floyd herbert -- primordial electrical induction heating

Upload: elvendedor

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    1/9

    ICARUS 78,

    4 0 2 - 4 1 0 ( 1 9 8 9 )

    Pr im ord ia l E lec t r ica l Indu c t ion Hea t ing o f s te ro ids

    F L O Y D

    H E R B E R T

    L u n a r a n d P l a n e t a r y L a b o r a t o D , , U n i v e r s i t y ~ [ A r i z o n a , T u c s o n , A r i z o n a 8 .5 72 1

    R e c e i v e d M a y 2 0 , 1 9 88 ; r e v i s e d A u g u s t I l , 1 9 88

    R e c e n t l y o b s e r v e d s y s t e m a t i c t r en d s o f a s t e r o id a l c o m p o s i t i o n w i t h r e sp e c t t o s i z e a n d

    h e l i o c e n t r i c d i s t a n c e a r e i n t e r p r e t e d a c c o r d i n g t o t h e h y p o t h e s i s t h a t p r i m o r d i a l a s te r o i -

    d a l t h e r m a l e v o l u t i o n w a s d r i v e n b y e l e c t r o m a g n e t i c i n d u c t i o n i n a d e n s e p r e - m a i n -

    s e q u e n c e s o l a r w i n d . I t i s f o u n d t h a t t h e s p a t i a l d i s t r i b u t i o n o f i n d u c t i o n h e a t i n g c o r r e -

    s p o n d s w e l l w i t h t h a t i n f e r r e d f r o m t h e p r e s e n t - d a y d i s t r i b u t i o n o f a s t e r o i d a l

    c o m p o s i t i o n a l t y p e s w h e n r e a s o n a b l e p r o t o - S o l a r - S y s t e m c h a r a c t e r i s t i c s a r e a s s u m e d .

    F r o m t h is m a t c h i s d e d u c e d a r o u g h c o n s t r a in t o n t h e i n d u c t i o n h e a t i n g e p o c h ' s d u r a t i o n

    ( ~ 1 0 s y e a r s ) a n d t h e t e m p e r a t u r e - d e p e n d e n t e l e c tr i c a l c o n d u c t i v it y o f t h e p r o t o a st e r -

    o i da l m a ter i a l ( a b o ut th e s a m e a s tha t o f the C 2 m ete o r i t e M ur ch es o n) . ~ 1989 Academ ic

    Press , Inc.

    1 . I N T R O D U C T I O N

    I t h a s b e e n k n o w n f o r s o m e t i m e t h a t

    t h e r e a r e s y s t e m a t i c t r e n d s i n t h e s p a t i a l

    d i s t r i b u t io n o f a s t e r o id a l t a x o n o m i c t y p e s ,

    w h i c h a r e u s u a l l y i n t e r p r e t e d a s c o m p o s i -

    t i o n a l v a r i a t i o n s ( C h a p m a n e t a l 1975,

    Z e l l n e r a n d B o w e l l 1 9 77 , B o w e l l

    e t a l

    1 97 8) . T h e v i g o r o u s p r o g r a m s o f a s t e ro i d

    o b s e r v a t i o n s o v e r t h e p as t d e c a d e h a v e r e-

    s u l t e d i n t h e s i g n i fi c a nt i m p r o v e m e n t o f t h e

    c h a r a c t e r i z a t i o n o f a s t e r o id a l c o m p o s i t i o n

    a s a f u n c t i o n o f si z e a n d d i s t a n c e f r o m t h e

    s u n ( e. g . , G r a d i e a n d T e d e s c o 1 98 2, T h o -

    l e n , 1 9 8 4 , Z e l l n e r

    e t a l

    1985 , Be l l 1986 ,

    M a t s o n 1 98 6). F i g u r e 1 s h o w s a n a p p r o x i -

    m a t i o n o f th e d i s t r i b u t i o n o f a s t e r o i d a l

    c o m p o s i t i o n t y p e s w i t h r e s p e c t t o h e li o c e n -

    t r ic d i s t a n c e o f t h e m a j o r a s t e r o i d a l t a x o -

    n o m i c t y p e s i n t h e m a i n b e lt . T h e s e c u r v e s

    a re h a n d - s m o o t h e d a p p r o x i m a t i o n s o f u n-

    p u b l i s h e d p r e l i m i n a r y b i a s - c o r r e c t e d o b s e r -

    v a t i o n al d a t a (C . R . C h a p m a n , p r i v a t e c o m -

    m u n i c a t i o n ) . O f t h o s e t y p e s s h o w n t h e

    m o s t p r i m i t iv e a r e p r o b a b l y c l a s s e s P a n d

    D , w h i c h a r e b e l i e v e d t o b e c a r b o n a c e o u s

    b u t u n s a m p l e d b y a n y w e l l - k n o w n c l a s s o f

    m e t e o r i t e . T y p e C a n d s i m i la r t y p e s a r e

    g r o u p e d t o g e t h e r a s an i n t e r m e d i a t e c l a s s

    0019-1035 /89 3 . 00

    Copyright et') 1989 by Academ ic P ress, Inc.

    All rights of reproduction in any form reserved.

    a n d a r e b e l i e v e d t o b e s i m i l a r t o c a r b o n a -

    c e o u s c h o n d r i t i c m e t e o r i t e s , w h i c h in t u r n

    a p p e a r t o b e t h e r e su l t o f a q u e o u s a l t e r a t io n

    a n d t h u s i n t e r m e d i a t e i n t h e r m a l p r o c e s s i n g

    a s w e ll . B o t h t h e S a n d M t y p e s a r e b e -

    l i e v e d t o b e i g n e o u s d i f f e r e n t i a t e s ( G a f f e y

    1 9 8 4 ) ; t h e M t y p e s a p p e a r t o b e m e t a l l i c

    i ro n a n d t h e S t y p e s a p p e a r t o e x p o s e b o t h

    i r o n a n d i g n e o u s r o c k . T h e E t y p e s a r e a

    m i n o r c l a s s , b u t m a y w e l l b e i g n e o u s a l s o .

    T h i s o u t w a r d s u c c e s s i o n o f t y p e s t h u s p r e -

    s u m a b l y r e p r e s e n t s a s e q u e n c e o f m e t a -

    m o r p h i c t y p e s f r o m i g n e o u s l y d i f f e r e n t i -

    a t e d t h r o u g h a q u e o u s l y m e t a m o r p h o s e d t o

    p r i m i t i v e . T h e m o s t n a t u r a l i n f e r e n c e t o b e

    d r a w n f r o m t h is i s t h a t a h i g h ly h e l i o c e n -

    t r i c - d i s t a n c e - d e p e n d e n t h e a t s o u r c e w a s re -

    s p o n s i b l e f o r m e t a m o r p h o s i n g t h e a s t e r o id

    be l t (Be l l 1986).

