fien up seminar

Upload: maitham100

Post on 01-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Fien Up Seminar

    1/53

    JRF 2/06-1

    Phase RetrievalforImaging and WaveFront Sensing

    Jim FienupRobert E. Hopkins Professor of Optics

    University of RochesterInstitute of Optics

    Presented at EECS Dept., University of Michigan

    General Dynamics Distinguished Lecture SeriesFebruary 9, 2006

  • 8/9/2019 Fien Up Seminar

    2/53

    JRF 2/06-2

    Outline

    Image reconstruction for stellar speckle interferometry! Phase retrieval, hybrid input-output algorithm

    ! Finding bounds on object support

    Image reconstruction from far-field diffraction patterns! Optical

    ! X-ray

    Wavefront Sensing for the Hubble Space Telescope! Phase objects (wave fronts) can be reconstructed

    ! Gradient search algorithms

    Wavefront Sensing for James Webb Space Telescope

  • 8/9/2019 Fien Up Seminar

    3/53

    JRF 2/06-3

    Passive Imaging of Space Objects

    Problem: atmospheric turbulence causes phase errors, limits resolution! !1 arc-sec !5*106rad. !!/ rofor != 0.5 microns and ro= 10 cm

    Best resolution as though through only 10 cm aperture (vs. Keck 10 m)

    Solutions:! Hubble Space Telecope (2.4 m diam.), $2 B

    !

    Adaptive optics + laser guide star, $10"

    s M! Optical interferometry, $10"s M

    ! Stellar speckle interferometry, < $1 M

    } blurredimageobject

    aberrated optical system

  • 8/9/2019 Fien Up Seminar

    4/53

    JRF 2/06-4

    Labeyrie"s Stellar Speckle Interferometry

    1. Record blurred images:

    where sk(x, y) is kthpoint-spread function due to atmospheric turbulence

    2. Fourier transform:

    where Sk(u, v) is kthoptical transfer function

    3. Magnitude square and average:

    4. Measure or determine transfer function

    atmospheric model or measure reference star

    5.

    Amplitude interferometry (Michelson) can also yield Fourier magnitude data

    gk(x,y) =f(x, y)! sk(x,y), k = 1, . . ., K

    Gk(u,v) = F(u,v)Sk(u,v), k = 1, . . ., K

    1K

    Gk(u,v)2k=1

    K

    ! = F(u,v)2 1K Sk(u,v)2

    k=1

    K

    !

    1

    K Sk(u,v)

    2

    k=1

    K

    !

    Divide by1

    K

    Sk (u,v)2

    k=1

    K

    ! to get F(u,v)2

    Reference: A. Labeyrie, "Attainment of Diffraction Limited Resolution in LargeTelescopes by Fourier Analysing Speckle Patterns in Star Images," Astron. andAstrophys. 6, 85-87 (l970).

  • 8/9/2019 Fien Up Seminar

    5/53

  • 8/9/2019 Fien Up Seminar

    6/53

    JRF 2/06-6

    Phase of an Optical Field

    Monochromatic EM radiation propagates as a sinusoidal wave Phase is the relative position of the peaks and troughs of the wave Phase also plays an important role in imaging via F.T.

    |A1| Re

    Im

    |A| "

    ! =2"

    #OPD

    Field = A2 = A2 ei!

    2

    Intensity = A22

    "2

    |A2|

  • 8/9/2019 Fien Up Seminar

    7/53

    JRF 2/06-7

    Constraints in Phase Retrieval

    Nonnegativity constraint: f(x, y) #0! True for ordinary incoherent imaging, x-ray diffraction, MRI, etc.

