Tooze (1999) Introduction to Protein Structure (2e) p.212, 210

  • Chymotrypsin 要先經裂解後才有活性

    Ada

    pted

    from

    Cam

    pbel

    l (19

    99) B

    ioch

    emis

    try (

    3d) p

    .179

    245

    R15-I16

    Chymotrypsinogen (inactive)

    π-Chymotrypsin (active)

    S14-R15 T147-N148

    Trypsin

    α-Chymotrypsinogen (active)

    π-Chymotrypsin

    I16L13 A149Y146

    Disulfide bonds

  • Chymotrypsin 的活性區

    Catalytic triad: Asp102←His57←Ser195 charge relaycharge relay(1)(1) 環境 pH 對酵素活性有極大影響 →→ 活性區的 胺基酸 受影響:

    (2)(2) 催化機制:兩個步驟

    (3)(3) 穩定過渡狀態:-C-O- 可與 Gly193 與 Ser195 的 -N-H 產生氫鍵而穩定之

    (4)(4) 專一性結合區:活性區附近有 non-polar pocket 辨識基質

    ▼ Acylation: 切開後 N-peptide 共價結合在酵素上 (Ser195)▼ Deacylation: 加水分解後釋出 N-peptide (slow step)

    Nitrophenyl acetate (作用很慢的基質類似物)

    His 57 (pKa = 6): 當環境 pH > 6, imidazole 失去 H+ (charged)Ile 16 (new N-terminal): 當環境 pH > 9, NH3+ 失去 H+ (不帶電)Ser 195: DIFP 可與 Ser-OH 反應 → 失去活性

    Juang RH (2007) BCbasics

  • Chym

    otrypsin

    活性區的電子接力

    Ser195

    His 57

    Asp 102

    H–O–CH2OC–O-

    =

    Active Ser

    H–N N

    C C

    C

    H

    H

    CH2

    Ser195

    His 57

    Asp 102

    -O–CH2OC–O–H

    =

    N N–H

    C C

    C

    H

    H

    CH2

    Ada

    pted

    from

    Alb

    erts

    et a

    l (20

    02) M

    olec

    ular

    Bio

    logy

    of t

    he C

    ell (

    4e) p

    .158

  • 酸鹼度對 Chymotrypsin 活性影響很大

    5 6 7 8 9 10 11

    pH

    相對活性

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.162

  • 環境酸鹼度影響蛋白質的淨電荷

    Juan

    g R

    H (2

    007)

    BC

    basi

    cs

    +Net Charge of a Protein

    Buffer pH

    Isoelectric point,pI

    -

    3456789

    10

    0+

  • Histidine 上的 imidazole 基團

    H–N N

    C C

    C

    H

    H

    H+

    pH < 6 pH > 7

    +H–N N–H

    C C

    C

    H

    H

    Inactive+ Ser

    195

    His 57

    Asp 102

    H–O–CH2OC–O-

    =

    H–N N–H

    C C-H

    C

    CH2

    H

    Adapted from Alberts et al (2002) Molecular Biology of the Cell (4e) p.158

    Ada

    pted

    from

    Dre

    ssle

    r & P

    otte

    r(20

    00) D

    isco

    verin

    g E

    nzym

    es,p

    .163

  • Chymotrypsin 切出新的 Ile16 N-端

    I16L13 Y146

    Asp 194

    –CH2COO-

    Ile 16NH2–

    Ile 16+NH3–

    5 6 7 8 9 10 11pH

    相對活性

    pH 9 pH 10pKa

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.165

    New NH2-terminus

  • 新的 Ile16 N-端可穩定 Asp194

    Asp 102

    His 57 Ser 195

    Asp 194

    Gly 193

    Ile 16

    +NH3

    Catalytic TriadCatalytic Triad

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.206

    Nelson & Cox (2004) Lehninger Principles of Biochemistry (4e) p.214

    I16

    S195

    D194

  • O

    (CH3)2CH–O– P–O–CH(CH3)2F

    =

    Chymotrypsin Ser195 被 DIFP 抑制

    Diisopropyl-fluorophosphate (DIFP)

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.167

    O-…HCH2

    Ser 195

    O

    (CH3)2CH–O– P–O–CH(CH3)2

    =

    O

    CH2

    Ser 195

    XXX

  • 添加基質可抵抗競爭性酵素抑制劑

    Reaction time

    酵素活性被抑制程度(%

    )

    100

    50

    0

    不加基質

    添加基質

    S

    + DIFP

    + DIFP & substrate

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.167

    XXX

  • Asp102

    His57

    Ser195

    Catalytic TriadCatalytic Triad

    HH

    Chymotrypsin 順序式催化反應 A1

    NC

    CN

    [HOOC]H

    O

    CC

    NC

    C[NH2]

    CC

    O

    Check substrate specificity

  • AbzymeAbzyme 催化性抗体

    以抗体分子模擬 peptide bond 的水解機制

    碳: sp2 → [sp3]* → sp2過渡狀態

    Why ?Why ?

