examples bs 8110

Upload: sujith-mathew

Post on 07-Jul-2018

431 views

Category:

Documents


17 download

TRANSCRIPT

  • 8/19/2019 examples bs 8110

    1/48

    Designed

    and detailed(BS 8110: 1997)OFCcontains 32 pages

    BQ7IBrifish Ceiiieri Associahon

    J. B. Higgins and B. R. Rogers MA, CEng, MICEThis documentFor a worldwide and up-todate literature search Ofl any aspect of concrete design or construction andrelated topics, contact theBCAs Centre for Concrete Information on Dl 344 762676.43.501 First published 1973Second edition 1986Third edition 1998ISBN 07210 1541 7Price Group F© British Cement Association 1998Published byBritish Cement AssociationCentury House. Telford AvenueCrowihorne. Berks RG45 ÔYSTel: 01344 762676 Fax: 01344 761214Website: www.bca.org.uk

     All advice or information from the British Cement Association is intended for those who will evaluate the signiticanceand limitations ol itscontents and take responsibility for its use and application. No liability (including that for negligence) for any lossresulting from such adviceinformation is accepted. Readers should note that all BCA publications are subject to revision from time to timeand should therefore ensure that

    they are in possession of the latest version.

    IFC

    Designed and detailed(BS 8110: 1997)J. B. Higgins and B. R. Rogers MA. CFng, MI(IContents Foreword2 Introduction This third edition of Designed and detailed has been revised to BS 8110 : Part I:1997, and the amendment dated 15 September 1998. Although there have been

    3 BS 8110 and limit state design several amendments to the code since 1985, the latest and most significantchange

  • 8/19/2019 examples bs 8110

    2/48

    has been the reduction in the partial safety factor for reinforcement m from 1.156 Design information . . to 1 .05. With higher stresses, less steel is required. However, the total saving may7 Structural summary sheet not be fully realised because there are otherconsiderations such as choosing a

     practical arrangement of bars, and the deflection in the case of shallower8 Floor slab members.

    10 First-floor main beam The calculations have also been revised for the loading requirements of BS 6399Part 1: 1996 and Part 2: 1995.16 Edge beam .

    Design charts in BS 8110 : Part 3: 1985 may still be used to provide a

    18 Columns conservative solution, and one of these charts has been included for the design ofcolumns. Lap lengths for these members have also been taken from BS 8110,

    22 Foundation Table 3.27, but adjusted for the design stress of 087f.24 Shear wall The tie reinforcement for robustness is designed at its characteristic strength. If thecharacteristic bond stress is used for calculating laps and anchorage lengths, then26 Staircase the values in Table 3.27 may be multiplied by I 05/l4. This publication takes aconservative practical approach and uses directly the values given in Table 3.27.28 Column design chart

    Observant users of previous editions will appreciate the skill that is evident in the

    29 Further information setting out of the calculations and the drawings. This is the work of the late JimHiggins, whose care in the production of the original artwork was meticulous.Sadly, he never saw the second edition in print. I hope that my amendments tothis third edition will not detract from his fine workmanship.

    Special thanks are due to Tony Threlfall for his advice and suggestions for thisedition.

    Railton Rogers

    IntroductionThe purpose of this publication is to apply the principles of limit stale design givenin BS 8110 by means of a simple worked example for a reinforced concrete

     building frame. The calculations and details arc presented in a form suitable fordesign office purposes and are generally in accordance with the following pLihI ications.

    BRITISH STANDARDS INSTITtJTION Siructural use 0/concrete. Part I . Code ofpractice/or design and construction. Milton Keynes, BSI. 1997. 120 pp. BS 8110Part I: 1997.H M STATIONERY OFFICE. Building and buildings. The Building Regnlation.v 1991(Amended 1994). HMSO, London. 21 pp. Statutory Instruments No. 2768.

    BRITISH STANDARDS INSTITUTION Loading/or buildings. Part I . Code 0/practice br dead and inposedloads. Milton Keynes. BSI. 1996. It) pp. BS 6399 : Part I1996.

    BRITISH STANDARDS INSTITUTION. Loading/or buildings. Part 2. Code 0/practiceJiir wind loads. Milton Keynes, BSI. 1995. 82 pP BS 6399 : Part 2: 1995.

    BRITISH STANDARDS INSTITUTION. Loading /ir buildings. Part 3. (ode 0/practice /r imposed roo/ loads.Milton Keynes. BSI. 1988. 23 pp. BS 6399 : Part 3: 1988.

    BRITISH STANDARDS INSTlThTIO'J. Specification /or scheduling, dimensioning, bendin' (111(1 cutiin' steel rein/irceinent/r concrete. Milton Keynes, BSI. 1989.20 PP BS 4466 : 1989.

    IIIEC( )NCR VIE SOCIETY. Model

     procedure /irthe

     presentation 0/calculation,r.

    London (now Slough). 1981 . Technical Report 5, second edition. 18 pp.

  • 8/19/2019 examples bs 8110

    3/48

    THE CONCRETE SOCIETY AND THE INSTITUTION OF STRUCTURAL F.NGINEERS,5iandard method o/detailnig structural concrete. London. The Institution. 1989.138 pp.

    BS 8110 and limit state designc:)bjective To serve its purpose, a structure must be safe against collapse and beserviceable in use. Calculations alone do not produce safe, serviceable anddurable structures. Equally important are the suitability of the materials,

    quality control and supervision of the workmanship.Limit state design admits that a structure may become unsatisfactory

    through a number of ways which all have to be considered independentlyagainst defined limits of satisfactory behaviour. It admits that there is aninherent variability in loads, materials and methods of design andconstruction which makes it impossible to achieve complete safety againstany possible shortcoming. By providing sufficient margins of safety, the aim

    of limit state design is to provide an acceptable probability that the structurewill perform satisfactorily during its intended life.Limit states can he classified into two main groups:

    (I) the ultimate limit state, which is concerned with the provision ofadequate safety;

    (2) the serviceability limit states, which are essentially concerned withdurability.