    ! Not true for wavefront sensing or coherent imaging

    The support of an object is the set of points over which it is nonzero! Meaningful for imaging objects on dark backgrounds

    ! Wavefront sensing through a known aperture

    A good support constraint is essential for complex-valued objects! Coherent imaging or wave front sensing

    Atomiticity when have angstrom-level resolution! For crystals -- not applicable for coarser-resolution, single-particle

    Object intensity constraint (wish to reconstruct object phase)! E.g., measure wavefront intensity in two planes (Gerchberg-Saxton)

    ! If available, supercedes support constraint

  • 8/9/2019 Fien Up Seminar

    8/53

    JRF 2/06-8

    Phase Caries More Informationthan Amplitude

    F1[|F[M]|exp[i phase{F[G]}]]

    F1[|F[G]|exp[i phase{F[M]}]]G

    M

    |F[G]|

    |F[M]|

    phase{FT[G]}

    phase{F[M]}

  • 8/9/2019 Fien Up Seminar

    9/53

    JRF 2/06-9

    WhyPhase is More Important than Amplitude

    Wave front= surface of constant phase: Light travels in direction perpendicular to wave front

    Where the light is concentrated, after propagation, depends on the phase

    !(x,y,z) =const

    Light spreads out dimmer

    Light is concentrated brighter

    !(x,y,z) =const

  • 8/9/2019 Fien Up Seminar

    10/53

    JRF 2/06-10

    Is Phase Retrieval Possible?

  • 8/9/2019 Fien Up Seminar

    11/53

    JRF 2/06-11

    First Phase Retrieval Result

    (a) Original object, (b) Fourier modulus data, (c) Initial estimate(d) (f) Reconstructed images number of iterations: (d) 20, (e) 230, (f) 600

    Reference: J.R. Fienup, Optics Letters, Vol 3., pp. 27-29 (1978).

  • 8/9/2019 Fien Up Seminar

    12/53

    JRF 2/06-12

    Measured intensity

    Iterative Transform Algorithm

    F

    gk+1 x,y( ) =!gk x,y( ) , !gk x,y( ) satisfies constraints

    gk x,y( ) "# !gk x,y( ), !gk x,y( ) violates constraints

    $%&

    Hybrid Input-Output version

    F1

  • 8/9/2019 Fien Up Seminar

    13/53

    JRF 2/06-13

    Error-Reduction and HIO

    Error reduction algorithm

    ! Satisfy constraints in object domain

    ! Equivalent to projection onto (nonconvex) sets algorithm

    ! Proof of convergence (weak sense)

    ! In practice: slow, prone to stagnation, gets trapped in local minima

    Hybrid-input-output algorithm

    ! Uses negative feedback idea from control theory

    #

    is feedback constant

    ! No convergence proof (can increase errors temporarily)

    ! In practice: much faster than ER, can climb out of local minima

    ER: gk+1 x( ) =!gk x( ), x"S & !gk x( )# 0

    0 , otherwise

    $

    %&

    HIO: gk+1 x( ) =!gk x( ), x"S & !gk x( )# 0

    gk x( )$% !gk x( ), otherwise

    &'(

  • 8/9/2019 Fien Up Seminar

    14/53

    JRF 2/06-14

    Image Reconstruction fromSimulated Speckle Interferometry Data

    J.R. Fienup, "Phase Retrieval Algorithms: A Comparison," Appl. Opt. 2l, 2758-2769 (1982).

    Labeyrie"sstellar speckleinterferometry

    gives this

  • 8/9/2019 Fien Up Seminar

    15/53

    JRF 2/06-15

    Error Metric versus Iteration Number

  • 8/9/2019 Fien Up Seminar

    16/53

    JRF 2/06-16

    Autocorrelation Support

    Autocorrelation:

    rf(x,y) = f( !x , !y )f* ( !x " x, ! y " y)d !x d ! y"##$$ = F

    "1 F(u,v)2[ ]

    ObjectSupport Forming Autocorrelation Support

    Autocorrelation Support

    0

  • 8/9/2019 Fien Up Seminar

    17/53

    JRF 2/06-17

    Bounds on Object Support

    Triple-Intersection Rule: [Crimmins, Fienup, & Thelen, JOSA A 7, 3 (1990)]

  • 8/9/2019 Fien Up Seminar

    18/53

    JRF 2/06-18

    Triple Intersection for Triangle Object

    Family of solutions for object support from autocorrelation support

    Use upper bound for support constraint in phase retrieval

    (a)(b)

