eurocode 2 hulpmiddelen, ervaring en evoluties naar 2020 · 1/60 eurocode 2 hulpmiddelen, ervaring...

64
1/60 EUROCODE 2 Hulpmiddelen, ervaring en evoluties naar 2020 ir. B. Parmentier Head Div. Structures FEBELCEM - ONTWERP EN BEREKENING VAN BETONCONSTRUCTIES VOLGENS EUROCODE 2 - Seminarie op 18 september 2017 - Technopolis

Upload: others

Post on 18-Jan-2020

21 views

Category:

Documents


0 download

TRANSCRIPT

1/60

EUROCODE 2 Hulpmiddelen, ervaring en evoluties naar 2020

ir. B. ParmentierHead Div. Structures

FEBELCEM - ONTWERP EN BEREKENING VAN BETONCONSTRUCTIES VOLGENS EUROCODE 2 - Seminarie op 18 september 2017 - Technopolis

MENU

1

2

3

Experience with EC2-3

Evolutions EC2-1-1, focus on FRC

Toolbox EC’s

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

SILOS & TANKS

Experience with EC2-3

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Permeability Cracking Joints

4/65

Not only a « cracking » story

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

7.3 Cracking

Tightness class Requirements for leakage

0 Some degree of leakage acceptable, or leakage of liquids irrelevant

1 Leakage to be limited to a small amount. Some surface staining or damp patches acceptable

2 Leakage to be minimal. Appearance not to be impaired by staining

3 No leakage permitted

5/65

SECTION 7 – SLS

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

7.3 Cracking

Tightness class Requirements for crack control

0 Cfr. EC2-1-1 (§7.3.1)

1 Cracks ≤ wk1

2 Full thickness not cracked

3 Special measures

6/65

SECTION 7 – SLS

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Cracks vs. leakage

W ÷ 2

Q ÷ 8

7/65

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

CLASSE

1

h

hD

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50 55

wk1

[m

m]

hD/h [-]8/65

Watertightness Class 1

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Calculated cracks vs. observed- Non deterministic- Influence factors- Shrinkage not taken into account…

9/65

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Observed vs. Calculated

10/65

wcal[mm]

wexp[mm]

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Simplified method & Imposed deformations Watertightness class 1 & hD/h=10 => Wmax = 0,18mm

Act , fctm

kc & k

Assumption on ∅ => ∅*

σs based on tables (∅* vs. σs)

As,min

Summary design method

s

cteffctcs

AfkkA

σ... ,

min, =

11/65

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Ex. : Wall 40cm – C30/37 - ∅10 ? – End restrained

σs

∅*

0,05 0,1

10

20

200 300

σs = ~230 N/mm²

12/65

0,2 0,3

c=35 mm=> ∅* = 10.0 mm

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Wall – Example results

2301000.400.9,2.93,0.1

...

,

,min,

=

=figuress

cteffctcs

AfkkA

σ

= 4690 mm²/m’ (ρ = 1,17%)

Not possible with ∅10 !5 options :

A. Calculate max stress and limit to fctk,0.05B. Iterations on ∅ >> σs but As C. Joints, injections ?D. Adapt Act => As will decreaseE. Reduce fct

13/65

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Summary by figures

14/65

0 20 40 60 80 1000

1

2

Thickness [cm]

ρ min

[%

]

PURE TENSION fck = 30 MPa

0 20 40 60 80 1000

5000

10000

15000

Thickness [cm]

As m

in [

mm

²/m']

σs = 150 MPa

σs = 500 MPa

σs = 500 MPa

σs = 150 MPa

(Act = full section)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Importance of classes prescription (=> wlim)

Oberved vs. calculated cracks

Dominant sollicitation ?

Large reinforcement needed ! <> Practice

RECAP’

16/65

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Towards 2020…

EC2 Evolution

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 19/65

Evolutions – EC2 towards 2020

Standards # pages # NDPs # NDPs / # pagesEN 1990 120 54 0.45EN 1991 770 292 0.38EN 1992 450 176 0.39EN 1993 1250 236 0.19EN 1994 330 42 0.13EN 1995 225 21 0.09EN 1996 300 31 0.10EN 1997 340 42 0.12EN 1998 600 103 0.17EN 1999 500 58 0.12

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 20/65

Objectives

EC2 update : Publication around 2021

2 phases (SC2.PT1 base | SC2.PT2 Fire | SC2.PT3 Innovations)

GOAL : Reduce # NDP’s

Regrouping parts (bridges, silos/tanks)

Discourage use of informative annexes

Update acording to State of the Art

Improve Ease of use

Alignment with « product » standards

Taking national regulations/practice into account

Process with the « systematic review »

Develop a background doc

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 21/65

Reduce #NDPs

NDP’s are not always legitimate !