    Generally, in practice, there are three limit states which are normallyconsidered for reinforced concrete and these are given in the Table below.Serviceability limit statesUltimate

    limit state Deflection CrackingObjective

    Provision ofadequate safetyStructure should

    not deflect so as

    to impair useof structureCracking should

    not be such asto damage finishes

    or otherwise .impair usageLoading regime Design ultimateloads Design service loadPerformance limit Structure should

    not failDeflection should

    not exceedspecifiedlimits

    Crack widthshould not

    exceed 03 mmgenerally

  • 8/19/2019 examples bs 8110

    4/48

    Characteristic values For the testing of materials, a statistical approach can be applied to thevariations within materials which occur in practice. A normal or Gaussiandistribution curve is assumed to represent the results of the tests and a valueknown as the characteristic value can be chosen below which not more than

    5% of the test results may be expected to lie.The characteristic strength is given by the equation:

    Characteristic strength = Mean or Average strength  —  L64 X Standard deviationIdeally, a characteristic load should be similarly defined, as a load with a 5% probability of being exceeded during the lifetime of the structure. Flowever, itis not yet possible to-express loading in statistical terms, so the Code uses theloads defined in BS 6399: Parts 1, 2 and 3.3

    Desiqn toads The design load is given by the equation:Design load = Characteristic load X

    where 'r is a partial safety factor for loading. This factor takes into accountthe possibility that the loads acting on the structure may be greater than thecharacteristic values. It also takes into account the assumptions made in themethod of analysis, and the seriousness of failure to meet the design criteria

    for a particular limit state. The consequence of collapse is much moreserious than exceeding the serviceability limits and so this is reflected in thehigher values of the partial safety factors. Components of load have to heconsidered in their most unfavourable combinations, Sc) sets of values offor minimum and maximum design loads are required. For example, theworst situation for a structure being checked for overturning under theaction of wind load will he where the maximum wind load is combined with

    the minimum vertical dead load. Lower values of ;' are used for thecombination of wind, imposed and dead loads than for the combinations ofwind and dead, and dead and imposed loads, as the probability Df three

    independent design loads achieving their maximum value at the same time isless. The table below gives the partial load factors for the ultimate limitstate.Combination

    of loads

    Partial safety factor to be applied todead load imposed load  —  windwhen effect of load is loadadverse beneficial adverse heneficEal

    1 Dead and imposed2 Dead and wind3 Dead and windwith imposed14141210

    1012

    16 —  12

  • 8/19/2019 examples bs 8110

    5/48

    1) —  

    12— 

    1412

    Deiiçn strenqths The design strength is given by the equation:

    Characteristic [)esign strength = — _______________ s _ t _ r  _ e _ n _ g _ t hwhere is a partial safety factor on the material strength. This factor takesinto account the variation in workmanship and quality control that may

    normally be expected to occur in the manufacture of the materials. Thevalues of to he used for the two materials when designing for the ultimatelimit state are given below:

    Values of , for the ultimate limit stateReinforcement I .05

    (oncrete

    Flexure or axial load ISShear strength without shear reinforcement 125Bond strength 14Others (e.g. bearing stress) 15

    iOLisiuest In addition to providing a structure that is capable of carrying the designloads, the layout should be such that damage to small areas of a structure orfailure of single elements will not lead to a major collapse.The Code requires that in all buildings the structural members should belinked together in the following manner:

    (a) by effectively continuous peripheral ties at each floor and roof level:4

    (b) by internal ties in two directions approximately at right-angles,

    effectively continuous throughout their length and anchored to the peripheral ties at each end (unless continuing as horizontal ties to

    columns or walls);(c) by external column and wall ties anchored or tied horizontally into thestructure at each floor and roof level;

    (d) by continuous vertical ties from foundation to the roof level in allcolumns and walls carriing vertical loads.

    In the design of the ties, the reinforcement may be assumed to be acting atits characteristic strength with no other forces present but the tie forces.

    Reinforcement provided for other purposes can often be used to form partor the whole of these ties, so that in the design process, when the requiredreinforcement for the usual dead, imposed and wind loading has been found,

    a check can be made to see whether modifications or additions to thereinforcement are required to fulfil the tie requirements.

    Durabflty and re resislance At the commencementof the design, the following should beconsidered:

     —  the climate and environmental conditions to which the concrete will beexposed;

     —  the concrete quality;

     —  the cover to the reinforcement.It should also be noted that the quality of the construction process and the

  • 8/19/2019 examples bs 8110

    6/48

    Iirst hours after casting of the concrete have a major influence upon thesubsequent durability of the structure.The cover for protection against corrosion may not be sufficient for fire

     protection, so this should be considered at the onset of the design, and alsothe dimensions of the members.The Code gives maximum water/cement ratios, minimum cement contentsand minimum characteristic strengths for concretes suitable for use invarious environments with specified covers and using 20 mm nominalmaximum size aggregate. The minimum grades will generally ensure that the

    limits on free water/cement ratio and cement content will be met withoutfurther checking.

    Appflcation Durability and fire resistance requirements are considered at the onset of thedesign process because this determines the grade of concrete, the cover, andthe size of the members. Usually, for most structures, Part 1 of the Code will

     be used in which it is assumed that the ultimate limit state will be the most

    critical limit state. Design will therefore be carried out at this limit state,followed by checks to ensure that the serviceability limit states of deflectionand cracking are not reached. In special circumstances, other limit states,such as vibration or the effects of fatigue, may require consideration. Should

    it be necessary to calculate deflections and crack widths, methods are givenin Part 2 of the Code. The serviceability limit state of deflection may be thelimiting requirement for floor slabs with large span/effective-depth ratios.This can he checked before the reinforcement is determined, although someengineers may prefer to follow the procedure where the check is made afterthe reinforcement has been found.

    Simplified detailing requirements for the curtailment of the reinforcement

    may be used for beams and slabs which fulfil certain design conditions. Nowever, for other situations, the curtailments should be taken from a bending moment envelopeand be in accordance with the general

    recommendations of the Code.5

    Design informationClient W Co#.ai  ArchitectEngineer responsible

    BRJZôers

    /j, Building Regulation authority or other andDate of submission

    TLe. LIL14

    'a, 5SiO T tnj L of Cocre.tc Past 'j. S7Pout

    P2 IO5)ckr PCU B8

  • 8/19/2019 examples bs 8110

    7/48

    Relevant BuildingRegulations andDesign Codes

    Lbon Intended use of structureFire resistance reqLnrements

    Roof 5-

    FS1 j'or o- irvoecj C°) &ct tL3r 4.QkW/ 4O k4/

    LXc Co4 Fors aGeneral loading conditions

    Speed2 a/ec (basicFactors 105 Sb = 171, S 1.0 S = 1

    • O SCo'84, C +O(*r.') ,.ç, O•3((),C_r=QO2SWind loading ccnditrons

    e.'Jere.4 (Vd ('i €xaS) (S6llOTcie3.2)Exposure conditions

    - v\O AoLjo, beac rreure 2ooSubsoil conditions

    R1cfs o k4 ov wcikFoundation type

    ,r-A4e. 4o wt '20.

