fluxomics quantifying metabolic phenotypes · alexander braun [email protected]...

32
Fluxomics – Quantifying Metabolic Phenotypes Alexander Braun Environmental Isotope Chemistry Institute of Groundwater Ecology

Upload: others

Post on 02-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Fluxomics – Quantifying Metabolic Phenotypes

Alexander Braun

Environmental Isotope Chemistry Institute of Groundwater Ecology

Page 2: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

„The central dogma of

one gene, one protein, one function

died in the last years.“ (Cascante & Marin 2008)

What is Fluxomics?

Page 3: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

„What can happen?“

„What appears to be happening?“

„What makes it happen?“

„What could have happened?“

(Dettmer et al. 2006)

What is Fluxomics?

Page 4: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

„What did happen and how did it happen?“

„What can happen?“

„What appears to be happening?“

„What makes it happen?“

„What could have happened?“

(Dettmer et al. 2006)

What is Fluxomics?

Page 5: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

… the „traffic of metabolites“

The entity of intracellular fluxes that comprise the

ultimate endpoint of the regulated interplay of

genome, transcriptome, proteome and

metabolome.

The science of the fluxome is called

FLUXOMICS.

What is Fluxomics?

(Dettmer et al. 2006)

(Zamboni 2009)

(Niklas et al. 2010)

FLUXOME

Page 6: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

„qualitative snapshots of the metabolic state of a cell“

indicators for metabolic phenotype

(Winter & Krömer 2013)

? gap

(Dettmer et al. 2006)

What is Fluxomics?

FLUXOME

Page 7: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Chubukov 2013)

The Proteome-To-Phenotype Gap

Page 8: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Tang 2008)

Fluxomics: metabolic endpoint = high scientific output?

Page 9: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Winter & Krömer 2013)

𝑣 = 𝑓(𝐸, 𝑘, 𝑆, 𝑃, 𝐼)

Principles of Fluxomics

enzymek

S

I

P v

v: metabolic flux

E: enzyme concentration

k: kinetic parameters of the enzyme

S: substrate(s) concentration

P: product(s) concentration

I : effector molecule(s) concentration

Page 10: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Winter & Krömer 2013)

𝑣 = 𝑓(𝐸, 𝑘, 𝑆, 𝑃, 𝐼)

Principles of Fluxomics

k: in vitro ≠ in vivo

v must be quantified indirectly

Proteomics Metabolomics

Enzyme kinetics (in vitro!)

v: metabolic flux

E: enzyme concentration

k: kinetic parameters of the enzyme

S: substrate(s) concentration

P: product(s) concentration

I : effector molecule(s) concentration

Page 11: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Glcin

PEPin

Lacin Pyrin

Alain

Glcex

Directly measurable:

• intracellular metabolites and

their stable isotope label,

e.g. Glc, Lac, Ala

Principles of Fluxomics

Not directly measurable:

• intracellular fluxes,

e.g. Glc -> PEP

Page 12: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Glcin

PEPin

Lacin Pyrin

Alain

Glcex

Principles of Fluxomics

Stable Isotopes as Tracer:

Page 13: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Niedenführ 2015)

Fluxomics

Complexity (experimental & modelling)

Page 14: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Example 1

(Niedenführ 2015)

Fluxomics

Complexity (experimental & modelling)

Page 15: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Zhang et al. 2014)

Example 1: Isotope profiling

Page 16: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Zhang et al. 2014)

healthy cell

Example 1: Isotope profiling

Page 17: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Zhang et al. 2014)

cancer cell

Example 1: Isotope profiling

Page 18: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Example 1: Isotope profiling

Conclusions:

-probably the easiest way to determine metabolic fluxes

(label->sample->data analysis[yes or no])

allows to prove metabolic connections / disconnections,

e.g. induced by cancer / diabetes

Isotope profiles can be used as indicators for metabolic disorders and/or

environmental conditions

Page 19: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Example 1

(Niedenführ 2015)

Fluxomics

Complexity (experimental & modelling)

Example 2

Page 20: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Glcin

PEPin

Lacin Pyrin

Alain

Glcex

Alaex Lacex

Directly measurable:

• intracellular metabolites and

their stable isotope label,

e.g. Glc, Lac, Ala

• extracellular fluxes,

e.g. Glc, Lac, Ala

Example 2: 13C Metabolic Flux Analysis

Not directly measurable:

• intracellular fluxes,

e.g. Glc -> PEP

Page 21: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Metabolic steady state

constant growth rate,

O2 consumpition,

CO2 production,

organic intake &

output rates

Isotopic steady state

constant isotope

signatures of

metabolites over time

Metabolic network model

Example 2: 13C Metabolic Flux Analysis

Atom transitions

Page 22: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Zamboni 2011)

„metabolic

phenotype“

Example 2: 13C Metabolic Flux Analysis

Page 23: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

(Zamboni 2011)

Example 2: 13C Metabolic Flux Analysis

„Flux map“

Page 24: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Example 2: 13C Metabolic Flux Analysis

Conclusions:

-“sophisticated“ experiments

-only for „known networks“

-extensive(!) modelling is necessary (CPU time: days-weeks)

Absolute flux information

Page 25: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

- Metabolic fluxes are the ultimate metabolic endpoint

- Stable Isotopes allow determination of fluxes

- Different approaches for different levels of flux information

(in principle: the more input, the more output)

For further ideas / suggestions / cooperations, please contact

Alexander Braun

[email protected]

Overarching Conclusions

Page 26: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ
Page 27: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Complexity (experimental & modelling)

Example 1

(Niedenführ 2015)

Fluxomics:

Example 3

Example 2

Page 28: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Example 3: Kinetic Flux Profiling

liver muscle

C & N

input

Page 29: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

10 20 100 200 1000

Half-life (h)

urin

efe

ces

liver

kidn

ey, s

plee

n

hear

t

mus

cle

brai

nlu

ngpl

asm

a

amin

oac

idsin

mus

cle

cow (Bos taurus)rat (Rattus rattus)

milk

fat

milk

case

in

milk

lact

ose

who

lem

ilk

fece

sha

irC & N residence time (h)

-48 -24 0 24 48 72 96-31

-30

-29

-28

-27

-26

Time after isotopic switch (h)

Iso

top

icco

mp

ositio

n(0

/ 00)

Example 3: Kinetic Flux Profiling

• Metabolic and isotopic steady state

• Time resolved sampling

• (simple) modelling

grey: diet

black: liver

Page 30: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Example 3: Kinetic Flux Profiling

Conclusions:

-metabolic & isotopic steady states are necessary

-(simple) modelling is necessary

time-resolved sampling allows kinetic flux information (e.g. half-lifes)

Page 31: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

Sampling

Compound specific

(Metabolomics)

Bulk tissues

Organisms

(time resolved?)

Isotope Tracer

C, N, S, O, H….

Molecules

Isotopomes

Data analysis

No modelling

Exponential decay

Isotopomer modelling

….

Principles of Fluxomics

Page 32: Fluxomics Quantifying Metabolic Phenotypes · Alexander Braun alexander.braun@helmholtz-muenchen.de Overarching Conclusions . Complexity (experimental & modelling) Example 1 (Niedenführ

The Metabolome-To-Phenotype Gap