follett tech 3

Upload: aquibzafar

Post on 03-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Follett Tech 3

    1/47

  • 8/12/2019 Follett Tech 3

    2/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page2

    TableofContents:TableofContents...2ExecutiveSummary.....3Introduction...4ExistingCompositeJoistandPrecastConcretePlankSystem...5ApplicableCodes,DesignCriteriaandLoadCases......8BuildingDesignLoadsandLateralCriteria.........9LoadDistributionandAnalysis.....12

    DeterminationofRelativeStiffness(k)andCenterofRigidity....12DeterminationofDirectandTorsionalShear.... 12,13

    FrameAnalysis.. 15PortalFrameAnalysis........15STAAD.Pro2006Analysis......15MemberVerificationandStrengthChecks.17

    ServiceabilityCheck(DriftAnalysis)... 26OverturningMomentandUplift... 27Conclusion.......29AppendixA:BuildingLayout...30AppendixB:WindandSeismicDesignData........33AppendixC:CenterofMassandRigidity..36AppendixD:PortalFrameAnalysisCalculations....38AppendixE:TorsionalForceTables.....44

  • 8/12/2019 Follett Tech 3

    3/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page3

    ExecutiveSummary:WashingtonParkCondominiumsisan8storymultiuseretailandresidentialbuildinglocatedin

    Mt.Lebanon,Pennsylvania. Thelateralforceresistingsystemofthebuildingwhichwillbe

    studiedinthisreportisasteelmomentframesystem. Therearefourframesthatruninthe

    northsouthdirectionofthebuildingwhichalsoisthelongestlengthofthebuilding.Furthermore,therearenine,3baymomentframesthatrunintheeastwestdirectionofthe

    building. Theseframesareconnectedtobraceframesinthebasementandsubbasement

    levelswhichhelptocarrythesoilpressureandtransferthelateralloadtothefoundations.

    ThepurposeofTechnicalReport#3wastoinvestigatethelateralsystemofthebuildingandto

    prepareananalysisanddesignverificationsummaryofthestructure. Theloadsfoundin

    TechnicalReport#1wereusedasabaseandwereeventuallymodifiedbasedonthestiffnesss

    oftheframesthatwasdeterminedduringthedesignandanalysisprocess. Theinvestigation

    usedhandmethodsalongwithcomputeranalysistodetermineanddiscussthefollowing:

    DirectandTorsionalShearForces

    ControllingLoadCombinations

    LogicalLoadPath

    StoryandOverallStructureDrift

    Beam,ColumnandBraceStrength

    OverturningMomentsandUplift

    Theanalysisshowshowthemomentframes,runninginbothdirectionsthroughthebuilding,

    resistthelateralforcesthatareappliedbybothwindandseismic. Oncetheloadswereapplied

    tothestructureaframeanalysiswasperformedbybothhandcalculationandcomputer

    modeling. Thisallowedthestrengthofcertaincriticalmemberstobeaccessed. After

    reviewingthesemembersitwasdeterminedthatthemembersizeswerechosenbasedonthe

    governingdrift. Uponcompletionoftheanalysisitwasdeterminedthatinmostcasesthewind

    controlsthelateraldesign. However,thisisnotapparentinthedriftcalculationswhichshow

    thewinddriftsmeetingtheacceptablecodelimitswhiletheseismicdriftsfailsthelimits

    deemedacceptablebycode. Thisissuewillbestudiedatlengthintheproposaltoseeifthere

    isreallyanissueintermsofseismicdriftandifsohowcanthedriftbeminimizedwithout

    compromisingthearchitecturalaspectsofthefloorsystemandthereforevastlyincreasing

    buildingcosts.

  • 8/12/2019 Follett Tech 3

    4/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page4

    Introduction:

    WashingtonParkCondominiumsisamultiuseretailandresidentialbuildinglocatedatthe

    intersectionofBowerHillRoadandWashingtonRoadinMt.Lebanon,Pennsylvania. Sitework

    andexcavationhasbegunatthesiteandconstructionshouldbeginsometimebeforetheend

    ofthefall2008,withtheprojectlastinguntilfall2010. WashingtonParkCondominiumsisthe

    firstoftwobuildingsproposedtobebuiltonthesite. Buildingoneisaninestory,148,000ft2

    structurewhichisownedbyZamagiasPropertiesofPittsburgh,PA. Thebuildingwas

    architecturallydesignedbyIndovinaAssociatesArchitectsandisbeingconstructedbyPJDick,