    F i g u r e 2 ( a l s o d e r i v e d f r o m u n p u b l i s h e d

    p r e l i m i n a r y b i a s - c o r r e c t e d d a t a f r o m C . R ,

    C h a p m a n ) s h o w s t h e d i s t ri b u t io n o f g r o u p s

    o f a s t e r o i d a l c o m p o s i t i o n a l t y p e s w i t h r e-

    s p e c t t o s i z e i n t h e m a i n b e l t ( o u t t o z o n e

    I l i a ) . A s i n F ig . I t h e r e i s a n e v i d e n t t r e n d :

    h e r e t h e i g n e o u s c l a s s e s a p p e a r t o c l u s t e r at

    i n t e r m e d i a t e s i z e s . W h e t h e r t h e a p p a r e n t

    r e d u c t i o n i n S o b j e c t s a t t h e s m a l l e s t d i a m -

    e t e r s i s c o n t i n u e d b e l o w t h e l im i t o f t h e

    4 2

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    2/9

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    3/9

    404 FLOYD HERBERT

    rates as of the time of solidification of the

    feldspars investigated. Interest in the 26A1

    heating hypothesis revived when Le e e t a l .

    (1977) and Hutcheon e t a l . 1 9 7 8 ) found evi-

    dence implying primordial 26AI/AI values of

    about 50 x 10 -6 in Ca/Al-rich inclusions

    (CAls) from the C3 (i.e., unmelted) me-

    teorite Allende. This concentration when

    present in bulk material is easily enough to

    melt an asteroid larger than about 10 km,

    although the average inferred primordial

    Allende 26A1 conce ntrat ion is orde rs of

    magnitude less. Since then, however, more

    evidence for thermally significant primor-

    dial 26AI/AI has only been found in one mi-

    croscopic CAI in one sample of the H3

    chondrite Dhajala (Hinton and Bischoff

    1984), despite searches in other parts of AI-

    lende (Lee e t a l . 1979, Hinton and Bischoff

    1984), Dhajala, or other H3 or LL3 chon-

    drites (Hinton and Bischoff 1984).

    Moreover the CAIs are not representa-

    tive of the fabric of chondr ites, being inclu-

    sions which appear to have formed inde-

    pendently and incorporated later when the

    chondritic parent bodies formed. More-

    over, the bulk material of the ordinary and

    carbonaceous chondrites, including the

    only two with the 26Al-daughter CAIs, is

    unlikely ever to have approached the melt-

    ing point. By contrast, a recent search for

    indications of primordial 26AI in a meteori te

    (a mesosiderite) which actually w a s the

    result of melting has also been negative

    (Papanastassiou

    e t a l .

    1987). In addition to

    the lack of visible role for 26A1 in the

    thermal metamorphosis of any known me-

    teoritic sample, the variation of composi-

    tional type with respect to size and helio-

    centric distance discussed earlier is hard to

    explain as a result of a heat source as non-

    selective

    as 26Al.

    2. ELECTRICAL INDUCTION HEATING

    Another of the possible heat sources re-

    sponsible for the primordial melt events in-

    ferred from asteroidal spectra is electrical

    induction heating driven by a hypothesized

    dense solar-wind-like plasma outflow (often

    loosely termed a T Tauri solar wind )

    from the pre-main-sequence Sun. This in-

    duction phenomenon, analogous to the

    induced currents driven through Io's

    ionosphere by Jupiter's corotating magne-

    tospheric plasma, could have efficiently

    coupled the kinetic energy flux of the hypo-

    thetical primordial solar wind to the deep

    interiors of proto-asteroids. Although the

    assumed solar wind energy flux is small

    (comparable to that of present-day sun-

    light), its coupling to the deep interior

    would have generated large interior temper-

    atures in order to develop the thermal gra-

    dient necessary to drive enough outwardly

    diffusing heat. In this respec t the phenome-

    non is analogous to the greenhouse effect.

    By contrast with the case of

    26AI,

    there

    are size- and distance-dependent variations

    in the efficiency of inductive heating

    (Sonett e t a l . 1968, 1970, Herbert and

    Sonett 1978, 1979, 1980, Lebofsky e t a l .

    1988). Naturally, induced fields are strong-

    est near the Sun, and the temperature de-

    pendence of the electrical conductivity of

    the asteroidal material allows the surface

    temperature of the body (controlled largely

    by insolation and thus by heliocentric dis-

    tance) to modulate the induced current.

    Moreover, the magnetic deflection of

    plasma by induced currents also reduces

    heating in larger body sizes, while of cour se

    thermal conduction limits the temperature

    rise in smaller bodies. Conseq uently, in any

    protosolar plasma environment there is

    some body size at which maximum temper-

    ature increase occurs (Herbert and Sonett

    1978, 1979, 1980). This size and distance

    dependence of heating was originally sug-

    gested (Herbert and Sonett 1978, 1979,

    1980) as being the cause of the difference

    between the apparently igneous surface of

    4 Vesta, usually believed to be the eucrite

    parent body (McCord and Gaffey 1974,

    Drake 1979), and the unmelted surfaces of

    2 Pallas and 1 Ceres (Chapman e t a l . 1974,

    Lebofsky 1978, Larson and Veeder 1979).

    The present work explores this sugges-

    tion further, in application to the now

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    4/9

    I N D U C T I O N H E A T I N G O F A S T E R O I D S 4 05

    g r e a t l y e x p a n d e d o b s e r v a t i o n a l d a t a b a s e

    s u m m a r i z e d i n F i g s . 1 a n d 2 . T h u s t h e in -

    f e r r e d m a x i m u m p r i m o r d i a l h e a t i n p u t a t i n-

    t e r m e d i a t e a s t e r o i d a l s i z e s a n d a t t h e i n n e r

    e d g e o f t h e b e l t i s c o m p a r e d w i t h t h e r e s u l t s

    o f m o d e l c a l c u l a t i o n s o f i n d u c t i o n h e a t i n g .

    T h e e x a c t e l e c t r i c a l h e a t i n g p a t t e r n d e -

    p e n d s o n th e c o n d i t i o n s a s s u m e d , h o w e v e r .

    F o r e x a m p l e , i f t h e s o l a r m a s s l o s t is s m a ll

    b u t c o n f i n e d t o a s h o r t t im e i n t e r v a l , s u c h

    as 10 4 y e a r s , t h e s i z e a t w h i c h m a x i m u m

    h e a t i n g o c c u r s i s a r o u n d 1 0 k m . T h i s c o n -

    t r a s t s w i t h t h e 1 0 6 - y e ar i n t e r v a l c a s e w i t h

    l a r g e s o l a r m a s s l o s s a s s u m e d b y H e r b e r t

    a n d S o n e t t ( 1 9 7 8 , 1 9 7 9 , 1 9 8 0 ) , a m o d e l

    w h i c h y i e ld e d a m a x i m u m t e m p e r a t u r e a t

    a n a s t e r o i d d i a m e t e r o f a b o u t 2 0 0 k m .