    ,a ( €IIOTcIb3.)

    Material data

    L. strek -fL4o- 1iJ'c •'

    Sdf wet 4'ok4/ AU S-oir,. ov ore

  • 8/19/2019 examples bs 8110

    8/48

    Other relevant information

    Structural summary sheet3 1'2..4.2t,  AU CoCa

    z, Mbean ,  bW4w

    -l wallW1 t5-rAI4cE.

    i, IiP

    worce ré4 eA

    . Le4Ar ka bx-r vGod k L. EW kor prviAed. b ctrcor. r4 /u—i, o4 r4 /"44 -3C C

    Ft C2o4\0) = 2Q+lG 3G(Ok,P - Perpcc ;te

    It.— ter ea -w— wc7

    G 5ooO=4oooO0

    0-I 17511 fl5S S S 0

    T"{P1CALLOOR PLA4oox3oOOOx'oO

    SO OO3

  • 8/19/2019 examples bs 8110

    9/48

    T'-(PICAL cRoSS- C'TtoJ.SJe: ICryo,, CoS,$.275Ox'l75OxOO

    C C-cPcP

    ><Ir. rEt,w

    C C Ccc C CTia PRVSi -

    Floor slabinterior-span solid slab1755000BS 8110ref.CALCULATIONS OUTPUT

    3.?, T c3 334

    DugPB%t.vr'ct FR.E REITA4CW.L4S4ov hr U4 CovCt.ov of ik cover .. '2o si.3.r.2,4Tb(3,12

    LoAO.17E x 24 4.2

    F (G4t ) 0. rtoc.d = 4.7kt{/Cpa.ge c) = 4. okN/Dgvtoati t.1r47+ 1.x4) 503k 44.70kN1/2

  • 8/19/2019 examples bs 8110

    10/48

    F

    32.4Iable3i2

    ULXIMATE /VsIraror r.spo. o.oC,3F =0.OCx,43x5O = 2O.4kh/ wct 4.DrtS4.44Tb(e8

    FCEfrTt4 ppor. k 42oo-.41 ox4S2 0 0Th

    = oc'23 i4s(o.S+J(o.Z— ) =i (buto.x1494s:A5-- PA 204x1&O.95 O.9546Ox14l5-

    Cdr5cearo.S4.91O3' 0.22 M/w lc?x 14S=

    Top&otow

    T12. 0o (iiJ)ok.

    TQ6kTok3•IO

    DLaC.T(oi.4 6k /4faeq rio =PA 2o4d0',. 031 2x4(O33OI4')

    -

    3 x 317cr or WOr re.L.'.ft. 1 . Atlte 5 '21.55000 - 33 $(o 149 •, r4o oc.

    2U.27 CR.Acl(ii 447

  • 8/19/2019 examples bs 8110

    11/48

    p-cj bt.twee. bo.r — OC 12 34

    k 11, ( 2 oO ., rttQ. cJck.4. c.*j ak.. k.3.12.3.4TAbteZ7

    r PV(op..J o..ct4We5 ITR..iALii Ft = 3kN/.wdT €orce 4t( 7 ( 4t)_

    4r.Lw>Ft

    4S.x lo

    44,0 -'fl' :#3oo. T12.e3oo(377I

    tso.l.5T10.-41 2)00

    i1loo 4T "—'

    -

    — — C3*'Z)— 

    5T10-41r2 It,I

    S-rto--3GO'r2I

    L I(2+3) I— .JCommentary on bar arrangementBS 8110 ref Bar marks Notes

    All bars are labelled in the form described in the Standard method of detailing structural concrete,e.g. 45T12-l-300B1 means that in the bottom outer layer there are45 Grade 460 Fype 2 deformed12 mm nominal size bars at 300 mm centres and the bar mark is -I-.

    The bars are numbered in the likely sequence ot fixing; the positions of the first and last bars in a string areindicated in plan and section. Intermediate bars have been omitted for clarity.

  • 8/19/2019 examples bs 8110

    12/48

    Table 3.25 Minimum area of tension reinforcement = 00013 X 1000 >< 175 = 228 mm2/m.3.12.11.2.7 Maximum clear spacing of tension bars = lesser of 750 mm or 3d, i.e. 3d = 3 )< 149 = 447 mm.

    h < 200, therefore no further check on spacing —  1 Main tension bars Tl2 @ 300, A = 377 mm2 > minimum 228 mm2/m.  —  OK.

    If curtailed, A = 377/2 = 189 mm2 < minimum 228 mm2/m — 

     not OK.3.12.3.4 Bars lapped 300 mm at bottom support to provide continuous tie.Table 3.25 2,3 Secondary bars  —  use T10 @ 300 (262 mm2/m).

    3.12.8.11 4,5 Minimum lap = 300mm > IS )< 10 = 150 mm. Lapping reduces bar lengths for easier handling onsite.

     —  7 Laps are shown staggered for effective crack control.

    3.4.1.5 6 Minimum transverse reinforcement is placed across the full flange width of the edge beam (minimumwidth = 650 mm, see page 16).

    Table 3.25 Minimum area = 00015 )< 1000 >< 175 = 263 mm2/m  —  use TlO @ 300 (262 mm2/m). —  8 Main tension bars over support 112 @ 300 as bar mark I.

    3.12.10.3 One curtailment shown at 03 effective span from face of support. Further curtailments prevented byminimum area and spacing requirements similar to mark I.

    9i,TIO — c — 30OTQt

     Al1.

    )5Tt0-5JT' Mt.