    Inc.forapriceof$23,418,000. Thebuildingsprimaryuseisresidentialanditcontains7stories

    ofcondominiumsonthe2ndthrough8

    thfloors. Thefirstfloorofthebuildingisusedforretail

    spaceandasalocationforextraamenitiesfortheresidentsofWashingtonPark. Thebuilding

    alsocontainstwobelowgradelevelsofparking. Theenclosedparkinggaragecontains78

    parkingspacesthatcanbeusedbytheresidents. Twoelevatorsandtwostairsservethe

    parkingareasthatalsocontainresidentstorage,awineroomandtrashcollectionalongwith

    mechanicalandelectricalrooms. Thegroundfloorservesprimarilyasretailspacewithfour

    separateareasavailableforpossibletenants. Alsocontainedonthefloorarearesident

    exerciseroomandaprivateentranceandlobbyfortheresidents.

    Asthebuildingmovestothesecondfloor,thefunctionchangesfromprimarilyretailtooneof

    solelyresidentialwithsixupscalecondominiumslocatedonthefloor. Thesecondominiums

    eachhavedifferentfloorplansandlayoutswithoverallareasrangingfrom1523ft2to2288ft

    2.

    Eachunitcontainstwoorthreebedroomsandbathroomsdependingonsize,alongwithaliving

    room,diningroom,kitchen,study,laundry,entryandinsomecasesabalcony. Thisfloorlayoutcontinuesthroughoutthenextfourfloors,withatotalof30unitsonfloors2through6. The7

    th

    and8thfloorsofthebuildingarethepenthouselevel. Thisfloorcontainsfivecondominiums

    thatrangefrom1732ft2to2453ft

    2. Theseunitscontainthesameamenitiesandspacesasthe

    unitsonthebelowfloorsdo. Allofthecondominiumsfloorsareservedbytwoelevatorsand

    twostairwaysthatareconnectedbyahallwaythatrunsthroughthecenterofthebuildingin

    thelongdirection. Finally,theroofcontainsmechanicalspacesthatareaccessedbyusingthe

    northernmoststairwayorelevator.

    Thetypicalexteriorwallsystemofthebuildingconsistsmainlyof4brickveneerbackedbya2

    airspaceand2ofrigidXPSinsulation,thencontaininganother2layerofrigidsprayfoam

    insulationthatisfollowedbyanairspaceandthen5/8gypsumboard. Thisexteriorwall

    systemistypicalforthefirst6floorsofthebuilding. The7thand8

    thfloorsofthebuilding

    consistofasimilarwallconstructionexceptfortheexteriorfaadewhichisa5/16layerof

    paintedfibercementsiding.

  • 8/12/2019 Follett Tech 3

    5/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page5

    ExistingCompositeJoistandPrecastConcretePlankSystem:FoundationsThefoundationsystemcanbebestdescribedasaspreadfootingsystemwithattached

    concretepiers. Thesizesforthespreadfootingsrangefromthesmallest,a40x40x20footingwith#8@12eachway,toa140x140x36footingwith#8@6eachwaywith

    thedeepestofthefootingswillbe250belowgrade. Inadditiontothespreadfootings,

    interiorandexteriorwallfootingswereusedandareeither20or30wideby14deep.

    Thesteelreinforcinginthesewallfootingsare(3)#5continuousbarsand#5x18@16.

    Theslabongradeinthissystemconsistofeithera6or8normalweightconcreteslab

    reinforcedwith6x6W2.9xW2.9weldedwirefabricor6x6W4xW4weldedwirefabric.Theslab

    ongradeisalsothickenedtoaminimumif10atnonloadbearingwallsand(2)#4barsare

    addedfortensilestrength. Connectingthecolumnstotheslabongradeandthefootingsare

    columnpiersthatrangefrom16x16with(4)#7ofverticalreinforcementto40x40w/

    (12)#7ofverticalreinforcementandfc=4000psiconcreteisusedfortheentiresystem.FloorSystemsTwoseparatefloorssystemsaretypicalwithinthestructureofWashingtonPark. Thefirstisa

    precastconcreteplanksystemthatisusedintheparkingareasaswellasthefirstandsecond

    floorframing. Theprecastconcreteplankis8thickandalsocontainsa2thickstructural

    topping. Thereinforcinginthestructuraltoppingis6x6W1.4xW1.4weldedwirefabric. The

    precastconcreteplanksystembearsonWshapeswhichthencarrytheloadtothecolumns.