    M o d e l s w h i c h a s s u m e t h e a s s e m b l y o f

    l a rg e r a s t e r o id s f r o m a l r e a d y - m e l t e d p r o t o -

    a s t e r o i d s l e a d to a n o t h e r i n t e r e s t i n g s u it e o f

    p o s s i b il i ti e s a n a l o g o u s t o s c e n a r i o s i n v e s t i -

    g a t e d b y W o o d ( 1 9 7 9 ) . I n p a r t i c u l a r t h i s

    p o s s i b i l i t y m a y b e r e l e v a n t t o t h e c a s e o f

    t h e p a r e n t b o d y o f t h e b a s al t i c a c h o n d r i t e s

    w h e r e d i f f e r e n t m e l t re g i o n s o c c u r r i n g a t

    w i d e l y s e p a r a t e d t i m e s ( u p t o 1 08 y e a r s

    a p a r t ) h a v e b e e n i n f e r r e d b y M i t t l e f e h l d t

    ( 197 9) .

    I n d u c t i o n h e a t i n g i s q u i t e d e p e n d e n t o n

    t h e e l e c t r i c a l c o n d u c t i v i t y o f t h e m a t e r i a l t o

    b e h e a t e d . M a n y c a n d i d a t e m a t e r ia l s ' c o n -

    d u c t i v i ti e s h a v e b e e n m e a s u r e d , b u t s in c e

    t h e n a t u r e o f t h e p r i m o r d i a l m i x o f m a t e -

    r ia l s t h a t o r i g i n a l l y a c c r e t e d i n t o t h e a s t e r -

    o i d s i s u n k n o w n , i t s e l e c t r i c a l c h a r a c t e r i s -

    t i c s a r e s t i l l m y s t e r i o u s . W h a t e v e r t h e

    p r o t o a s t e r o i d a l c o m p o s i t i o n w a s , i t i s l i k e ly

    t o h a v e c o n s i s t e d o f a l a rg e v a r i e t y o f c o m -

    p o u n d s , i n c l u d i n g t r a c e s o f u s u a l l y v o l a t i l e

    i o n ic c o m p o u n d s , a s i tu a t io n t h a t f a v o r s

    c o n d u c t i v i t i e s g r e a t e r t h a n t h a t t y p i c a l f o r

    i g n e o u s m i n e r a l s a n d t h u s f a v o r s t h e l i k e -

    l i h o o d o f s i g n i f i c a n t e l e c t r i c a l c u r r e n t s .

    E x a m p l e s o f c a n d i d a t e m a t e r ia l s w h o s e

    c o n d u c t i v i t i e s h a v e b e e n m e a s u r e d a r e c a r -

    b o n a c e o u s c h o n d r i t e s ( S c h w e r e r e t a l .

    1 9 7 1 , B r e c h e r

    e t a l .

    1 9 7 5 , D u b a

    e t a l .

    197 3 ,

    D u b a

    e t a l .

    1 9 74 , D u b a a n d B o l a n d 1 98 4)

    a n d o r d i n a r y c h o n d r i t e s ( E v e r n d e n a n d

    V e r h o o g e n 1 9 56 , S c h w e r e r

    e t a l .

    1971,

    B r e c h e r 1 9 7 3 , B r e c h e r

    e t a l .

    1 9 7 5 ) . H o w -

    e v e r , i n a s m u c h a s th e c a r b o n a c e o u s c h o n -

    d r i t e s a r e b e l i e v e d t o h a v e b e e n s u b j e c t e d

    t o a q u e o u s a l t e ra t i on , e v e n t h e s e m o s t

    p r i m i t i v e m e t e o r i t i c s a m p l e s a r e n o t p r i m i -

    t i r e e n o u g h ( a l t h o u g h t h e y a r e t h e m o s t

    s u i t a b l e t h a t h a v e h a d e l e c t r i c a l c o n d u c t i v -

    i ty m e a s u r e m e n t s p e r f o r m e d ) . T h e s e p o s -

    s ib l e a n a l o g s o r s u r v i v i n g s a m p l e s o f pr i-

    m o r d i a l m a t e r i a l h a v e r o o m t e m p e r a t u r e

    c o n d u c t i v i t i e s v a r y i n g f r o m 1 0 - t to 1 S / m .

    E l e c t r i c a l c o n d u c t i v i t y i s s t r o n g l y d e p e n -

    d e n t i n m o s t c a s e s o n t e m p e r a t u r e , o x y g e n

    f u g a c i t y , a n d t h e p r e s e n c e o f i m p u r i ti e s

    s u c h a s w a t e r o r c a r b o n ( P a r k h o m e n k o

    1 9 67 , D u b a a n d B o l a n d 1 98 4). T h e p r e s e n c e

    o f a d e e p ( w i t h th i c k n e s s m o r e t h a n a f e w

    p e r c e n t o f b o d y s iz e ) re g o l it h c a n f u r t h e r

    c o m p l i c a t e t h e s c e n a r i o ; l i m i t a ti o n o f e l e c -

    t r i c a l c u r r e n t b y t h e s e r i e s r e s i s t a n c e a s s o -

    c i a t e d w i t h p o r o s i ty r e d u c e s h e a t i n g b u t th e

    t h e r m a l b l a n k e t i n g e f f e c t c a n h e l p r e t a i n

    h e a t .

    M o s t w o r k o n p r i m o r d i a l i n d u c t iv e h e a t -

    i n g ( S o n e t t e t a l . 1 9 6 8 , 1 9 7 0 , H e r b e r t a n d

    S o n e t t 1 9 7 8 , 1 9 79 , 1 98 0 ) h a s a s s u m e d a so -

    l a r w i n d p l a s m a f l u x c o m p a r a b l e t o t h e

    l a r g e H f l u x e s ( u p t o n e a r l y 1 0 - 6 M G / y e a r )

    s e e n i n T T a u r i s ta r s ( K u h i 1 9 64 ). E v e n

    l a r g e r o u t f l o w s o c c u r a t F U O r i o n i s s t a r s ,

    w h i c h a p p e a r t o b e T T a u r i s t a r s i n a n o u t -

    b u r s t p h a s e ( H e r b i g 1 9 7 7 ) . V e r y m a s s i v e

    o u t f lo w s a p p e a r t o o c c u r f r e q u e n t l y in w h a t

    i s b e l i e v e d t o b e t h e p r e - T - T a u r i s t a g e o f

    s o l a r - m a s s s t a r s , i n v o l v i n g l a r g e e l e c t r o n

    d e n s i t i e s (1 08 t o 1 0 II c m - 3 ) , m a s s l o s s e s i n

    t h e r a n g e 10 -7 to 10 -6

    M o / y e a r

    a n d o u t f l o w

    v e l o c i t i e s a r o u n d 1 00 k m / s e c ( L a d a 1 9 85 ,

    1 9 8 7 ) . E d w a r d s

    e t a l .