    BI

    IIU-

    '2 .1L

    ST tO -51

    1oo1

    30O—IL%o

    '13

    8T1O-2.00'7T1O-3)2 Mt.41

    2

    1

    @_Th F

  • 8/19/2019 examples bs 8110

    13/48

    i_ (2)  _iT10- 13007 TI 0- 'z) e2 AlL

    4T'2-1- 300±

    P LA.1 (r4 '2 ovfte4r c[ti) A It AR. = alecY4J_ &r5

    .45s Att A-A

    ,z tt.- CovE.R toote 5= 20 $cale; i;o—-First-floor main beamtwo-span flanged beamBS 8110ref.CALCULATIONS OUTPJT

    .2.I.21 Su.FR.P1ME. AL'-t'5

     A taa.r ett. Ljs e.LLa.r ro4kcgd e' b er rMrv S C tD

    forces. F-ort ç-1oobe co(s.bosje&iiiwecL to be çxed.4 tse  be(oi c1ve. Ti. t'i.ov,.w ot prove rot rcd rert.

    Lart* 1L4 to a-re. takcr b sc-ur wcAk.• 3To.bk6

    3,34

  • 8/19/2019 examples bs 8110

    14/48

    D

    'F Ri STA CG

    ov1 COVW for vt co t.ov of eposurc 2o. cove ?OO wbefor -

    t cover Ii4K520.2122 LAPD4G p4 toc o75o.b CPe&) 5c4.7 —  2.S se-ieLt(o. — o.r7s)o.3 x 24 = '2•3

    oGa.w 2B.kW/,

    Mv ce o4 i4 (.B) = £x4 2o.Ok4/, + '(2 + 32 'i& k/s103K 2S&k4/. Oc 2OOk/t.

    +t.4t .i2k/M Bi ) Moie.m() .O ve4tl.Q%uie.4:

    B¼A 1'

    cZUIL4 rowv AvJ

    I12

    ------

    Ctk I w1o po4LtperCowC.Lower II

    Scur (k)CASEJ1

    CM IS%t

  • 8/19/2019 examples bs 8110

    15/48

    Lij*- Cokiv v#ower

    sc-0- (1)

    CDiLAI stf,

    sLeer (-!)- 17$ 2O + 4o2 - 348k + Qc+ ba

    + ii

    -— — 24 oo 22

    (8't'2-19 2.7( 4- 4$  — 2So 28 - 44-it 7 — + 'a-

    —34 #1's

    2$2 i'2o 3

    iii - .54 e4 + 2o4 -1- 33

    + 2'

    + 17 -- 542

    1%1010

    f =460

    ........t...t..o 8000 6000 300CALCULATIONS

    MDN-E'JT ..NvLOPE

    Rrnto

  • 8/19/2019 examples bs 8110

    16/48

    VFogcE E1LOPE40 r CASE I 17S o .5S (SQ..e ii')

    402 2&L ( —O')

    II 1 (—2o'J')II 34 S2 (I) III o{1 eatA.wecoçc L 32S-UILa6tI trbut&i2? I22 I

    EveLop.3511

    oao00 m.

    •1I2BBR I3001L

    = 282

    i55 k10.4

    0.s46o vw1=0

    &s2

    0

    s'. t&or(. .3 a

    4T251— . . I,

  • 8/19/2019 examples bs 8110

    17/48

    440

    J__ Lj4co2 T 2BCo

    :vta.-vt Suçpor:BS 8110ref. CALCULATIONS OUTPUT

    Fcor. ?JL Q1 = 0.7K' O.4o2(0.7O.4')_01(O.7_Q.4)2

    K Ot21 > O1o4 bd2 = 4oxooi4.4

    42O0.02'3

    Mu3EAM.,

    t.FLOofE')322t /ct3.4.4.4 = o.io4

    efoe 50 O > O7/O.4,):. /c i-0o4 o•s ______ - so 0•4S A5

    - 32. < 10 — t7560.5x4Ox0.9Sx4SO — 

    FroM .M.evop €11) 2.2.1 = i5x tO

  • 8/19/2019 examples bs 8110

    18/48

    40 x OOx 45O

    ---- (O.So. °') D2 :.- cl Ø.4) As i,xtO O'Sx4,0.x 0.9rLx 450ckovcbox: 775 o'S.c.4Ox4S175 x to312'32'2 ..IC.b4rcksr= 190x S0/5)2 x 4o,( '25M

    Frv .Vf. CvveloeM =

    3.4.j. .M.evei.oe, E. . .OO+ 0.14 x (,00OM = OO7, cu A — 13x 10

    4 T 2 E(tOtc...o ".= O.O,4657 MAMSo

    2T25

     __

     j nPoo)25,, a.6

    1t4012

    4o 4SoCe4c Abt9e4

    we.b o.oo K300X 500 = -se. or-.oVe.r Spport,0.002fx3Q0oO=

    TLc 2 T 2S(8lr.t&4%SLOBS 8110ref CALCULATIONS OUTPUT

    34.G

    T.6te3'BTóIe7

  • 8/19/2019 examples bs 8110

    19/48

    2 45.5Tbe37Tobe7SkEAR REll4PORc €MEJT

    Ccve. tior, re.L,, 2T2 (82 w2)4boo A - 100x2 0•73, \!c 0S7(- OO4SO / t'vvk  A 6 0.4 OOx 04

    ' OSS(2O = 0•75 ' 4B0 00TrR2ooSv 3oo .(vO7O04' .o59/2d.4SOSkct LR1k2 2 A/ oo io o.•7s j 2 J .50 j 1tT6137

    4•S•tO Loao8LMV.f.d2t V/N/

     j(oo

    vv0•%

     Ay

    tlSLksR'l2C. 175

    R. 2 3-

    i12 R 1 300

  • 8/19/2019 examples bs 8110

    20/48

    R..t'2. @ 3oo

    ,,L.H252M•'32

     j•sc O.otSS j.14R.L

    V1G875 k..N.o3•2S•37

    O.'9p.51O.734..1

    T.bIe•9 3.4,bkto

    FLECTION1 b-Lo= bM 2x 4(oOic I75i27 23/2 42Ox4SO2 3x 1%O 325ctor i..5 224 Acto -- &000 450

    .,'2.t1.2.

    Tk32g3ViII2

    3 I2124 2i2

    C ACt rk ba pa1

    :c-.k ct;J1V\

  • 8/19/2019 examples bs 8110

    21/48

    T'VLOY. \'L4. I

    0/

    f&  €xtr-.f sport T — 2o+ 18I.e.raS $..4por-t T  —  300

    e,

  • 8/19/2019 examples bs 8110

    22/48

    4o2< 41kN c'r o 473 x o . 04

    -2

    S2L'e oc; D2rS0r  €.a4L,

    0L (va.4Q,

    '0O 3 t xteJI I153k Nn Extntot QIon4 T.C.P(3.1,Sa.cL450.