    Thissystemwasusedintheparkingareasbecauseofthesystemsdiaphragmcapacity(abilityto

    transferhorizontalloading)andbecauseofitsdurabilityandstrength.

    ThesecondprimaryfloorsysteminthebuildingistheVESCOMcompositejoistfloorsystem.

    Thecompositejoistsysteminterlocksthetopchordofajoistwiththeconcreteproducingless

    deflection,lessvibrationandgreaterstiffness. Thefloorconstructionconsistsofa211/16

    reducedweightconcreteslabthatispouredontopofthe15/16,22Gagegalvanizedfloor

    decking. Thebottomchordactsasthemaintensionmember,andinthecompositestagethe

    embeddedtopchordservesasacontinuousshearconnection. Theconcreteisalsoreinforced

    withweldedwirefabricandcompressivestrengthoftheconcreteisfc=3500psi. Finally,the

    systemwasusedasanarchitecturalelementsincetheceilingcouldbeinstalleddirectlytothe

    joistbottomchordandthemechanicalsystems(HVAC,plumbing,fireprotection,electricaland

    telecommunications)couldbeinstalledwiththejoistsystem,savingspaceandallowingfor

    higherceilingsandfloortofloorheightwithintheapartments. AsectionoftheVESCOM

    CompositefloorsystemcanbefoundinAppendixB.

  • 8/12/2019 Follett Tech 3

    6/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page6

    LateralSystemThelateralresistingsystemwithinthebuildingismainlymomentresistingsteelframesmade

    upofwideflangebeams. Theseframesbeginonthesecondfloorandcontinueupthroughthe

    topofthebuilding.TheseframesruninthenorthsouthdirectionandrunalongcolumnlinesA,

    B,CandD. Rigidconnectionsalsooccuronthesefloorsalongcolumnlines1through9. Figure

    1belowshowsthefourdifferenttypesofmomentframesthatexistwithinthebuilding. These

    fourframesSincetheVESCOMfloorsystemisbeingusedasadiaphragmtotransfershear

    loadingtheloadpathbeginsattheexteriorbeamsandthencontinueonthroughthefloor

    systemtojoistgirderswhicharetobedesignedandmanufacturedbythejoistmanufacturer.

    TheloadisthentransferredintothelargeW14columns,andfinallytothebraceframesandthe

    foundations. Thereareatotalofelevenbracedframeslocatedinthebasementandsub

    basementlevelsrunningalongcolumnlines1through11fromcolumnlinesA.1toB. Thebrace

    framesare172inlengthandtheybeginatthesubbasementlevelandconnectintothe

    framingforthegroundfloor. ThebracingintheframesconsistsofHSS8x8x1/2uptothe

    basementlevel,andHSS6x6x3/8fromthebasementleveltothegroundfloor. Theseframes

    areshowninFigure2below. Thisplandetailandthedetailofthebraceframescanbefoundin

    Figures2and3.

    Figure1:BracedFrameLocation

    NorthSouthFrames(A&D)

    NorthSouthFrames(B&C)

    EastWestFrames(FthruL)

    EastWestFrames(E&M)

    (0,0)

    Figure1:MomentFrameDiagram

  • 8/12/2019 Follett Tech 3

    7/47

  • 8/12/2019 Follett Tech 3

    8/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page8

    ApplicableCodes,DesignCriteriaandLoadCasesSinceanindepthlateralanalysiswasperformedthereweremanyreferencemanualsand

    materialsthatwereusedtocompletethedesign,thesearelistedasfollows:

    IBC2003withAmendmentsforMt.Lebanon,Pennsylvania ASCE705:MinimumDesignLoadsforBuildingsandOtherStructures

    ACI31808BuildingCodeandCommentary

    DesignofConcreteStructuresTextbook(AE431)

    AISCSpecificationforStructuralSteelBuildings,13thEdition

    RAMStructuralSystem(GravityLoads)

    STAADPro2006(LateralLoadAnalysis)

    DesignDeflectionCriterionThefollowingdesigncriterionwasalsousedandcanbefoundinIBC2006andASCE705:

    =H/400forAllowableStoryandBuildingDriftduetoWindLoading

    =0.015hsxforAllowableStoryandBuildingDriftduetoSeismicLoading

    DesignLoadCombinationsThefollowingLoadandResistanceFactorDesignloadcombinationswereconsideredfor

    analysis,asnotedinASCE705Chapter2:

    1.4(Dead)

    1.2(Dead)+1.6(Live)+0.5(RoofLive)