    (1 9 80 ) h a v e o b s e r v e d

    S + a n d m a s s l o s s e s o f 10 -9 t o 10 -7 M G / y e a r

    w i t h v e l o c i t i e s u p t o 2 0 0 k m / s e c i n s p e c t r a

    o f T T a u r i s t a r s; t h e y i n fe r t h e p r e s e n c e o f

    o p a q u e p r o t o p l a n e t a r y a c c r e t i o n d i s k s .

    I f su c h f lu x e s c o n t i n u e o v e r t i m e s c a l e s

    o f o r d e r 106 y e a r s , a l a rg e f r a c t i o n o f a s o l a r

    m a s s c a n b e l o s t . F o r t h e S u n t o h a v e l o s t

    m o r e t h a n a b o u t h a l f o f it s o ri g in a l m a s s is

    u n l i k e l y a n d t h e l i m i t m a y w e l l b e m o r e

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    5/9

    4 06 F L O Y D H E R B E R T

    s t r i n g e n t t h a n t h a t ( W e i d e n s c h i l l i n g 1 97 8) ,

    b u t i n t e n s e s o l a r w i n d f l u x e s s u c h a s t h o s e

    m e n t i o n e d a b o v e b u t o f s h o r t e r d u r a ti o n

    a r e n o t r u l e d o u t . S h o r t e r t i m e s c a l e s p r e f -

    e r e n t i a l l y f a v o r i n d u c t i o n h e a t i n g i n s m a l l e r

    b o d i e s . T h e a c t u a l o u t f l o w t i m e i s n o t w e l l

    k n o w n ; s o m e t h e o r e ti c a l t r e a t m e n t s o f t h e

    s o u r c e o f t h e f l o w (e . g . , S h u e t a l . 1987)

    s u g g e s t t h a t t h e f l o w c o u l d b e d r i v e n b y i n -

    f l ow i n g p r o t o p l a n e t a r y d i s k m a t e r i a l an d

    t h u s m i g h t b e e p i s o d i c . I n su c h a c a s e t h e r e

    c o u l d b e s i g n if i c an t e n e r g y f lu x a t a n u m b e r

    o f t im e s c a l e s .

    3. MODEL DESCRIPTION

    T h e t i m e - i n d e p e n d e n t t r a n s v e r s e m a g -

    n e t i c ( u n i p o l ar ) i n d u c t i o n m o d e l u s e d in t h e

    p r e s e n t w o r k h a s b e e n d e s c r i b e d m o s t c o m -

    p l e te l y b y S o n e t t e t a l . ( 1 9 7 0 ) . D e p e n d e n c e

    o f i n d u c t i o n o n f l u c t u a t i o n s i n t h e f i el d s

    ( s u c h a s th e t r a n s v e r s e e l e c t r i c m o d e a n d

    s k i n d e p t h e f f e c t s ) a r e m i n i m a l i n b o d i e s a s

    s m a l l a s a s t e r o i d s i f m o s t o f th e p o w e r l ie s

    b e l o w a f e w m H z i n f r e q u e n c y a n d t h e c o n -

    d u c t i v i t y i s l e s s t h a n 1 0 -~ S / m . T h u s V - J -

    0 o r V 2q5 - - - V l o g o - V ~b i s s o l v e d f o r

    a s p h e r i c a l ly s y m m e t r i c a s t e r o i d a l m o d e l

    w i t h a c o n s t a n t e l e c t r i c f ie ld a t th e b o u n d -

    a r y ( l o n g w a v e l e n g t h l i m i t) . H e r e J is t h e

    c u r r e n t d e n s i t y , ~b i s t h e e l e c t r i c a l p o t e n t i a l ,

    a n d cr i s t h e e l e c t r ic a l c o n d u c t i v i t y , w h i c h

    v a r i e s w i t h t e m p e r a t u r e a n d c o m p o s i t i o n .

    T h e m o t i o n a l e l e c t r i c f ie ld is g i v e n b y t h e

    p r o d u c t o f t h e p r im o r d i a l s o l a r w i n d s p e e d

    ( a s s u m e d i n d e p e n d e n t o f h e l i o ce n t r ic d i s -

    t a n c e d ) a n d t r a n s v e r s e m a g n e t i c fi el d ( a s -

    s u m e d ~ d i); b o t h a s s u m p t i o n s a r e sa t is -

    f ie d f o r t h e p r e s e n t - d a y s o l a r w i n d . T h e

    e l e c t r i c f ie l d a t t h e a s t e r o i d ' s s u r f a c e i s a s -

    s u m e d t o b e d i m i n is h e d f r o m t h e v a l u e o f

    t h e m o t i o n a i f ie ld b y t h e m a g n e t i c f l u x d e -

    f l e c ti o n f a c t o r d e r i v e d b y S o n e t t e t a l .

    ( 19 7 0) . T h e j o u l e h e a t i n g r a t e i s g i v e n b y

    lV, l 2 T h e s o l a r w i n d p l a s m a ( H + e ) d e n -

    s i t y i s a s s u m e d p r o p o r t i o n a l b o t h t o d ~-

    a n d t h e n e t s o l a r m a s s l o s s d i v i d e d b y t h e

    i n d u c t i o n e p o c h d u r a t i o n . T h e m a s s lo s s is

    a s s u m e d i s o t r o p i c ; s i n c e t h e r e l e v a n t p a -

    r a m e t e r is t h e s o l a r w i n d d e n s i t y , i f t h e

    m a s s l o ss i s p r e d o m i n a n t l y e q u a t o r i a l t h e

    n e t m a s s l o ss is c o r r e s p o n d i n g l y r e d u c e d .

    T h e e l e c t r i c a l c o n d u c t i v i t y f u n c t i o n o f

    t h e p r o t o - a s t e r o i d a l b u l k m a t e r i a l i s a n i m -

    p o r t a n t u n k n o w n q u a n t i t y . F o r th e p u r-

    p o s e s o f m o d e l i n g a fu n c t i o n o f th e f o r m

    m i n { o - 0e~7, 0.1 S / m } i s u s e d . A t h i g h t e m -

    p e r a t u r e s t h e e l e c t ri c a l c o n d u c t i v i t y o f r e a l

    c a n d i d a t e m a t e r i a l s o f t e n s t o p s i n c r e a s i n g

    w i th t e m p e r a t u r e , a s t h o u g h a c o n d u c t i v e

    m i n e r a l w e r e b e i n g v o l a t i z e d o r d e s t r o y e d

    b y c h e m i c a l r e a c t i o n s ( c f. D u b a a n d B o l a n d

    1984) .