    (c)

    (d)

    Object Support Autocorrelation Support

    Triple Intersection Support Constraint

    Alternative

    Object Support

  • 8/9/2019 Fien Up Seminar

    19/53

    JRF 2/06-19

    PROCLAIM 3-D Imaging ConceptPhase Retrieval with Opacity Constraint LAser IMaging

    tunable laser

    direct-detectionarray

    collecteddata set

    ,!!,!,1 2 n. . .

    reconstructedobject

    phaseretrievalalgorithm

    3-DFFT

    initial

    estimatefromlocator

    set

  • 8/9/2019 Fien Up Seminar

    20/53

    JRF 2/06-20

    Object for Laboratory Experiments

    ST Object. The three concentric discs forming a pyramid can be seen asdark circles at their edges. The small piece on one of the two lower legswas removed before this photograph was taken.

  • 8/9/2019 Fien Up Seminar

    21/53

    JRF 2/06-21

    3-D Laser Fourier IntensityLaboratory Data

    Data cube:

    1024x1024 CCD pixels x 64 wavelengths

    Shown at right:128x128x64 sub-cube

    (128x128 CCD pixels ateach of 64 wavelengths)

  • 8/9/2019 Fien Up Seminar

    22/53

    JRF 2/06-22

    Imaging Correlography

    Get incoherent-image information from coherent speckle pattern Estimate 3-D Incoherent-object Fourier squared magnitude

    ! Like Hanbury-Brown Twiss intensity interferometry

    Easier phase retrieval: have nonnegativity constraint on incoherentimage

    Coarser resolution since correlography SNR lower

    FI (u,v,w)2! Dk(u,v,w)" Io[ ]# Dk(u,v,w) " Io[ ] k

    (autocovariance of speckle pattern)

    References:

    P.S. Idell, J.R. Fienup and R.S. Goodman, "Image Synthesis from Nonimaged Laser SpecklePatterns," Opt. Lett. 12, 858-860 (1987).

    J.R. Fienup and P.S. Idell, "Imaging Correlography with Sparse Arrays of Detectors," Opt.Engr. 27, 778-784 (1988).

    J.R. Fienup, R.G. Paxman, M.F. Reiley, and B.J. Thelen, 3-D Imaging Correlography andCoherent Image Reconstruction, in Proc. SPIE 3815-07, Digital Image Recovery andSynthesis IV, July 1999, Denver, CO., pp. 60-69.

  • 8/9/2019 Fien Up Seminar

    23/53

    JRF 2/06-23

    Image Autocorrelation from Correlography

  • 8/9/2019 Fien Up Seminar

    24/53

    JRF 2/06-24

    Thresholded Autocorrelation

  • 8/9/2019 Fien Up Seminar

    25/53

    JRF 2/06-25

    Triple Intersectionof Autocorrelation Support

  • 8/9/2019 Fien Up Seminar

    26/53

    JRF 2/06-26

    Locator Set, Slices 50-90

  • 8/9/2019 Fien Up Seminar

    27/53

    JRF 2/06-27

    Dilated Locator Setused as Support Constraint

  • 8/9/2019 Fien Up Seminar

    28/53

    JRF 2/06-28

    Fourier Modulus Estimatefrom Correlography

  • 8/9/2019 Fien Up Seminar

    29/53

    JRF 2/06-29

    Fourier Magnitude, DC Slice

    Before Filtering After Filtering

  • 8/9/2019 Fien Up Seminar

    30/53

    JRF 2/06-30

    Incoherent ImageReconstructed by ITA

  • 8/9/2019 Fien Up Seminar

    31/53

    JRF 2/06-31

    Support Constraint from ThresholdedIncoherent Image

  • 8/9/2019 Fien Up Seminar

    32/53

    JRF 2/06-32

    Dilated Support Constraintfrom Thresholded Incoherent Image

  • 8/9/2019 Fien Up Seminar

    33/53

    JRF 2/06-33

    Coherent Image Reconstructed byITA from One 128x128x64 Sub-Cube

  • 8/9/2019 Fien Up Seminar

    34/53

    JRF 2/06-34

    PROCLAIM Example System Parameters

    Parameter S mbol Microscopic Example MegascopicCenter wavelength ! 0.5 m 0.773 m 0.5 m