    1.2(Dead)+1.6(RoofLive)+0.8(Wind)

    1.2(Dead)+1.6(Snow)+0.8(Wind)

    1.2(Dead)+1.6(Snow)+1.0(Live)

    1.2(Dead)+1.6(Wind)+1.0(Live)+0.5(Snow)

    1.2(Dead)+1.6(Wind)+1.0(Live)+0.5(RoofLive)

    1.2(Dead)+1.0(Earthquake)+1.0(Live)+0.2(Snow)

  • 8/12/2019 Follett Tech 3

    9/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page9

    BuildingDesignLoadsandLateralCriteriaInordertocompleteananalysisofWashingtonParkCondominiums,thatgravityandlateral

    loadsactingonthebuildingneedtobeidentified. Thedeadandliveloadsthatareusedwere

    alsousedinTechnicalReport#1becauseitwasdeterminedthatthoseloadscloselymatched

    thoseusedbythedesignengineer. Thelateralloadswererecalculatedbydeterminingthe

    equivalentstiffnessforeachmomentframeinthebuilding. Findingthestiffnessofeachframe

    allowedforthedirectshearandtorsionalshearateachleveltobecalculatedandfortheloads

    tobedistributedthroughoutthebuildingaccordingtostiffness. Theseloadsandtheprocessin

    whichtheyweredeterminedwillbediscussedindetailinthenextsection. Thetablesbelow

    listthedeadandliveloadsforthebuildingaswellasthewindandseismicdesigncriteriaused

    inthecomputationofthelateralloads.

    GravityLoads

    Table1:DeadLoadTables

    DeadLoadTableFloorDeadLoad RoofDeadLoad

    Material/System Load Material/System Load

    NormalWeightConcrete 145pcf

    411/16"RWCSlab

    on15/16"FLR

    Deck

    68psf

    Steel PerShape MEP 6psf

    BrickVeneerw/studs 40psf Sprinklers 3psf

    8"P/CPlankw/2"StructuralTopping 90psfCeiling 8psf

    VESCOMJoists

    4psf

    MEP 6psfAsphalt

    Shingles/Felts4psf

    Sprinklers 3psf

    1/2"Cement

    BondedParticle

    Board

    5psf

    Ceiling 5psf

    LightGaugeRoof

    Trusses@2'0"

    O.C.

    4psf

    FloorFinishes 5psf

    Partitions 20psf

    VESCOMJoists 4psf211/16"RWCSlabon15/16"FLR

    Deck43psf

  • 8/12/2019 Follett Tech 3

    10/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page10

    LiveLoadTableFloorLiveLoadTable RoofLiveandSnowLoadTable

    Occupancy

    Load

    Material/System

    Load

    Typ.CondominiumFloor 40psf RoofLiveLoad 20psf

    Stairs 100psfRoofLiveLoad

    (Mechanical)150psf

    FirstLevel(PlazaandTraffic/Parking

    Areas250psf

    GroundSnowLoad

    (Pg)25psf

    FirstLevel(NonPlazaAreas) 100psfFlatRoofSnow

    Load(Pf)23psf

    BasementLevelParkingAreas/Ramps 50psfExposureFactor

    (Ce)1.2

    SlabsonGrade 150psf ThermalFactor(Ct) 1

    ExerciseAreaatGroundFloor 150psfImportanceFactor

    (I)1.1

    CorridorsOn1stFloor 100psf

    CorridorsAbove1stFloor 80psf

    Mech/ElecSpaces 150psf

    SecondFloorTerrace 100psf

    ApartmentBalconies 100psf

    Table2:LiveLoadTablesWindCriteriaThewindloadsforWashingtonParkCondominiumswerecalculatedusingthedesigncriteria

    foundinASCE705,Chapter6anditwasdeterminedthatitwaspermittedtouseMethod2

    AnalyticalProcedureforthedesign. Thetablebelowliststheapplicablewinddesignfactors.

    Basic Wind Speed (V) 90 mph

    Wind Direction Factor (Kd) 0.85

    Importance Factor (I) 1

    Exposure Category C

    Velocity Pressure Coefficient (Kz) Case 2

    Topographic Factor (Kzt) 1

    Enclosure Class Enclosed

    Table3:WindDesignCriteria

  • 8/12/2019 Follett Tech 3

    11/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page11

    SeismicCriteriaTheseismicloadsforWashingtonParkCondominiumswerecalculatedusingASCE705,

    Chapter12,aswellasusingtheinformationprovidedbythestructuralengineerandthe

    geotechnicalengineer. Fromthegeotechnicalreport,itwasdeterminedthattheSiteClassfor

    constructionwouldbeSiteClassC. Theremainderoftheinformationneededtocalculate

    seismicloadingandbaseshearwasfoundinChapter12ofASCE705. Thetablebelowliststhe

    applicableseismicdesignfactors.