    A l t h o u g h a m o r e f a m i l ia r t e m p e r a t u r e d e -

    p e n d e n c e f o r t h e e le c t r i c a l c o n d u c t i v i t y o f

    r o c k y s e m i c o n d u c t o r s is e -E /k r, w it h E t h e

    a c t i v a t i o n e n e r g y o f t h e c o n d u c t i o n m o d e ,

    m o s t r e a l m i n e ra l s h a v e s e v e r a l c o n d u c t i o n

    m o d e s w i t h d i f f e r i n g a c t i v a t i o n e n e r g i e s

    w h i c h o f t e n p r o d u c e a n o v e r a l l c o n d u c t i v -

    i t y p r o f i l e w i t h 9 l o g

    o / O T o n l y

    w e a k l y v a r i -

    a b l e a n d t h u s a p p r o x i m a t a b l e b y a c o n s t a n t

    ( ~ a ) a s a s s u m e d h e r e . E x a m p l e s o f t hi s

    b e h a v i o r a r e s h o w n i n F ig . 3, in w h i c h m e a -

    s u r e m e n t s o f o -( T) m a d e b y B r e c h e r

    e t a l .

    ( 1 97 5 ) a n d D u b a a n d B o l a n d ( 1 9 8 4 ) a r e

    c o m p a r e d w i th t h e c o n s t a n t 0 l og

    ( r / O T

    f o r m . G i v e n t h a t t h e n a t u r e o f t h e t r u e p r i-

    m o r d i a l c o n d u c t i v i t y f u n c t i o n i s s o p o o r l y

    k n o w n , p a r a m e t e r i z a t i o n o f t h e m o d e l c o n -

    d u c t i v i t y f u n c t i o n b y m o r e t h a n t w o v a r i -

    a b l e s s e e m s u n j u s ti f ie d a t t h e p r e s e n t l e v el

    o f a p p r o x i m a t i o n .

    E a c h c a s e c o n s i d e r e d is a c t u a l l y a g r id o f

    a s t e r o i d t h e r m a l h i s t o r y m o d e l s , w i t h a l l

    p a r a m e t e r s h e l d c o n s t a n t e x c e p t h e l i o c e n -

    t r ic d i s t a n c e a n d a s t e r o i d a l s i z e. T h e r e s u l t s

    w il l b e s u m m a r i z e d b y a c o n t o u r p l ot o f t h e

    m a x i m u m i n te r io r t e m p e r a t u r e r e a c h e d i n

    e a c h a s t e r o i d m o d e l p l o t t e d a s a f u n c t i o n o f

    t h e s i z e a n d d i s t a n c e o f t h a t a s t e r o i d .

    4. RESULTS

    I n o r d e r t o e x p l o r e t h e c h a r a c t e r i s t i c s o f

    t h e i n d u c t i o n h e a t i n g m o d e l a n d t o f in d pa -

    r a m e t e r r a n g e s t h a t r e su l t in e v o l u t i o n a r y

    m o d e l s th a t h a v e o u t c o m e s c o n s i s t e n t w i th

    o b s e r v a t i o n s o f a s t e r o id a l c o m p o s i t i o n a l

    t y p e s a s s u m m a r i z e d in F i g s. 1 a n d 2 , a

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    6/9

    IN D U C T IO N H E A T IN G O F A S T E R O ID S 4 0 7

    .e,

    o _=

    _

    De~ees (K)

    t000 600 400 370 200

    ,, , , J i

    0 ~ 3b0 c 160 c b*c

    /

    -t - s_ k .

    -2 ~ ,-3e'~sT

    ~....10- 4cO ~O3T

    -6 lO-=e ~ . . . . ~ . . . , . . . . ~ -

    tO00/T (K t

    FIG. 3. Electrical conductivity as a function of tem-

    perature. The measurements of Brecher

    e t a l

    (1975) at

    low temperature and Duba and Boland (1984) at high

    temperature of the conductivities of samples of the

    meteorites Allende and Murcheson are shown. The

    solid-dot curves are for Allende and the open-circle

    curves are for Murcheson. Since different samples

    were used, the different determinations are not neces-

    sarily consistent (e.g., see the curves for Allende).

    Also shown are some of the analytic conductivity

    functions used in the models of the present work la-

    beled by their analytic form.

    TABLE II

    PARAMETERS THAT VARY BETW EEN MODELS

    Figure number 4a 4b 4c 4d 5

    Duration of induction

    epoch (year) 107 107 104 104 10~

    Solar mass loss (Mu) 0.30 0.03 0. 02 5 0.03 0.10

    a (K -~) 0.025 0.003 0.0 25 0.003 0.025

    ~r0 (S/m) 10 7 10-5 10 -s 10 ~ 10 x

    h e l i o c e n t r i c d i s t a n c e , a n d a r e o t p r o f i le s o f

    t e m p e r a t u r e v s r a d i u s w i t h i n a s i n g l e b o d y .

    T h e h i g h e s t c o n t o u r l e v e l i n e a c h c a s e a p -

    p r o x i m a t e l y i n d i c a t e s t h e s i z e a n d d i s t a n c e

    r a n g e i n w h i c h s o m e p o r t i o n ( g e n e r a l l y

    m o s t o f t h e i n t e ri o r ) o f a m o d e l a s t e r o i d

    a t t a in s m e l t i n g t e m p e r a t u r e . F i g u r e s 4 a a n d

    4 b w e r e c o m p u t e d a s s u m i n g a 1 0 7-y e ar d u -

    r a t i o n f o r t h e i n d u c t i o n h e a t i n g e r a , w h i l e

    F i g s . 4 c a n d 4 d a r e f o r a 1 0 4 - y e ar d u r a t i o n .

    F i g u r e s 4 a a n d 4 c r e s u l t e d f r o m ~ = 0 . 0 2 5

    ( e l e c t r i c a l c o n d u c t i v i t y h i g h l y t e m p e r a t u r e

    d e p e n d e n t ) w h i l e F i g s . 4 b a n d 4 d a r e f o r

    = 0 .0 0 3 ( w e a k l y d e p e n d e n t ) .

    T h e w e a k l y t e m p e r a t u r e - d e p e n d e n t

    c a s e s s h o w l it tl e v a r i a t i o n w i t h h e l i o c e n t r i c

    d i s t a n c e , w h i l e t h e s t r o n g l y t e m p e r a t u r e -

    d e p e n d e n t c a s e s h a v e s i g n i f i c a n t m e l t i n g

    n u m b e r o f m o d e l s w e r e c o m p u t e d . T h e s e

    m o d e l s i n v o l v e th e a s s u m p t i o n o f p a r a m e -

    t e r s w h i c h a r e s u m m a r i z e d in T a b l e s 1 a n d

    I I .