    Range R 10 cm 89 cm 1,000 km

    Detector width N"u 2 cm 1.23 cm 5 m

    Number of linear detectors N 1,000 1,024 50

    Detector pitch "u 20 m 12 m 10 cm

    Lateral resolution #xy 2.5 m 56 m 10 cm

    Lateral ambiguity interval N#xy 2.5 mm 57 mm 5 m

    Center frequency $ 600x1012Hz 388x1012Hz 600x1012Hz

    Bandwidth M"$ 30x1012Hz 3.12x1012Hz 1.5x109Hz

    Fractional bandwidth M"$/$ 0.05 0.00828 2.5x106

    Number of frequencies M 100 64 100

    Frequency interval "$ 0.3x1012Hz 50.2x109Hz 15x106Hz

    Range resolution #z 5 m 46.7 m 10 cm

    Range ambiguity interval M#z 0.5 mm 3 mm 10 m

  • 8/9/2019 Fien Up Seminar

    35/53

    JRF 2/06-35

    New Interest in Non-CrystallographicX-Ray Diffraction

    Non-crystallographic x-ray diffraction made possible by high-intensity,highly coherent x-ray sources -- synchrotron radiation

  • 8/9/2019 Fien Up Seminar

    36/53

    JRF 2/06-36

    Image Reconstruction from X-RayDiffraction Intensity

    CoherentX-ray beam

    Target

    Detector

    array(CCD)

    (electron micrograph)

    Collection of gold balls(has complex index of refraction)

    Far-field diffraction pattern(Fourier intensity)

  • 8/9/2019 Fien Up Seminar

    37/53

    JRF 2/06-37

    Example on Real X-Ray Data(Data from M. Howells/LBNL and H. Chapman/LLNL)

    (a) X-ray data

    (c) Initial Support constraint

    computed from (b)

    (d) Electron micrograph

    of object

    (b) Triple Intersection(b) Autocorrelation from (a)

  • 8/9/2019 Fien Up Seminar

    38/53

    JRF 2/06-38

    Active Conformal Thin Imaging System(ACTIS) without Imaging Optics

    Coherent illumination, sensed by a conformal array of detectors in far field! Angle-angle (not range) image

    Phase retrieval needed to form an image! Heterodyne detection over large arrays is beyond the state of the art

    ! Support constraint formed by laser illumination system

    With no imaging optics, a wider aperture fits on a platform! Giving finer resolution, wider total field-of-view, thin system

    Conformal Array

    of DetectorsCoherent

    Illuminator

    Modification of figure from Brad Tousley (DARPA/TTO)

  • 8/9/2019 Fien Up Seminar

    39/53

    JRF 2/06-39

    Determine HST Aberrations from PSF

    Measurements & Constraints:

    Pupil plane: known aperture shape phase error fairly smooth function

    Focal plane: measured PSF intensity

  • 8/9/2019 Fien Up Seminar

    40/53

    JRF 2/06-40

    Nonlinear Optimization AlgorithmsEmploying Gradients

    Minimize Error Metric, e.g.:

    Repeat three steps:

    1. Compute gradient:

    !E

    !p1,

    !E

    !p2,

    2. Compute direction of

    search

    3. Perform line search

    a

    b

    c

    Parameter 1

    Parameter2

    Contour Plot of Error Metric

    Gradient methods:(Steepest Descent)Conjugate GradientBFGS/Quasi-Newton

    E = W(u) G(u) F(u)[ ]2

    u

    !

    g x( ) = g x( )ei! x( ) , G(u) = F g x( )[ ]

    pupil model:

  • 8/9/2019 Fien Up Seminar

    41/53

    JRF 2/06-41

    Analytic Gradientswith Phase Values as Parameters

    P[] canbeasingleFFTormultiple-planeFresneltransforms

    withphasefactorsandobscurations

    Analyticgradientsveryfastcomparedwith

    calculationbyfinitedifferences

    J.R. Fienup, Phase-Retrieval Algorithms for a Complicated Optical System, Appl. Opt. 32, 1737-1746 (1993).