    SeismicParametersforWashingtonParkCondominiums

    Ss S1 SiteClass Fa Fv Sds Sd1SeismicDesign

    Category

    SeismicUse

    Group

    0.128 0.058 C 1.6 2.4 0.137 0.093 B I

    I R Cu Ta TL Ts Cs k PeriodCoefficient

    1 3.5 1.7 1.082 12 0.6333 0.01706 1.291 0.80

    Table4:SeismicDesignParameters

  • 8/12/2019 Follett Tech 3

    12/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page12

    LoadDistributionandAnalysisThedistributionoflateralforcesthroughoutthestructurecanbedeterminedusingvarying

    designmethods. Forthistechnicalreportthelateralloadswereascertainedbasedonthe

    relativestiffnessofeachframeinconjunctionwiththerestoftheframesinthebuilding. The

    compositejoistfloorsystemisusedasasheardiaphragmanditdistributesloadtothevarious

    framesbasedontheirrespectiverelativestiffness. Thisprocessallowsforamoreaccurate

    distributionofloadsalongwiththeabilitytostudyhowtheframesworktogethertotransfer

    theloadsfromthemomentframestothefoundations. Fortheanalysis,handcalculations,

    MicrosoftExcelandSTAAD.Pro2006wereutilizedasawaytoobtainamorethorough

    understandingofthedistribution.

    DeterminationofRelativeStiffness(k)andCenterofRigidityThedeterminationofeachframesrelativestiffnesswasdoneusinghandcalculationsand

    STAAD.Pro2006. Tobeginthefourdifferentframes(interiorandexteriorineachdirection)

    wereconstructedinSTAADusingthesteelsizesandconnectionsgivenbythestructural

    engineer. Nextaonekiploadwasappliedatthetopofeachmomentframetoestablishthe

    amountofdeflectionthatoccursatthetopoftheframe. Fromthere,theinverseofthis

    deflectionwastakenandthesevalueswereusedfork. Fromthesekvalues,thecenterof

    rigidityofthebuildingwasfound. Thexandydistancevaluesusedforthecenterofrigidity

    weretakenfroma(0,0)pointchosenonthebottomrightcornerofthebuildingasshownin

    AppendixC. Therelativestiffnesssforeachframeareincludedinthetableforthedirectand

    torsionalshearshownbelow.

    DeterminationofDirectShearandTorsionalShearAfterestablishingthestiffnessvaluesforeachframe,thedirectandtorsionalshearsforeach

    frameateachlevelcouldbedetermined. Forthisanalysis,itwasdecidedthatfourregular

    framescouldbechosenthatwouldberepresentativeofalltheframesinthebuilding. Frames

    AandEaretheexteriorframesinthenorth southandeast westdirectionsrespectively.

    Also,framesCandFaretheinteriorframesinthenorth southandeast westdirections

    respectively. Thecalculationforthemomentsforeachframeateachfloorusedinthetorsional

    forcecanbefoundinAppendixF. Thedirectandtorsionalshearsarethenfoundbyusingthe

    followingequationsandvariables. ThesevariablescanbefoundinTable5belowalongwith

    thevaluesfortheforcesofthefourframesthatarebeingstudied:

  • 8/12/2019 Follett Tech 3

    13/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page13

    Where: K=EquivalentStiffnessofFrame

    Fi=LateralStoryForce

    Mi=Fix(dCMdR)

    di=DistancefromCenterofRigiditytoFrame

    TorsionConstants

    FloorCenterofRigidity CenterofMass

    IX (in4) Iy (in

    4) IP (in4)

    XR(ft) YR(ft) XR(ft) YR(ft)

    Second 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Third 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Fourth 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Fifth

    104.92

    39.89

    102.3

    34.7

    2837888.75

    353494.66

    3191383.41

    Sixth 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Seventh 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Eighth 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Roof 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Table5:CenterofRigidityandMassalongwithCalculatedMomentofInertia

    Table6:ResultantShearsDuetoWindLoading

  • 8/12/2019 Follett Tech 3

    14/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page14

    Table7:ResultantShearsDuetoSeismicLoadingAfterobtainingthedirectandtorsionalforcesforeachframeitisobviousthatthesevaluesare

    smallerthanthatofstoryforcesthataredeterminedusingtributaryarea. Thiscouldbedueto

    thefactthatusingrelativestiffnessallowsforthebuildingtobeanalyzedasanentirestructure

    sincethedirectshearsaredeterminedbyusingaratioofframestiffnesstototalstiffness. The

    methodoftributaryareadoesnottakeintoaccountanyotherframeorhowtheotherframes

    inthebuildingmaybeworkingtogethertodistributethelateralloadthroughoutthebuilding.