    2) b =300. (.C t €.Lo. ct. 5Ø =to pt, we4- M /I €T.C.P 2Commentary on bar arrangementUS 8110 ref Bar marks Noicslius beam shows loose splice bars at each column intersection. Ihis met hod simplifies detailine and 0 singand the span cage can readily he prefabricated.

    — I Tension bars arc stopped 50 mm from each column lace to avoid clashing with the column bars3.3.1.2 shown in section A--A. Nominal cover 20 + 12 32 mm > 25 mm, say 35 mm.3.12.9.1 2 Remaining tension bars stopped off as shown in the curtailment diagram above.

    3.12.8.14 ('heck masimum amount of reinforcement at laps < 40 breadth4 >< 25 = 100 mm < 0-4 X 300 = 12)) mm — OK.— 3 loose bars arc fixed inside column bars as shown in section B—B. Although designed as compression3.12.3.4 bars, these bars also act as internal ties and lap 1000 mm with the adjacent span bars for continuity.— 4 The two tensioil bars are stopped 51) mni from the column Oice to avoid the column bars beyond.— 5,10 loose I—bars are bxcd insidc the column bars and provide continuitS for column and internal ties.

    3.12.11.1 ('heck minimum distance between tension bars 25 mm (aggregate si/c f 5 mm).

    30)) — 200 -— 100 mm ' 25 mm — OK.3.12.9.1 Top legs propect from centre-line into span. minimum dimensions shown in the curtailment diagram.'4

  • 8/19/2019 examples bs 8110

    23/48

    c,2R12 - 115

    i4eoO  —  

     A 'ZTi6- Gt '12 t24

     A-A ___

    -

    : O'2T2,-2ELE VAI 1For o ba.c4 r .stcxxce M o 2T2S ('3&2a = c1_ bdxxOO.9 5[j] M= O.5fx4x, (3.4.4.4.) a=Top: b=300, /4o.9i2)MJ7Bt,n: b 1420> = 0., M13'5km. — 4LY Mo± Ev.ve1opii.& 1o  ____ l_o.I_ _____1sCURTA1LMT DIAGRAM.'75bOO

    M A1P4 EAMcerLNK DARAIY\3.12.3.63.12.8.143.12.8.3 —  103.12.8.3 —  6.93.12.9.1

    3.12.4.17.8

    Bottom lcts lap minimum 00)) mm with span bars to provide continuity for the internal tie.

  • 8/19/2019 examples bs 8110

    24/48

    'lop legs5 + 450 1315 mm ) let both legsBottom lees 200 100)) 1200 mm ) project 350 mm. say.Note that the bottom lees are raised to avoid the 40i rule in the lower layer.

    ('heck hearing stress inside bends. Jy ' 55 br each radius to simplify bending.'lop legs 535 - 450 05 mm ) let both legsBottom legs 20(1 —4-1001) 1200 mm ) project 1200 mm. say.Else r 4d minimum radnis bends.

    link hanger bars arc same length as bar marks I and 4. Bar is one size larger than links (n' inimum 12 mm).'Ihe tension bars over the support stop as shown in the curtailment diagram. These hai's arc Oxed insidethe column reinforcement as shown in section B—B.'Ihese bars are bundled vertically in pairs to reduce congestion and this also allows a gap(ninimuni 75 mm)for insert mii of a vibrator.

    — II ('hosed links, shape code hi. are arranged to suit the link diagram above. Open top links, shape code 77.arc not suitable for the sites shown.3.12.8.12 Note that links it laps are spiLed at ilot greater than 200 mm since cover I'S bar size.15

    Edge beaminterior-span flanged beam1=••••• t f '3505000 300BS 8110ref. CALCULATIONS OUTPUT

    To.bIe

    33,34DL,RAILITY FIRE. 'S1iCENDw2aJ Cver tjqr Ovc cf ex?oure = 4OøA..3OOwde. be.4 for ir.ero /vLLMtA Co/e.r 4O%W%LoAi

    Ie44 CooA 4!rov

    2x2294

    6-325.0.' o-7kL

    ose4 i osab(p.t W'25 2.s•okM. byi (o.4 544o 125.0kg.k= QO.7kJ

    k= 2•Ok.F =i'zsok.TAb(e..35

  • 8/19/2019 examples bs 8110

    25/48

    ULTtMATE .M'S IrorsorC M.oo8F € OO&xt?x5 O.OkW

    Wtt4—. a: M E O.07 12Sx 4S4443.415Taá'54;,IoTcbk7

    t.rLor os: 5Qx0' OO5 bd2 4ox oox'2So

    (o.s+a;- 0'O)  A: 0Xi0 442.o5,46OxO'S7x2&D

    M4-Ltcuy; e.fewi4t =- 43.9x Cu 40X650x 2902 002.,  ASrorceO5SF*1•2S6875kN, fc'ot reforea.rc2T20'Larforce G8'75_ (D. I+ 0.28) 2S1oo4 o.is 5BxD =

    bd 3oo,'2PO / 3oox2.BO 0.G3N)

    v

  • 8/19/2019 examples bs 8110

    26/48

    (4o2

    iR.io €200

    tLccgct.4.'(.1

    1ce3

    Te,g

    D,FL.CT%O,.J 44L.C

    22o b7b_ o.4>o3)2M - 43.SIo' 2 x 4o 5ox29O - 3x 4o2 272N/rn•. Moft.a,. fi*4or 153,1Aow*bLe. s&r/cff.dLp rto = 22 x1ooo 17.2 2O .'.k.l2cI.2A

    Tcbe)3.12 (.2.4

    CAc OFO 7rso \92>71/s (sedeco) A(oJbd&rcpczc 2g CC

    T0p2 ar5o chkC= 41000 220 ,coc QvJLQ CtE'oe 5.Cj'% 2L rdtsre O0,1I

    okoiIc27

    3..U TIE. PR.oVl,O4-eLF4. A5j .

  • 8/19/2019 examples bs 8110

    27/48

    U'L'Tt2, 4t= . x74 45 3oc To -'ZTVZ.

    Bar marks NotesHorizontal bars in this member provide the peripheral tie. Minimum lap = 300 mm.I The two tension bars are stopped 50 mm from the column lace to avoid clashing with the columnbars shown in section A-A.Separate splice hars are fixed inside vertical column bars.