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 22/65

Process with the systematic reviewBelgium was very concerned…

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 23/65

Comments from systematic review

# Comments

EC Part

ShearCracking Anchorage / laps

Punching

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 24/65

Update according to SoA

Stainless steel Assessment

FRP FRC

E

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 25/65

Regrouping parts

EC2

Design concrete

1-1

General

1-2

Fire

2

Bridges

3

Silos & Réservoirs

3Silos & Tanks

Only 5p. Specific for bridges !

[WG1/TG9]

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 26/65

Input from Model Code 2010

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 27/65

(still in discussion !)Some evolutions

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 28/65

Section 2 – Basis of design

No big shot

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 29/65

Section 3 - Materials

Resistance C100

LC80

RAC

Steel grades (B400-B700)

C30/37

28j/91j

<> EN 206

Materials (new) RAC (Recycled Aggregates Concrete)

Stainless steel

FRP (Fibre Reinforced Polymer)

FRC (Fibre Ceinforced Concrete)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 30/65

Section 3 - Materials

Resistance @91d vs. 28d ?

2 7 28 91

Age [days]

fc,x/fc,28 [/]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100

CEM I 52,5 RCEM II/B-M 42,5CEM III/B 32,5

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 31/65

Section 3 - Materials

Sustainability etc. We should make sure that all efforts in improving the sustainability of concrete by reduction of CO2 and other greenhouse gas

emissions are appreciated and honored

Economy We should utilize the full strength potential of our concrete, not “give away” 35-50% strength increase

Technical Use correct strength when calculating minimum reinforcement not one that is 20-30% too low Use correct strength when assessing robustness and risk of brittle failure Use correct strength and stiffness in non-linear analyses where also overstrength is a concern Less early heat development is helpful to avoid early thermal cracking Simpler definition of in situ design strength that solves αcc question Better reference point for scientific observations in research Use only one system common for all. Allowing on an individual basis taking account of additional gain of strength is a potential

safety hazard for misunderstanding in communication between designer/user/producer and will only give a marginal effect in reduction of CO2-footprint.

Technical /Economical Slow strength development can reduce production rate on site Late confirmation of conformity on strength, note however that EN 206 already allow confirmation first after 3 respectively 6

months (§8.2.1.3.2(4)), but that early confirmation is possible for example by use of control charts which is allowed by EN 206 and will give confirmation within 7 days,

Loss of “history”, much research work becomes more difficult to refer to (this is however a problem inherent in getting new concretes anyhow)

Resistance @91d vs. 28d ?

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 32/65

Section 3 - Materials

RAC : max C30 Max C30

« deemed to satisfy » philosophy (EN 206)

Link with exposure classes

More applications if tested

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 33/65

Section 3 - Materials

Design New formulae for fcd

Discussion on αcc

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 34/65

Section 3 - Materials

Design New formulae for fcd

Discussion on αcc

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 35/65

Section 4 - Durability

New exposure classes (cfr. CEN TC104 : EN 206)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 36/65

Section 4 - Durability

Impact on cover :

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 38/65

Section 5 – Structural analysis

Adaptations

Use of non linear FE for conception or verification

Effect of dimensions on plastic rotational capacity

Second order effects

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 39/65

Section 6 – Ultimate limit states (ULS)

Not yet available …

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 40/65

Section 7 – Serviceability limit states (SLS)

Simplified methods

Shrinkage in crack width calculation

Effect of over-reinforcement

Damping

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 41/65

Section 7 – Serviceability limit states (SLS)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 42/65

Section 7 – Serviceability limit states (SLS)

Influence of boundary conditions

along one edge

at the ends

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 43/65

Section 7 – Serviceability limit states (SLS)

∅max vs. steel stress Shrinkage taken into account

0,3

∅16

245185

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 44/65

Section 8 – Detailing rebars

Prestressing (+harmon.) Transmission length p

Cover (special cases)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 45/65

Section 9 – Detailing elements

As,min

As,max

Robustness

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 46/65

Section 10 - Precast

Not yet available …

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 47/65

Section 11- Lightweight concrete

Not yet available…

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 48/65

Section 12 – Not reinforced concrete

Stress-strain relationship

Simplified method with creepexcentricity eliminated

Strip footings deleted

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 49/65

Evolutions – FRC (future Section 13/Annexe L ?)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

Is this

reliable ?