    Thisallowsforthecalculatedforcesusingtherelativestiffnesstobemoreaccurateand

    thereforemakethesubsequentportalframe,strengthanddriftanalysesmorereliable.

  • 8/12/2019 Follett Tech 3

    15/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page15

    FrameAnalysisPortalFrameFollowingthedeterminationofthedirectandtorsionalforcesthroughtheestablishmentof

    relativestiffness,thestoryforceswereappliedtothestructureandwereanalyzedusingPortalMethod. Inthiscase,threedifferentportalmethodanalyseswereperformed. FramesEandF

    wereanalyzedusingresultantshearsduetowindsincethevaluefortotalshearduetowind

    weregreaterthanthatofseismic. Next,asinglefloorofframeCwasanalyzedusingthe

    resultantshearduetoseismicloadingsinceforframeCtheshearforseismicwasgreaterthan

    theshearduetowind. Themomentsinthebeamsandcolumnsthatwereobtainedfromthe

    portalframeanalysiswereusedinthebeamandcolumnstrengthchecks. Theresultsofthe

    portalframeanalysiscanbefoundinAppendixD.

    STAADAnalysisInconjunctionwiththeportalframeanalysis,aframeanalysisusingSTAAD.Pro2006was

    performed. Thisanalysiswasusefulinprovidinginformationconcerningstoryandoverall

    buildingdriftaswellasdeterminingwhetherornotthesteelmemberschoseninthedesign

    wereadequatetocarrytheloads. Figures4and5belowshowthetwoframeconstructions

    thatwereanalyzedusingSTAAD. Foreaseofanalysisalongwithaconservativedesign,frames

    AandCwereanalyzedasiftheywerestraightmomentframes. Thiswasdonebecausethe

    entireframeworkstogetherandacontinuousframewouldbemoreconservativeintermsof

    windloadsaddedtothebuilding. Furthermore,bothtypesofframeswereanalyzedtwicefor

    exteriorandinteriormomentframeconditions. Ineachcase,thelateralforcesthatwereaddedtotheframewerechangedbasedonthevaluesthatweredeterminedfortotalstory

    shearinTables2and3onthepreviouspages. Usingtheseloadsthatstorydriftsandoverall

    driftofthebuildingwasdeterminedandwasusedinthecomparisonwiththeallowabledrift

    valuesdeterminedinTables4and5. STAADwasalsousedtodeterminethecontrollingload

    combinationsineachdirection. Thefollowingloadcombinationscontrolinthegivendirection.

    Finally,theSTAADmodelwasoneofthewaysthatsteelmembersusedinthebuildingsdesign

    wereverified. Thesesteelshapeswerealsodesignedinthememberandstrengthchecks

    beginningonthenextpage. Overall,usingSTAADallowedforasimplifiedmethodofmember

    verificationanddriftanalysis,aswellasamethodofcomparisontothehandcalculationsperformedforbothmemberandframechecks.

  • 8/12/2019 Follett Tech 3

    16/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page16

    Bythecomputeranalysisitwasdeterminedthatthecontrollingloadcombinationsforeach

    directionwereasfollows:

    NorthSouthDirection(FramesAthruD):1.2(Dead)+1.0(Earthquake)+1.0(Live)+0.2(Snow)

    EastWestDirection(FramesEthruM):1.2(Dead)+1.6(Wind)+1.0(Live)+0.5(Snow)

    Thesecombinationsmakessensesincetheshorterofthemomentsframeswouldbecontrolled

    bythewindloadssincethestoryshearsontheframewouldbearesultofthewindpressures

    onthelongsideofthebuilding. Theseloadcombinationswereusedtoverifymembersizes

    andstrengthsinthenextsection.