    J.R. Fienup, J.C. Marron, T.J. Schulz and J.H. Seldin, Hubble Space Telescope Characterized by UsingPhase Retrieval Algorithms, Appl. Opt. 32 1747-1768 (1993).

    G u( ) = P g x( )[ ]

    g(x) =gR x( ) + i gI x( ) =mo x( )ei! x( ) , ! x( ) = ajZj x( )

    j=1

    J

    "Optimizing over

    where

    GW u( ) = W u( ) F u( ) G(u)

    G u( )! G u( )

    "

    #$

    %

    &' , and g

    W(x) = P GW u( )"# %

    &

    For point-by-point pixel (complex) value, g(x),!E

    !g(x) = 2 Im gW*(x){ }

    For point-by-point phase map, $(x), !E

    !"(x)

    = 2 Im g x( ) gW* x( ){ }

    For Zernike polynomial coefficients, !E

    !aj = 2 Im g x( ) gW* x( )

    x

    " Zj x( )#$%

    &'(

    E = W(u) G(u) F(u)[ ]2

    u

    !

  • 8/9/2019 Fien Up Seminar

    42/53

    JRF 2/06-42

    Sources of Obscurations in HST

  • 8/9/2019 Fien Up Seminar

    43/53

    JRF 2/06-43

    Hubble Telescope Retrieval Approach

    Pupil (support constraint) was known imperfectlyPhase was relatively smooth and dominated by low-order Zernike"s

    Use boot-strapping approach

    1. With initial guess for pupil, fit Zernike polynomial coefficients

    (parametric phase retrieval by gradient search)

    2. With initial guess for Zernike polynomials, estimate pupil by ITA

    (retrieve magnitude, given an estimate of phase)

    3. Redo steps 1 and 2 until convergence (2 iterations)

    4. Estimate phase map by ITA, starting with Zernike polynomial phase

    (nonparametric phase retrieval by G-S or gradient search)

    5. Refit Zernike coefficients to phase map

    6. Redo steps 2 - 5

  • 8/9/2019 Fien Up Seminar

    44/53

    JRF 2/06-44

    Pupil Function Reconstruction

    Pupil Reconstructed from ITA Inferred Model of Pupil

  • 8/9/2019 Fien Up Seminar

    45/53

    JRF 2/06-45

    James Webb Space Telescope(Next Generation Space Telescope)

    See farther back towards the beginnings of the universeLight is red-shifted into infrared

    http://ngst.gsfc.nasa.gov/

  • 8/9/2019 Fien Up Seminar

    46/53

    JRF 2/06-46

    James Webb Space Telescope (JWST)

    See red-shifted light from early universe

    ! 0.6 m to 28 m

    ! L2 orbit for passive cooling,avoiding light from sun and earth

    ! 6 m diameter primary mirror

    Deployable, segmented optics

    Phase retrieval to align segments

  • 8/9/2019 Fien Up Seminar

    47/53

    JRF 2/06-47

    Fienup Group Visits JWST

  • 8/9/2019 Fien Up Seminar

    48/53

    JRF 2/06-48

    Phase Retrieval for JWST

    R. Lyon et al., (GSFC)

    J. Green (JPL), B. Dean (GSFC) et al.,Proc. SPIE (Glasgow 2004)

    D.S Acton et al.( Ball Aerospace),

    Proc. SPIE (Glasgow 2004)

    NASA has chosen phase retrievalas the fine phasing approach for JWST.