50/65

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 51/65

FRC cross-section analysis

Traditional + fibres

+

_

Compression

Tension

Deformations Stresses

Fs

Fc

MRFf

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 52/65

Assumptions MC’10

FRC with/without traditional rebars

Behaviour in compression not influenced by fibres(Vf < 1%)

All fibre types but…

Experience based on steel fibres

« Fibre materials with a Young's modulus which is significantly affected by time and/or thermo-hygrometrical phenomena are not covered by this Model Code. »

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 53/65

Min. ductility (structure)

Ductility provided by traditional rebars

Ductility provided by FRC (no traditional rebars)

P

PU

UPEAKSLS

Displacement

SLSP

Load

MAX

P

crack formationPCR

𝜹𝜹𝒖𝒖 ≥ 𝟐𝟐𝟐𝟐 𝜹𝜹𝑺𝑺𝑺𝑺𝑺𝑺

𝜹𝜹𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 ≥ 𝟓𝟓 𝜹𝜹𝑺𝑺𝑺𝑺𝑺𝑺OF

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 54/65

From material to structure

1Characterization

2Performance classes

3Constitutive laws

4Design calculations

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 55/65

Performance classes

Class 2a

a : 0.5 < fR3,k/fR1,k < 0.7

b : 0.7 ≤ fR3,k/fR1,k < 0.9

c : 0.9 ≤ fR3,k/fR1,k < 1.1

d : 1.1 ≤ fR3,k/fR1,k < 1.3

e : 1.3 ≤ fR3,k/fR1,k

2.0 ≤ fR1,k ≤ 2.5

1.01.52.02.53.04.05.06.07.08.0…

fR1,k [MPa]

EN 14651

Proposal MC 2010

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 56/65

Constitutive law in uni-axial tension

Simplified « normative » approach

𝒇𝒇𝑭𝑭𝑭𝑭𝒖𝒖 =𝒇𝒇𝑹𝑹𝑹𝑹𝑹𝑹

𝒇𝒇𝑭𝑭𝑭𝑭𝒖𝒖 = 𝒇𝒇𝑭𝑭𝑭𝑭𝒔𝒔 −𝒘𝒘𝒖𝒖

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑹𝑹𝒇𝒇𝑭𝑭𝑭𝑭𝒔𝒔 − 𝟐𝟐.𝟓𝟓𝒇𝒇𝑹𝑹𝑹𝑹 + 𝟐𝟐.𝟐𝟐𝒇𝒇𝑹𝑹𝑹𝑹

𝒇𝒇𝑭𝑭𝑭𝑭𝒔𝒔 = 𝟐𝟐.𝟒𝟒𝟓𝟓𝒇𝒇𝑹𝑹𝑹𝑹

OU

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 57/65

Constitutive law in uni-axial tension

Approach fib MC 2010 : 1) Rigid-plastic Model

𝒇𝒇𝑹𝑹𝑹𝑹 𝒇𝒇𝑭𝑭𝑭𝑭𝒖𝒖

𝒇𝒇𝑭𝑭𝑭𝑭𝒖𝒖 =𝒇𝒇𝑹𝑹𝑹𝑹𝑹𝑹

𝝈𝝈 − 𝒘𝒘

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 58/65

Drafting EC2 for FRC

KO is for taking orientation of fibres into account

KG is for volume effects

αtx is for conversion based on (real) stress distribution assumption (~0,37 for fFtu)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 59/65

Towards stress-strain relationship 𝝈𝝈 − 𝜺𝜺

𝜺𝜺 =𝒘𝒘𝒍𝒍𝒄𝒄𝒔𝒔

Characteristic structural length (cs)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 61/65

ULS – Bending and/or axial compression

Simplified stress-strain relationship MC’10

Max deformation in compression (εcu2)

Max deformation in rebar (εud)

Max deformation FRC (εFu)

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 62/65

www.normes.be/eurocodes

Toolbox « Eurocodes »

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 63/65

RECAP TABLES & SHEETS

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 64/65

DIDACTIC CALCULATION MODULES

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 65/65

SOCIAL NETWORKS

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX 66/65

myNBN.be

Exp. EC2-3 EVOLUTIONS EC2 TOOLBOX

BBRI - Lab. Structures [email protected]