    Minimum area = 30% A = 03 x 364 = 109 rnm. Use 2'T 12 = 226 mrn.I ap = 35 >< 12 >< 109/226 = 203 mm > 15 x 12 = 180 mm < 300 nim. Use 300 mm lap.3 Link hanger bars also provide support for slab top reinorcenienI.

    Minimum area = 20% A sI1pT1 = 02 x 436 = 87 mm. Use 2T 12 = 226 mm.4 Tension reinforcement over support is fixed inside vertical column bars.

    Bars are curtailed at 025 span from lace of support = 025 x 5000 1250 mm > 45 x 21) = 900 mm5 Closed links are shape code 61

    '23R40—5-200 A1 je- co

    2 T '2O 4n

     A

    EL EV Ar iot-75ScaL1e1tO 44 3COVE o ks =40U U

    t •21 iCommentary on bar arrangementItS 8110 ref3.12.8.11

     A-ASc4, t:"ZO3.12.10.2

    Figure 3.24Table 3.273.12.10.2Figure 3.243.12.10.2

    Figure 3.2417

    Columns

  • 8/19/2019 examples bs 8110

    28/48

    slender and short columns

    EW / = O.S (E4o:4.5 AD TcP4.oboov)or O tv\

    = I52> iS= 40 = 460lst

    14000 15000 1j• 3003008000 6000BS 8110refCALCULATIONS ouTPur

    2I2.1 5ue,-FAM A4ALi'$lS - rEje.r to bpMe.iO.

    UR(L4Tt c4 RsTca

    cover- o' r o U4o Coo4or o4 ot e xpo're 420o.Ikreroj 2o w...

    T3k '4cover 4 -..k',

    xtvor i 2 o(a.3o 4Ovst*w,

  • 8/19/2019 examples bs 8110

    29/48

    It4TRAL CoL-u (u..ctaii -- oof) AXtAL LOA o4 M*1P'T$ifrow. ANALXEAML$k.N

    COLUMIc LoADS CGLMkaM JTS IMP0cEDE2

    aa t 2 1. 2. d 2 1 2 1 2

    oa 49210244%33

    S4 4 53 5

    i4 J133

    34 4J 32. sa 9 9

    100 533 3 3aFL 224929o117140

    U7

    t3 SB321B4

    ivj32 s&

    3' . , S37 I9 6G,724.F-(. 298

    249

  • 8/19/2019 examples bs 8110

    30/48

    2o11714017

    i3 i532i54117

    5S S9 9

    14 32 b93 1 FL 3oo252292

    12014

    liB

    37 ts134

    ics120

    g 34— -5. i4 14

    — — 873 42, 12Th U82I 8000 I ooo

    LOAD CA1

    1oo1='LoA CASE 2

    (PoLr -, 1atfecti.ve=  j33 &TabI € 319

    8•l '3

    N-IS (3 D.9 E4coc2.SxA.5 =

    4 ,0,

  • 8/19/2019 examples bs 8110

    31/48

    1N1RNAL COLL4Mt.JLôd Ca ±(oo- t)ot.4o.d z. tOO * Q' 773 7beo4 i27 -M1, 0, M2 S, O.4M. 7.k

    04 M - O.(DW\2 = O+0x i fI4 > 7.2

    £1"T ( e'y tDSIx0.xl3S .4' a kb') 2ooo=DOS3oOqreLe..s o

    U23x S44 2.3S < L.22 (-' b")M = 42> 29k,

     _____ oe 1. bovet oor, cvv.toc4a2 od, oJ:C' •t'255

    L76 cN. M 4 1c,0 - 0. x .34 = 2o.4kNr.,

     —   _______ -- _  _  _  _  _  _  __  _  _D Mow. €.t 204 + OM= 4 > 358 Ti RO','SiO L0.4 i.os(2i 28i N

  • 8/19/2019 examples bs 8110

    32/48

    2 0/460 (1 0 . 9O wBS 8110ref.CALCULATIONS OUTPUT

    t4 + 544Po_,t t

    32433.. t

    Ei 3

    S 3'3Prt I3. 2.72

    (b M+M  —  658 = x si = 2''9 k.2'2 L = -- 5'o8xoi0_ '2-44a 3O-4o-i3 = 247.

    - 2.47 __ - = Q32OI. O•2S 4Qx.OOx47xlci3 74ik..

    N> t- 4T'S (%oi)=K -—  _______ = O2 23-741= .4ioox%O -

    cb fr\ cLa.-,Ce.ck , _______=

    = _____1v1 0,

  • 8/19/2019 examples bs 8110

    33/48

    Mt.

    ;5o k.CcLrt 9t.2B')3k.

     _ c2474T'25(tOGOIvw)ok,ok.

    " 51.M23.9-7é

    5'8 > fr22.o19

    --ectLie

    k-S 0'S Cerc

    LK= O9x

    =2ZI• 0.9 (evct0.9 x

    Y= 'L15bCoAcLo;==

    usiv.43 oac-BS 8110ref.CALCULATIONS OUTPUT

    EXTRJAL COLUMt4 (Foo R..ooF)

  • 8/19/2019 examples bs 8110

    34/48

     AtAL LoA1 cd MME,.iT ALTOTAL

    u-AMkL OADS CoLuMtt b$1QN L0A CLMk0M. T$IMPO$E.D loP oTToA4

    LDAO C4E t '1 i 2 2.' 1 2 1 2t. C

    i92 i.7 4? 4 i0 5 S4 9 98 oSSW.

    .

    rt247 25S U 42 4k2.oS

    25B

    i1S

    2a15 95SW.

    24.eti3er.o-vc4e1!52471J2!

    2625il5

    it & 13120

    25S

    l 5Th 125t25G1L5L2$

    S 10595 joS

  • 8/19/2019 examples bs 8110

    35/48

    ti7SW

    t. 245 2S3 ii V74 2&.U97&&10

    E'oO4 'SW.

    24e t'25 2S 25

    :ii 1 4.02 1D54 16O

    oor)cFt (t)LCLA1)SOT CoLM

    e(.rt PSQc S4T2B

    C i90 P%

    I3\)CD4Ov top., boo3)=EOS399Por 1.PrI IN OsxoO+44-cY924O O5S k,fr\ z

  • 8/19/2019 examples bs 8110

    36/48

     Asu c 300-

    U8  N11hi7xJO 4.3

    -237 - 0•79 -k-- oo

    0osc. = 2 '2.3, A5=.2o7oB €.o' 1st.c,+fa4 'i

    (4T' i%D2)20

    154, ;

    iSkN. 7 k1Lb

    I(4TEiNAL COLL..U1M F'2 ExTR.AL COLUMN FlLLv,k,J

    VertcaS it.rs-—;-----—- —----f--Ltrvk_J Vt.ai Se4o,?

    c(1.