    F i g u r e 4 c o n s i s t s o f fo u r c o n t o u r p l o ts o f

    m a x i m u m t e m p e r a t u r e (C ) r e a c h e d b y

    e a c h o f a g r id o f a s t e r o i d m o d e l s s p a n n in g

    t h e i n d i c a t e d r a n g e s o f d i a m e t e r a n d h e l io -

    c e n t r i c d i s t a n c e . N o t e t h a t e a c h c o n t o u r

    p l o t s u m m a r i z e s t h e r e s u l t s o f a s u i te o f

    m o d e l a s t e r o id s o f d if fe r in g d i a m e t e r a n d

    TABLE

    PARAMETERS USED IN ALL MODELS

    Asteroid density

    Specific heat

    Solar wind speed

    Solar surface magnetic field

    Solar rotational velocity

    Insolation tempera ture at I AU

    2500 kg/ m 3

    733 J/K/kg

    400 km/sec

    100G

    10 -4 ra d/s ec

    0oc

    ~- 5I~I ~ 1

    iNNf 1

    .2 ~.5 2.6 3.~ 31 2.2 2.8 3

    Heliocentric Distance (A.U.)

    FIG. 4. Contour plots of maximum temperature at-

    tained by each asteroid within each of four suites of

    models. The effects of induction epoch duration and

    tempera ture depe ndence of electrical conductivity are

    investigated by variation of these parameters. Figures

    4a and 4b are for l07 years and Figs. 4c and 4d are for

    104 years . Figure s 4a and 4c were ge nerate d u sing ~ =

    0.025OK 1 and Fig s. 4b and 4d ar e for 0.003K ~.

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    7/9

    4 0 8 F L O Y D H E R B E R T

    500 ~ ~ ~

    20O

    ~ 5o

    N

    6

    2

    22 2.5 ~B 3 1

    4

    HefiocentricOislonce A.U)

    F~G. 5. Contour plots of maximum temperature at-

    tained by each asteroid within a suite of models repre-

    senting an app rox imat e fit to the data in Figs. I and 2.

    c o n f i n e d t o t h e i n n e r e d g e o f t h e b e l t . G i v e n

    t h e o b s e r v e d d i s t r i b u t i o n o f a s t e r o i d a l

    t y p e s ( c f . F i g . 1 ) , t h e l a t t e r c a s e s s e e m

    m o r e r e a l i s ti c . T h e v a l u e s o f o -, a n d o~ in

    t h e s e c a s e s c o r r e s p o n d r o u g h l y t o v a l u e s

    m e a s u r e d b y D u b a a n d B o l a n d ( 19 8 4) f o r

    t he C 2 c a r b o n a c e o u s c h o n d r i t e M u r c h e s o n .

    A l t h o u g h a s m e n t i o n e d a b o v e t h e c a r b o n a -

    c e o u s c h o n d r i t e s a r e p r o b a b l y n o t u n a l -

    t e r e d s a m p l e s o f th e o r i g in a l a s t e r o i d a l b u l k

    m a t e r i a l , t h e s e m e t e o r i t e s a r e p r o b a b l y a s

    c l o s e t o t h o s e m a t e r i a l s a s c a n p r e s e n t l y b e

    o b t a i n e d .

    T h e d u r a t i o n o f t h e i n d u c t i o n h e a t i n g e p i-

    s o d e a f f e c t s t h e s i z e r a n g e o f a s t e r o i d

    m o d e l s i n w h i c h m e l t i n g o c c u r s . A 1 0 4 -y e ar

    i n t e r v a l i s m o s t l i k e l y t o m e l t a s t e r o i d s w i t h

    d i a m e t e r s b e t w e e n I a n d 2 0 t o 5 0 k i n, w h i l e

    a 1 0 Y -y ea r d u r a t i o n f a v o r s d i a m e t e r s b e -

    t w e e n 1 0 a n d 2 0 0 to 50 0 k m . A c o m p a r i s o n

    w i t h F i g . 2 s u g g e s t s t h a t p e r h a p s a n i n t e r -

    m e d i a t e t i m e i n t e r v a l , s u c h a s 105 y e a r s i s

    o p t i m u m . C o m p a r i s o n w i th F ig . 1 i n d i c a t e s

    t h a t l a r g e a i s p r e f e r r e d . T h u s a fi n al m o d e l

    ( F i g . 5 ) s h o w s a c a s e w i t h t h e s e p r e v i -

    s i o n a l l y d e t e r m i n e d p a r a m e t e r s .

    5. DISCUSSION

    A s a r e s u lt o f th e m o d e l i n g w o r k in t h e

    p r e v i o u s s e c t io n s , a n u m b e r o f n e w t h in g s

    h a v e b e e n l e a rn e d . O n e o f t h e m o s t i m p o r -

    t a n t i s t h e l o w v a l u e o f A M ~ ( 0 .0 3 t o 0 .1

    M

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    8/9

    INDUCTION HEATING OF ASTEROIDS 409

    obse rvat iona l data) indicate that the pre-

    ferr ed size range for melt i ng is less than 100

    km, is accret ion from bodies which were

    nearly or s t i l l par t ly mol ten. The t ime con-

    stant for loss of heat fr om a bod y with a 10-

    km solid crust is on the order of 106 years

    and for a body wi th a 30-km crust i s about

    107 years . Con seq uen t ly i f Vesta accre ted

    in 106 to 107 years from 100-km bodies

    which were s ti ll par t ly mol te n, the resul t i ng

    body would l ikely show a complex his tory

    of part ial melt events. With a 100-km or

    thicker crus t the in ter ior could s tay mol t en

    for up to 108 years, while at the same t ime

    material could have accreted at the surface

    that could show evid ence for comple te so-

    l id i f icat ion imme diate ly af ter the e nding of

    the solar wind induc t ion heat ing epoch. Ac-

    cret ion of such bodies in to a larger as teroid

    would p roduce a paren t body fo r meteor i t es

    showing a very complex thermal his tory .

    This scenario is one which could poss ibly

    fit with the intri guing result of Mitt lefehl dt

    (1979) that the basal t ic achondri te parent

    body seems to show e v idence fo r ep i sodes

    of di fferent iat ion separated spat ial ly and

    also chron olog ical ly by as mu ch as 108

    years . The spat ial gradient ins tabi l i ty of in-

    duct ion heat ing (Herbert and Sonet t 1979)

    could wel l account for the spat ial i solat ion

    of mel t regions wi thin the basal t ic achon-

    dr i t e paren t body . Al though the p resen t

    specu la t ion concern i ng accre t ion o f a l ready

    mel ted proto-as teroids does not fu l ly solve

    the pr oble m of the 108-year separa t ion of

    crys tal l iza t ion t imes , i t may serve as a

    s t a r t ing po in t fo r a more comprehens ive

    model .