    Abzyme 與基質有專一性結合能力,但催化效果較真正的酵素差。

    以一 sp3 過渡狀態的類似物免疫動物,所得的抗体有水解胜鍵功能。

    sp3

    Juang RH (2007) BCbasics

  • 酵素可使用類似的反應基質

    O-C N-

    H

    O-C O-

    Peptide bond

    Ester bond

    OCH3–C–O– –NO2

    Nitrophenol acetate

    HO– –NO2

    OCH3–C–OH

    Hartley & Kilby

    Chymotrypsin+ H2O

    Nitrophenol

    Acetate

    反應初期無法測得 acetate 的生成Adapted from Dressler & Potter (1991) Discovering Enzymes, p.168

  • O-C

    Time (sec)N

    itrop

    heno

    l

    證明 Chymotrypsin 兩段式催化反應

    OCH3–C–O– –NO2

    Nitrophenol acetate

    OC

    OCH3–C HO– –NO2

    + H2OO-HC

    CH3COOH

    反應動力學

    反應有兩相

    Acylation

    Deacylation (slow step)

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.169

  • 過渡狀態的額外電荷可被穩定

    O-C N-

    H

    O-C-OH

    NH2-

    -C-C-N-C-C-N-C-C-N-H H

    E + S

    Adapted from Dressler & Potter (1991) Discovering Enzymes, p.179

    O --C N-

    HO H

    O --C N-

    HO H

  • 穩定過渡狀態的分子立體空間

    Asp 102

    His 57

    Met 192

    Gly 193

    Asp 194Ser 195

    Cys 191

    Catalytic Triad

    Thr 219

    Ser 218Gly 216

    Ser 217

    Trp 215

    Ser 214

    Cys 220

    專一性辨認區

    活性區

    Ada

    pted

    from

    Dre

    ssle

    r & P

    otte

    r(19

    91) D

    isco

    verin

    g E

    nzym

    es,p

    .197

  • O ON–C–C–N–C–C N–C–C–N–C–C

    R H R’

    Chymotrypsin 活性區另有專一性辨認區

    O-CSer

    活 性 區活 性 區

    專一性辨認區

    專一性辨認區 催化區

    Juang RH (2007) BCbasics

  • 專一性的形成

    ●● Trypsin 及其抑制劑: Lys vs Asp (specific binding)↑胰臟 ↑卵白

    為何會有如此的專一性?

    ■■ Trypsin 一族: chymotrypsin, elastase ...Serine proteaseSerine protease → 催化機制相同 專一性不同

    ●●改變專一性結合區可改變基質專一性 [Science]

    Trypsin (Asp189) ← Chymotrypsin (Ser189)

    演演 化化Juang RH (2007) BCbasics

  • Trypsin 家族的專一性不同

    COO-CAsp

    COO-CAsp

    酵素活性區

    Trypsin Chymotrypsin Elastase切 Lys, Arg 切 Trp, Phe, Tyr 切 Ala, Gly

    Non-polarpocket

    Dee

    p an

    d ne

    gativ

    ely

    char

    ged

    pock

    et Shallow andnon-polar

    pocket

    O O–C–N–C–C–N–

    CCCCNH3+

    O O–C–N–C–C–N–

    C

    O O–C–N–C–C–N–

    CH3

    Juan

    g R

    H (2

    007)

    BC

    basi

    cs

  • TrypsinAsp 189

    ChymotrypsinSer 189 Asp

    HisSer

    可以改變酵素的專一性

    Ester (+)Amide (-)

    Hedstrom et al (1992) Science 255: p.1250

    定點突變

  • 蛋白質間專一性的形成

    胰蛋白脢

    抑制劑

    I. Conformational Match:Van der waals interaction

    II. Interaction Forces:(1) Hydrogen bond(2) Hydrophobic interaction(3) Electrostatic interaction(4) Van der waals interaction