  • 8/9/2019 Fien Up Seminar

    49/53

    JRF 2/06-49

    JWST at UofRWaveFront Sensing Improvements

    Develop improved WFS (phase retrieval) algorithms

    ! Faster, converge more reliably, less sensitive to noise, 2%jumps

    ! Work with larger aberrations, broadband illumination, jitter

    refining iterative transform, gradient search algorithms

    Increase robustness and accuracy

    ! Extended objects

    Phase diversityPhase retrieval performance

    Experiments with UofR JWST laboratory simulator! Adaptive optics MEMS deformable mirror

    18 hex. segments

    ! Interferometer measure wavefront independently

    ! Put in misalignment, reconstruct wavefronts,compare with interferometer truth

    Ideal PSF

  • 8/9/2019 Fien Up Seminar

    50/53

    JRF 2/06-50

    Optical Testing Using Phase Retrieval

    Optical wave fronts (phase) can be measured by many forms of interferometry

    Novel wave front sensor: a bare CCD detector array, detects reflected intensity

    Wave front reconstructed in the computer by phase retrieval algorithm

    Approach:

    Simulation ResultsmPSF at z=333

    PSF1

    PSF at z=f=500m

    PSF2Actual wrapped phase

    TruePhase

    Reconstructed wrapped phase

    RetrievedPhase

    Part

    under

    test

    Display ofmeasured

    wavefront

    Illumination

    Wavefront

    CCD Array

    measures

    intensity ofreflected field

    Computer

    Part

    under

    test

    Display ofmeasured

    wavefront

    Illumination

    Wavefront

    CCD Array

    measures

    intensity ofreflected field

    Computer

    Part

    under

    test

    Display ofmeasured

    wavefront

    Illumination

    Wavefront

    CCD Array

    measures

    intensity ofreflected field

    Computer

    Part

    under

    test

    Display ofmeasured

    wavefront

    Illumination

    Wavefront

    CCD Array

    measures

    intensity ofreflected field

    Computer

  • 8/9/2019 Fien Up Seminar

    51/53

    JRF 2/06-51

    Phase retrieval works when have one measurement and one unknown! Image reconstruction from Fourier magnitude

    ! Wavefront sensing through a known aperture, from a point source

    Some problems have two unknowns: finite source and aberrations! Wavefront sensing from extended object

    ! Need at least two measurements to determine two unknowns

    Phase Diversity

    known

    defocuslength

    }conventional

    image

    }

    unknownextended object

    diversity image

    aberrated optical system

    References:

    R.G. Paxman and J.R. Fienup, "Optical Misalignment Sensing and Image Reconstruction Using PhaseDiversity," J. Opt. Soc. Am. A 5, 914-923 (1988).

    R.G. Paxman, T.J. Schulz and J.R. Fienup, "Joint Estimation of Object and Aberrations Using PhaseDiversity," J. Opt. Soc. Am. A 9, 1072-85 (1992).

    M.R. Bolcar and J.R. Fienup,Method of Phase Diversity in Multi-Aperture Systems Utilizing Individual Sub-Aperture Control, in Unconventional Imaging, Proc. SPIE 5896-14 (July 2005).

  • 8/9/2019 Fien Up Seminar

    52/53

    JRF 2/06-52

    Summary of Phase Retrieval

    Phase retrieval can give diffraction-limited images

    ! Despite atmospheric turbulence or aberrated optics! Despite lack of Fourier phase measurements

    Can work for many imaging modalities

    ! Passive, incoherent or laser imaging correlography Nonnegativity constraint

    Support constraint may be loose and derived from given data! Active, coherent imaging

    Complex-valued image, so NOT nonnegative Support constraint: must be tight and of special type or helped by 3-D, or by opaque object, or by correlography

    Can be used for wavefront sensing, using simple hardware

    ! For atmospheric turbulence, telescope aberrations, eye aberrations

    Current hot areas: JWST WFSC, Non-crystallographic x-ray imaging,Unconventional laser imaging, Characterization of ultrafast pulses, etc.

  • 8/9/2019 Fien Up Seminar

    53/53

    JRF 2/06-53