    REFERENCES

    BELL, J. F. 1986. Mineralogical evolution of meteorite

    parent bodies. Lunar Planet. Sci. XVII, 985-986.

    BOWELL, E., C. R.

    CHAPMAN, J. C. GRADIE,

    D.

    MORRISON, AND B. ZELLNER 1978.

    Taxonomy

    of

    asteroids. Icarus 35, 313-335.

    BRECHER,

    A. 1973. The electrical conductivity of car-

    bonaceous meteorites.

    Meteoritics

    8, 330.

    BRECHER, A., P. L.

    BRIGGS, AND

    G. SIMMONS 1975.

    The low-temperature electrical properties of carbo-

    naceous meteorites.

    Earth Planet. Sci. Lett. 28,

    37-

    45.

    CHAPMAN, C.

    R., D. MORRiSON,

    AND B. ZELLNER

    1975. The surface properties of asteroids: A synthe-

    sis of polarimetry, radiometry, and spectrophotome-

    try. Icarus 25, 104-130.

    DRAKE,

    M. J. 1979. Geochemical evolution of the eu-

    crite parent body: Possible nature and evolution of

    asteroid 4 Vesta. In

    Asteroids

    (T. Gehrels, Ed.), pp.

    765-782. Univer. of Arizona Press, Tucson.

    DUBA, A. G., AND J. N. BOLAND 1984. High tempera-

    ture electrical conductivity of the carbonaceous

    chondrites Allende and Murcheson.

    Lunar Science

    XV, 232-233.

    DUBA,

    A., J. N.

    BOLAND, AND

    A. E. RINGWOOD

    1973. The electrical conductivity of pyroxene. J.

    Geo.

    81, 727-735.

    DUBA,

    A., H. C.

    HEARD, AND

    R. N. SCHOCK 1974.

    Electrical conductivity of olivine at high pressure

    and under controlled oxygen fugacity.

    J. Geophys.

    Res.

    79, 1667-1673.

    EVERNDEN, J. F., AND J. VERHOOGEN

    1956. Electrical

    resistivity of meteorites. Nature London) 178, 106.

    FISH, R. A., G. G. GOLES, AND E. ANDERS 1960.

    As-

    trophys. J.

    132, 243.

    GAFFEY, M. J. 1984. Rotational spectral variations of

    asteroid (8) Flora: Implications for the nature of the

    S-type asteroids and for the parent bodies of the

    ordinary chondrites. Icarus 60, 83-114.

    GRADIE, J., AND E. F. TEDESCO, 1982. Compositional

    structure of the asteroid belt.

    Science

    216, 1405-

    1407.

    HERBERT, F.,

    AND C. P. SONETT 1978. Primordial

    metamorphism of asteroids via electric induction in

    a T Tauri-like solar wind.

    Astrophys. Space Sci.

    55,

    227-239.

    HERBERT, F., AND C. P. SONETT 1979. Electromag-

    netic heating of minor planets in the early Solar Sys-

    tem.

    Icarus 40,

    484-496.

    HERBERT, F.,

    AND C. P. SONETT

    1980. Electromag-

    netic inductive heating of the asteroids and Moon as

    evidence bearing on the primordial solar wind. in

    Proc. Conf. Ancient Sun

    (R. O. Pepin, J. A. Eddy,

    and R. B. Merrill, Eds.), pp. 563-576. Pergamon,

    New

    York--Geochim. Cosmochim. Acta Suppl.

    13.

    HERBIG, G. H. 1977.

    Astrophys. J.

    217, 693.

    HINTON, R. W., AND A. BISCHOFF 1984. Ion micro-

    probe magnesium isotope analysis of plagioclase

    and hibonite from ordinary chondrites.

    Nature

    London)

    308, 169-172.

    HUTCHEON, I. D., I. M. STEELE, J. V. SMITH, AND

    R. N. CLAYTON 1978. Ion microprobe, electron mi-

    croprobe and cathodoluminescence data for Allende

    inclusions with emphasis on plagioclase chemistry.

    Proc. Lunar Planet Sci. Conf. 9th,

    1345-1368.

    KAULA,

    W. M. 1968.

    An Introduction to Planetary

    Physics.

    Wiley, New York.

    KUHI, L. V. 1964. Mass loss from T Tauri stars.

    As-

    trophys.

    J. 140, 1409-1433.

    LADA, C. J. 1985. Cold outflows, energetic winds, and

  • 8/10/2019 Floyd Herbert -- Primordial Electrical Induction Heating

    9/9

    4 1 0 F L O Y D H E R B E R T

    e n i g m a t i c j e t s a r o u n d y o u n g s t e l l a r o b j e c t s . Annu.

    Rev. Astron. Astrophys. 2 3 , 2 6 7 - 3 1 7 .

    L A D A , C . J . 1 98 7. O n t h e i m p o r t a n c e o f o u t f l o w s f o r

    m o l e c u l a r c lo u d s a n d s t a r f o r m a t i o n . N A T O A d -

    v a n c e d S t u d y I n s t it u t e o n G a l a c t i c a n d E x t r a g a l ac -

    t ic S t a r F o r m a t i o n . W h i s t l e r , B C , C a n a d a .

    L ARS O N, H . P . , AND G . J . V E E D E R 1 9 79. I n f r a r e d

    s p e c t r a l r e f l e c t a n c e s o f a s te r o i d s u r f a c e s . I n

    Aster-

    oids ( T . G e h r e l s , E d . ) , p p . 7 2 4 - 7 4 4 . U n i v . o f A r i-

    z o n a P r e s s , T u c s o n .

    L EB O FS KY , L . A . 1 9 7 8 . A s t e r o i d I C e r e s : E v i d e n c e f o r

    w a t e r o f h y d r a t i o n .

    Mon. Not. R. Aslron. Soc.

    1 8 2 ,

    1 7 P - 2 1 P .

    L E B O FS K V , I , . A . , T . D . JO NES , AND F . H E R a E RT

    1 98 8. A s t e r o i d v o l a t i l e i n v e n t o r i e s . I n The Origins

    and Evolution ct[ Planetary Atmosphere ( J . B . P o l -

    l a c k a n d S . K . A t r e y a , E d s . ) . U n i v . o f A r i z o n a

    P r e s s , T u c s o n , i n p r e s s .

    L E E , T . , D . A . P AP ANAS TAS S IO U, AND G . J . W AS S E R-

    B UR G 19 77 . A l u m i n u m - 2 6 i n t h e e a r l y S o l a r S y s t e m :

    F o s s i l o r f u e l ' ? Astrophys. J. Left. 2 1 1 , i , 1 0 7 -

    L I I 0 .