    +Kd

    Stry

    er(1

    995)

    Bio

    chem

    istry

    (4e)

    p.2

    52

    Juan

    g R

    H (2

    007)

    BC

    basi

    cs

  • 5.4.3 酵素的立體專一性

    BC

    DB CDB C

    D

    這兩個三角形並不相同

    A

    碳原子的四面體構造有很強的立體限制性是蛋白質構形的根本

    Juang RH (2007) BCbasics

    sp3

    酵素表面

  • 以下說明幾個重要催化實例,說明酵素的作用機制與活性區之組成。

    這幾張投影片在網站特附有 PowerPoint 檔案 Enz(5A),可看到動畫。

  • Substrate binding site

    +

    Lysozyme 活性區

    E35

    C

    O

    O-H

    D52

    C

    O

    O-O

    :O

    O

    D

    E

    E35

    C

    O

    O-

    D52

    C

    O

    O-

    H-O

    OE

    DO

    H-O-H:

    E35

    C

    O

    OH

    D52

    C

    O

    O-

    O D

    OH

    Electrostatic catalysis

    Non-polarenvironment Polar

    environment

    First product

    N-acetylglucosamine(NAG)

    N-acetylmuramic acid(NAM)

    NAG-NAM-NAG-NAM-NAG-NAM-

    A B C D E F

    Stryer (2002) Biochemistry (5e) p.199, Fig 8-7

    兩個酸基在 pH 5 下有不同形式

    Chair → Half-chair

    H-bonds

    O

    O

    sp3

    sp2

    sp2

  • Catalytic toolkit for active sites

    Gutteridge A, Thornton JM (2005) Understanding nature’s catalytic toolkit. TIBS 30: 622

    Combinations of different residues form ‘catalytic units’that are found repeatedly in different unrelated enzymes

    HistidineHistidineHistidine

    三連 Arg-Arg-Arg 正電集團 Asp-Asp 酸鹼配對 (Thr 定位) Asp-Arg 離子配對 (影響 pKa) Arg…Asp-COO- (親核攻擊)

    Asp-Lys-Thr triad (reactive -O-) Asp-Lys 配對 (調節 Tyr pKa) KEK (EK 控制 K112 pKa) 簡單的酸鹼對 (質子供需)

    Arg, carboxlyate

    Lysine

    Histidine

    Asp-His-Ser triad (reactive -O-) Asp-His 配對 (攻擊基質) His-His dyad (H83 攻擊磷酸)

  • Amazing histidine被採用數目

    被採用頻率

    Gutteridge A, Thornton JM (2005) TIBS 30: 622 WIKIPEDIA

    H57

    S195

    D102

    Petsko GA, Ringe D (2004) Protein Structure and Function F4-35

  • Ribonuclease

    :N+ NH

    H12

    HN N+-H

    H119

    O

    OPO2-OR3’

    R5’ Base

    OH

    OR3’

    PO2-HN N+-H

    H119N+ NH

    H12

    H

    O

    O

    R5’ Base

    O

    HN N:

    H119N+ NH

    H12

    HPO2-

    O

    O

    R5’ Base

    O

    H-O-H

    :N+ NH

    H12

    HN N+-H

    H119

    O

    OPO2-OH

    R5’ Base

    OH

    First productHistidine proton shuffle

    HOR3’

    質子供應者

    質子強奪者

  • Multifunctional enzymes

    (1) One active site, two reactions(2) Two active sites, two reactions(3) Trifunctional enzyme with tunnel

    Carbamoyl phosphate synthetase →

    Tryptophan synthase↓

    Petsko GA, Ringe D (2004) Protein Structure and Function F2-44, 45

    演化真是無限可能

  • Enzymes also has non-catalytic functionsZheng, L et al (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivatorcomplex that contains GAPDH as a key component. Cell 114: 255~266

    GAPDH has several functions:(0) Glycolysis enzyme(1) Transcription cofactor(2) Initiates apoptosis(3) ER to Golgi transportation

    Other examples:Phosphoglucose isomerase

    (Glycolysis & Cytokine)

    LON (Mitochondrial protease

    & Chaperone protein)

    WIKIPEDIA

    Glyceraldehyde-3-phosphate dehydrogenase