    Figure4:FramesEandF(EastWestDirection)

    Figure5:FramesAandC(NorthSouthDirection)

  • 8/12/2019 Follett Tech 3

    17/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page17

    MemberVerificationandStrengthChecksUponcompletionoftheportalmethod,themomentsfromtheanalysiswereusedin

    conjunctionwithmomentsandforcesfoundintheSTAADanalysistoverifybeam,columnand

    braceframemembersthroughoutthebuilding. Membersinframesrunningbothnorthsouth

    andeastwestwereanalyzedusingthecontrollingloadcombinationandaredenotedonthe

    calculations. AlthoughthemembersweredesignedandcheckedusingSTAAD,itisstill

    necessarytocheckthecomputeroutputsothatacompetentunderstandingofmember

    strengthcanbeachieved. ThemembersthatwerechosenareshowninFigure6. Boththeblue

    andredhighlightedmembersarethelongestspanningbeamsintheirrespectivemoment

    framesandthereforewerechosenforanalysis. Thecolumns,denotedbycircles,werechosen

    basedbecauseintheportalanalysistheinteriorcolumnscarrytwicetheshearwhenthelateral

    loadsaredistributedthroughouttheframe. Finally,abraceineachofthebracedframeswas

    designedfortheaxialloadcausedbydead,wind,liveandsoilpressure.

    Figure6:MembersusedforVerification(FramesCandF)W18x97(FrameF)

    W18x97(FrameC)

    W14x90(FrameF)

    W14x90(FrameC)

  • 8/12/2019 Follett Tech 3

    18/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page18

    FrameF:BeamandColumnStrengthChecks(RedonPlan)

  • 8/12/2019 Follett Tech 3

    19/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page19

  • 8/12/2019 Follett Tech 3

    20/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page20

  • 8/12/2019 Follett Tech 3

    21/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page21

    FrameC:BeamandColumnStrengthChecks(BlueonPlan)

  • 8/12/2019 Follett Tech 3

    22/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page22

  • 8/12/2019 Follett Tech 3

    23/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page23

  • 8/12/2019 Follett Tech 3

    24/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page24

    BracedFrameStrengthChecks

  • 8/12/2019 Follett Tech 3

    25/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page25

  • 8/12/2019 Follett Tech 3

    26/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page26

    ServiceabilityCheck(DriftAnalysis)Thedriftofastructureisextremelyimportanttotheoverallperformanceofthebuilding. Too

    muchstorydriftortotaldriftinastructurecouldresultindamagetothebuildingexteriorand

    othersystemscausingrepairsandobviouslyaddedcostsduetomaintenance. Becauseofthis

    theIBCandASCE705havelaidoutparametersfordriftcontrolbasedonoccupancycategory,

    buildingheightandstructuretype. InthecaseofWashingtonParkCondominiumsthewind

    driftdeterminedinSTAADwascomparedtow=H/400fortheentirebuilding. Theseismic

    drift,alsodeterminedinSTAAD,wascomparedtoS=0.015hsxwherehsxisthestoryheightof

    thebuildingatacertainlevel. TheallowablewinddriftcanbefoundonTable1604.3oftheIBC

    andtheallowabledriftduetoseismicisfoundonTable12.121inASCE705. Thetablesbelow

    displaythecomparisonbetweenactualandallowabledriftforbothwindandseismic.

    Table8:ActualWindDriftComparedtoAllowableDriftControllingSeismicDrift

    Floor

    Story

    Height

    (ft)

    Total

    Height

    (ft)

    Story

    Drift

    (in)

    AllowableStory

    Drift(in)

    seismic=0.020hsx

    Acceptable?

    Total

    Drift

    (in)

    AllowableStory

    Drift(in)

    seismic=0.020hsx

    Acceptable?

    Second 14.333 14.33 0.232

  • 8/12/2019 Follett Tech 3

    27/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page27

    Asdisplayedintheabovetablesthecontrollingwinddriftinthebuildingisacceptableatboth

    individualfloorsandfortheoverallheightofthebuildingwhencomparedtothecode

    allowabledriftofw=H/400. However,thecontrollingseismicdriftinthebuildingisgreater

    thanthecodeallowablevalueofS=0.020hsx. Apossiblereasonforthiscouldbethefactthat

    theindividualmomentframeswereanalyzedindividuallyinSTAAD. Anotherreasoncouldbe

    thefactthatwithintheanalysisthatbracedframeslocatedonthebasementandsubbasement

    levelswerenotincludedinthecalculationsincetheyareconsideredtobebelowgrade. These

    bracedframesprimarilyservetoresistthesoilpressurewhichcanbeseeninthebracedframe

    strengthchecks. Anotherpossibilityisthefactthatthestiffnessofthecompositejoistfloor