    .

    — -

    — 4

    Y9J 4 4.COV.R t0k'= 40.;4• 

  • 8/19/2019 examples bs 8110

    37/48

    :©-4 i IcoR t,.

    F c-IL -,—;1SCALES i: 5O j 'ZO--The presentation shown above is schematic. This tabular method adapts readily to element repetition.The sections are shown in their relative positions adjacent to the vertical reinforcement.Main bars, area> minimum 04% bh.

    Slope of crank at lower end = 1:10 maximum. Crank offset = 50 + 10% =55 mm.Minimum crank length = 350 mm (140).Length of short projection beyond crank = compression lap +. say, 75 mm for tolerance.

    Reinforcement area at laps < 10% bh.Bars project above first-floor slab level to provide a compression lap above the kicker.

    Bar projection = 35 x 087/095 x 25 mm + 75 mm for kicker = 875 mm, i.e. compression lap = 800 mm.2 A single link is provided, since each vertical bar is restrained by a corner.

    Minimum size = 25/4, use 8 mm. Maximum spacing = 12 x 25 = 300 mm. (R8 @ 300.)Cover to vertical bar = 40 mm> 15 x 25 = 375 mm. Linkse xtendt o undersideo f floor slab.

     Normally, starter bars are detailed with the footing, as column F2. It can be economic to detail starterswith the column above as shown. In this case it is advisable to schedule the starter bars so that they can be

     processed together with the footing. Note with this detail that the section at mid-height also applies to thestarter bar arrangement. The starter bars would be shown dotted on the footing detail together with a

    suitable cross-reference. Bars project above the top of the base to provide a compression lap above the kicker= 35 x 087/095 x 25 + 75 = 875 mm, i.e. lap = 800 mm.As bar mark 1, but bars provide a tension lap above 1st floor kicker. Cover = 50 mm.Clear distance between adjacent laps = 100mm

  • 8/19/2019 examples bs 8110

    38/48

    3.12.8.15

    Table 3.273.12.7.23.12.7.13.12.8.12 —  3

    Table 3.27 —  43. 12.8.13bTable 3.273.12.8.1421

    Foundationreinforced pad footingBS 8110ref.

    CALCULATIONS ourPuT

    Tob{e33 4 URAbLITY )Assoi.i roder4e*pesire '0. U se. ow.sat 4ocover

    No..sd cover

    40M,l. €r4$LOADI.JC - '1 (iet paqe19) De.4 I&.e'1 r0t.kN.

    ICxr CIu-ec 12.7 718 1's1127/i,4=D =443 I58

    /,(toi 0kN/v etr ovroFk concete 4or4.foa4 •. P,.4 r9uw45YC2OO -10) = 7. s

    ..  Acioç,t 2'7S rove4 = 7.57f_wU.L.S. Dtcv. ressu . 2Jo3kP4w.4.4.4

    . o6t.v aoçco1uw' 63x 'i.7S 2 = Avers c - c,o-4o-z5 =

    fr\ = 3x 0' 0.017

  • 8/19/2019 examples bs 8110

    39/48

    4o,27S0xS52

    543x 10' 244Sw

    :o.954xO.9SS35 (Q5122)

    •4••4

    3.4i.3.4(' )3 113 4(2)3L7.2

    ULTIP.4ATh SARCo4.or ISk - V4f í.çt912 fI3751317s5o %s) :ookM

    , çrç V . SO'IO' i5o 's.3S force V 4n coLa.= xf37s-a'so-2xS3S}

    i . k42 137512.

    •• V 't " 27SOcS3S

    Co4.or 2 p L4.v S\Qr) *.e ore. cka) V 1O SI

  • 8/19/2019 examples bs 8110

    40/48

     AC.W4cL 3O< 7SOr2750< 535 317 O.3

    e• OS '276O = 17

  • 8/19/2019 examples bs 8110

    41/48

    3.12.8.1 1 Straight bars extend full width of base, less end covers.Table 3.27 Bars should project a minimum tension bond length beyond the column face = 35 >< 20 = 700 mm <1150 nim OK.3.3.1.4 The underside of base is concrete blinded, cover = 40 mm.— Column starter bars are wired to bottom mat. Minimum projection ahose the top of base is a

    Table 3.27 compression lap + kicker = 35 x 087/095 x 25 + 75 = 875 mm. i.e. lap = 800mm

    (see p. 21).— 3 Links are provided to stahi Imie and locate the starter bars during construction. These are the same siteas the column links above.23460

    ist 175-400025014300 900

    Shear waDexternal plain concrete wall

    BS 8110ref. CALCULATIONS OUTPUT

    .94.314. ¶2> 2 WALLT&bk 33

    N)PS ALt T'( Ft $TAC ccvr ( svexe. x?ocLsre. 40w, () LL4 . '20F-y- rest&-e 17 kAI = i.2> t4oLsr

    4o2Ow.wt.•, lc.rt yestc ck..C.

    O.S(3Z3+8.S) 49.5k/

    5Q V3t O.7(24x1E GS.1 C&ct.c c4 1t4.kJMa,.r+x4xO.8') 27.8kN/. ;. c4_

    BS (99 CLf 2

    0

  • 8/19/2019 examples bs 8110

    42/48

    +49.7k4/ -l42jT\.21

    .4e43 44V.RTCA.L LOA1G IEN11'( (U.L,S. sg Lcc1;')

    Locu.coaj. 1.4 114.G # x B 204SkN/M.2 4< 2O

    c

    43, x(44+27S447) oskJ4JC e3 eoo. = (1.3/)2o.ik\ ( 0,tL \< 144L/ ,1 /tA4 L)L. tt3-cx4S

  • 8/19/2019 examples bs 8110

    43/48

    pA 72E, ;.i_io

    I OKO' 2So tLc.k) cL = 2ooccec 01 lox'2Q. €)S oo4 1, 2.4ottd".