    L E E , T . , W . A . RUS S E L L, AND G . J . W A S S ERB URG

    1 97 9. C a l c i u m i s o t o p i c a n o m a l i e s a n d t h e l a c k o f

    a l u m i n u m - 2 6 in a n u n u s u a l A l l e n d e i n c l u s i o n . A s -

    trophys. J. Lett.

    2 2 8 , L 9 3 - L 9 8 .

    M A T S O N , D . 1 9 86 . I n f r a r e d a s t r o n o m i c a l s a t e l l i te a s -

    t e ro i d a n d c o m e t s u r v e y , p r e p r i n t # 1 , J P I , /I P A C ,

    C a l if . I n s t i t u t e o f T e c h n o l o g y .

    M c C O R D , T . B . , A N D M . J . G A FF E Y 1 9 74 . A s t e r o i d s :

    S u r f a c e c o m p o s i t i o n f r o m r e f le c t a n ce s p e c t r o s c o p y .

    Science 1 8 5 , 3 5 2 - 3 5 5 .

    M I T T L E F E H LD T , D . W . 1 9 79 . T h e n a t u r e o f a s t e r o i d a l

    d i f f e r e n t i a t i o n p r o c e s s e s : I m p l i c a t i o n s f o r p r i m o r -

    d i a l h e a t s o u r c e s .

    Proe. Lunar Planet Sci. Cot~l~

    IOth. 1 9 7 5 - 1 9 9 3 .

    P AP ANAS T AS S I O U, D . A . , G . J . W AS S E RB URG , AND

    U . B . M A R V IN 1 9 87 . A b s e n c e o f e x c e s s 2 6 M g i n a n -

    o r t h i t e f r o m t h e V a c a M u e r t a m e s o s i d e r i t e , i n Pa-

    pers Presen ted to the 47th Annual Meteoritical Soci-

    ety Meeting. p . T - 5 . L u n a r a n d P l a n e t a r y I n s t i tu t e ,

    H o u s t o n .

    PARKHOMENKO, E . 1 . 1967.

    Electrical Properties of

    Rocks. P l e n u m , N e w Y o r k .

    S CH RAMM, D , N . , F . T E RA, AND G . J . W AS S ERB URG

    1 9 70 . T h e i s o t o p i c a b u n d a n c e o f-~ 6M g a n d l i m i t s o n

    2 6A I i n t h e e a r l y S o l a r S y s t e m . Earth Planet. Sei.

    Left.

    1 0 , 4 4 - 5 9 .

    S C H W E R E R , F . C . , T . N A G A T A , A N D R . M . F IS H ER

    19 71 . E l e c t ri c a l c o n d u c t i v i t y o f l u n a r s u r f a c e r o c k s

    a n d c h o n d r i t i c m e t e o r i t e s . The Moon 2 , 4 0 8 - 4 2 2 .

    S H U , F . H . , S . L I Z A N O , A N D J . N A J I T A 1 9 8 8 . M a s s

    l o s s f r o m r a p i d l y - r o t a t i n g m a g n e t i c p r o t o s t a r s . As-

    trophys. J. Lett. 3 2 8 , L 1 9 - L 2 3 .

    S O N E T T , C . P . , D . S . C O E B U R N , A N D K . S C H W A R T Z

    1 9 68 . E l e c t ri c a l h e a t i n g o f m e t e o r i t e p a r e n t b o d i e s

    a n d p l a n e t s b y d y n a m o i n d u c t i o n f ro m a p r e - m a i n

    s e q u e n c e T T a u r i s o l a r w i n d . Nature (London)

    2 1 9 , 9 2 4 - 9 2 6 .

    S O N E T T ,

    C. P . , D .

    S . C O L B U R N , K . S C H W A R T Z , A N D

    K . K E I L 1 97 0. T h e m e l t i n g o f a s t e r o i d a l - s i z e d

    b o d i e s b y u n i p o l a r d y n a m o i n d u c t i o n fr o m a p ri m o r -

    d i a l T T a u r i s u n . Astrophys. Space Sei. 7 , 4 4 6 - 4 8 8 .

    T H O L E N, D . J . 1 9 8 4 .

    Asteroid Taxonomy from Cluster

    Analysis tff Photometry. P h . D . t h e s i s , U n i v e r s i t y o f

    A r i z o n a .

    T O L L A N D , H . G . , A N D G . J . S T R E NS 1 9 7 2 . E l e c t r i c a l

    c o n d u c t i o n i n p h y s i c a l a n d c h e m i c a l m i x t u r e s , a p -

    p l i c a t i o n t o p l a n e t a r y m a n t l e s . Phys. Earth Planet.

    Inter. 5 , 3 8 0 - 3 8 6 .

    URE Y , H . C . 1 9 55 . Proc. Natl. Aead. Sei. U.S.A. 4 1 ,

    127.

    W AS S O N, J . T . , W . B E N Z , AND A . E . RUB I N 1 9 87 .

    H e a t i n g o f p r i m i t iv e , a s t e r o i d - s i z e b o d i e s b y l a r g e

    i m p a c t s . I n Papers Presented to the 50th Annual

    Meteoritical Soeiety Meeting,

    p. 185.

    WEIDENSCHILLING, S . J . 1 9 7 8 . A c o n s t r a i n t o n p r e -

    m a i n - s e q u e n c e m a s s l o s s . Moon Planets 1 9 , 2 7 9 -

    2 8 7 .

    W O O D , J . A . 1 9 79 . R e v i e w o f t h e m e t a l l o g r a p h i c c o o l -

    i n g r a t e s o f m e t e o r i t e s a n d a n e w m o d e l f o r th e p l a n -

    e t e s i m a l s in w h i c h t h e y f o r m e d . I n Asteroids ( T .

    G e h r e l s , E d . ) , p p . 8 4 9 - 8 9 1 . U n i v . o f A r i z o n a P r e s s ,

    T u c s o n .

    Z E L LN E R , B . , A ND E . B O W E L L 1 97 7 . A s t e r o i d c o m p o -

    s i t io n a l t y p e s a n d t h e i r d i s tr i b u t i o n s . I n

    Comets. As-

    teroids, Meteorites--Interrelations, Evolution and

    Origins

    ( A . H . D e l s e m m e , E d .) , p p. 1 8 5 - 1 9 7 . U n i v .

    o f T o l e d o , T o l e d o .

    Z E L L NE R, B . , D . J . T H O L E N, AND E . F . T E D E S CO

    1 98 5. T h e e i g h t - c o l o r a s t e r o i d s u r v e y : R e s u l t s f o r

    5 8 9 m i n o r p l a n e t s . Icarus 6 1 , 3 5 5 - 4 1 6 .