    Tv e co i (3-772/1...C)24

    B 8110 ref Bar marks Notesfable 3.273.3.1.4Table 3.25 23.9.4.19Table 3.273

    4,5,63.12.3.4 7,8— 9

    Wall starters match vertical reinforcement. Minimum projection of horizontal legs beyond thewall face is a design tension bond length = 35 x 182/377 < 12 = 203 mm < 287 mm. This providesthe footing reinforcement. Minimum projection above top of base is a compression lap + kicker= 35 x 2 + 75 = 495 mm, say 525 mm, i.e. lap = 450 mm.Underside of footing is concrete blinded, cover = 4(1 mm.Minimum longitudal reinforcement provided.

    Minimum vertical reinforcement. Area = 254 x 1000 >< 175 = 438 mrn'Im. (T 2 @ 300 EF = 754 mm2/m.jT 12 bars provide reasonable rigidity for handling and help stabilize the cage during erection.Minimum projection above top of first—floor level is a compression lap + kicker = say 25 mm.Lap = 450 mm.Minimum horiiontal reinforcement. Area = 438 mni7m. (T10 @ 200 EF = 786 mm'/m.)

    Provide at least a tension lap = 35 x 0 = 350 mm. say 450 mm to satisfy shrinkage and thermalrequirements.

    Bars are placed outside vertical reinfircenient to provide maximum control against shrinkage andthermal cracking. Those bars in the wall 05 in below first—floor slab act also as interna] ties.Tension lap 6)r tie = 35 >< 10 = 350 mm, say 450 mm.Peripheral tie at first floor. 1,—bars at either end provide continuity with edge beams.Laps. say 450 mm.Wall spacers maintain location of each face of reinforcement.25

    Commentary on bar arrangement

    Staircase3500

    end-span continuous slab1755060

  • 8/19/2019 examples bs 8110

    44/48

    BS 8110ref.CALCULATIONS OUTPUT

    3?

    T.$ Ie •3 4 RLVrt 4 RE.1STAI4C.c'-.toorri )o. zLoA4

     Ave.rMe ctb L c.e.cc o.k... = 2so .0= 05

    cZt.c ce4 SoaA .. .5 k/ = 4.OkJ3/(14GS 1.4.o)5.o = 17.5kN/1k

    k Q, S kN/ k 4.Okt/F

    T3S.4'I1tivtor SLLr= o.itFL= Q'11x77.5x'O 43.TI1AT .Ms

    eo r4et O• = 3$. 3Id/M.

    E L2Q

    w*st44To.bte.38

    4FOR.CMeNT 1\

     jsL. .i-.ter.or sc.pport. ,2 0.049 =0443.1

  • 8/19/2019 examples bs 8110

    45/48

  • 8/19/2019 examples bs 8110

    46/48

    26Table 3.27 1,5,6

    Table 3.25 2,,9Fig 3.25 3,43.12.10.3.2 7

    Table 3.25 10,11

    34 Tio-EMain tension reinlorcemcnt. Lap lengths and anchorage bond lengths = 35 x 12 = 420 mm, say 450 mm.Laps arc located to facilitate likely constructions equencesS.i milar f or bar marks 12, 13 and 15.

    Secondary reinforcement. Minimum area = 00013 x 1000 x 75 = 228 inniim.Use 110 (a) 300 = 262 mm/rn.Main tension reinlorcement over support .50% curtailed at 03 span, remainder at 0 IS span.both measured from lace of support. Similar for bar mark 14.li—bars provide 50% mid—span reinforcement in both top and bottom at end support = 05 >< 571= 286 mmlrn.Use 110 @ 15(1 = 524 mill/ni to match spacing of span bars. 1.ap, say 450 mm.

    Optional ruinfoi cLnlent Minimum ULd = 228 mm Simil u for h ii mai k 1627Cove.r

    FUCHT '5'CCVECommentary on bar arrangementBS 8110 ref Bar marks Notes

    Column design chart28

    CJEE

    z0zRectangular columns5045

    403530252015105

    0 1

    23 45 6 7 8 9 10 11 12

  • 8/19/2019 examples bs 8110

    47/48

    2 44- 4 :3M/bh 2 —N/mm2fcu 40460

    d/h 080nformation from the Reinforced Concrete CouncilSpreadsheetsMany of the design principles used in this publication will be covered by spreadsheets for reinforcedconcrete

    design now being developed by the Reinforced Concrete Council. Versions for both BS 8110 and EC2are in

     preparation. For details write to the RCC at Century House, Telford Avenue, Crowthorne, Berks RG45

    6YS.Buildability and whole building economicsIt should be stressed that the structural solution presented in this publication has been chosen for the purpose: ofillustrating analysis, design and reinforcement detailing principles. A typical building frame accounts foronly

    10% of the whole construction cost, but affects foundations, cladding and service provision. The choice anddetails

    of a building's structure should reflect both buildability and overall building economics. Analysis of thesefactors

    using a structural optimisation program* or charts from a  publication** suggests that a flat slab alternative

    may savearound 2% of overall building costs and ten days' construction time.Similarly, rationalisation and simplification of reinforcement will normally speed construction and hencereduce

    overall construction costs and programme time. Excessive curtailment and tailoring of reinforcement tosave material

    at the expense of rationalisation will prove counter-productive. These aspects are currently beinginvestigated at theEuropean Concrete Building Project at Cardington, and will result in the publication of best practiceguidance.

    With increasing emphasis on the cost in use of buildings, there is a trend towards the use of exposedsoffits for

     passive cooling. This move to whole life costs will modify the optimum solution, and deep ribbed orcoffereci slabs

    are a favoured option to meet daylighting, thermal mass, ventilation and acoustic requirements.

    *C oncept - a computepr rogramth ata llows the rapid semi-automated choice of concrete frame whileconsidering

    whole building costs. Produced by the Reinforced Concrete Council. Available from the RCC on 01344725733.

    ** Economic concrete frame elements - a pre-scheme design handbook, based on BS 8110, that helpsdesigners

    choose the most viable concrete options. Produced by the Reinforced Concrete Council. Available from the

    ECA on01344 7257U4.

  • 8/19/2019 examples bs 8110

    48/48

    IBCDesigned and detailed (BS 8110: 1997)J. B. Higgins and B. R. RogersBRITISH CEMENT ASSOCIATION PUBLICATION 43.501OBC

    Cl/SfB

    (28) q4 (K)UDC 624.073.33.012.45:624.04.001.3(Ofl@rete