    systemwasnottakenintoaccount. Since,thefloorsystemservesasadiaphragm,itcanalso

    beassumedthatitalsohassomelevelofstiffnessandthereforewouldhelptoresistand

    transfersomeamountoflateralloadingtothecolumnsandultimatelythefoundations. Many

    solutionstotheproblemcouldbeusedincluding,increasecolumnandbeamsizesandpossibly

    addedsomebracedframesthroughoutthebuilding. Regardlessofthesolutionthatisused,the

    issueofmorethanallowablestoryandoveralldriftinthestructurecouldbestudiedinmore

    depthintheproposalandresearchlater.

    OverturningMomentandUpliftOneoftheissuesthatarerarelyconsideredwhencompletinglateralanalysisonastructureis

    howthelateralloadsandensuingtransferofthoselateralloadstothefoundationswillimpact

    theirsize. Theimpactofthefoundationsthatneedstobeconsiderediscausedbywindand

    seismicforcesproducinganoverturningmomentforthebuilding. Inturn,theoverturning

    moment,

    may

    cause

    uplift

    within

    the

    exterior

    columns

    and

    foundations

    of

    the

    building

    because

    thereisnotenoughdeadweightonthecolumnsandfoundationstoresisttheoverturning

    moment. Tables6and7listtheupliftfoundduetowindandseismicloadinginbothdirections.

    UpliftDuetoWindLoading

    Moment

    (kft)

    UpliftForce

    (kips)

    DeadLoad

    Resistance(kips)UpliftProblem?

    East West

    Direction24400.21 389.36 271.24 Yes

    North SouthDirection

    6606.64 32.67 463.79 No

    Table10:UpliftduetoWindLoading

  • 8/12/2019 Follett Tech 3

    28/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page28

    UpliftDuetoSeismicLoading

    Moment

    (kft)

    UpliftForce

    (kips)

    DeadLoad

    Resistance(kips)UpliftProblem?

    East West

    Direction15850.95 252.94 271.24 No

    North South

    Direction15850.95 78.38 463.79 No

    Table11:UpliftduetoSeismicLoadingTheresultsoftheupliftcalculationshowthattherewouldbenetupliftforcesintheeastwest

    directionduetowindloads. Becauseofthisthefoundationswouldneedtobedesignedto

    resistanetupliftof118.12kips. Currentlythefoundationsontheexteriorofthebuildingrange

    from8.5

    x8.5

    to

    13

    x13

    and

    are

    placed

    25

    below

    grade.

    This

    gives

    the

    foundations

    the

    abilitytoresistthenetupliftforcesappliedbytheoverturningmoment. Asaresultofthe2

    storybasementandnetupliftthefloorsystembelowgradeaswellastheslabongradeisused

    tohelptiethevariousfoundationstogether. Thisalsohelpedresistslidingandoverturning

    forcescausedbytheimbalanceofsoilpressureaswellastheuplift. Finally,someofthe

    foundationswereinserteddirectlyintotherockandutilizedrockskinfrictiontoresistupliftas

    wellasincreasingtheslidingresistanceofthefoundationsystem. Overall,itseemsthatthe

    presentfoundationsareadequateinresistingthenetuplift.

  • 8/12/2019 Follett Tech 3

    29/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page29

    ConclusionThelateralanalysisanddesignofthemomentframestructureforWashingtonPark

    Condominiumswasdiscussedindetailedthroughoutthistechnicalreport. Thereportexamines

    theprocesswhichwastakentoarriveatdesignoflateralmemberswithintheframesthrough

    bothhandcalculationsandcomputermodeling. Bothhandcalculationsandcomputer

    modelingwereusedtodeterminetherelativestiffnessfactorsforeachframe. Fromthere,the

    directandtorsionalshearforcesoneachlevelofeachframewerecalculatedsothattheycould

    appliedtotheframeandcomparedtotheresultsfoundinTechnicalReport#1. After

    determiningtheforcestobeappliedtotheseparateframes,itwasnecessarytocompletea

    portalframeanalysisalongwithacomputeranalysis. Theportalframeanalysisrenderedshear

    andmomentsinthebeamsandcolumnsoftheframes. Thecomputermodelanalyzedin

    STAADallowedforacomparisonandcheckoftheportalframeanalysis. TheSTAADmodelwas

    alsousedtodeterminethecontrollingloadcasesforeachframeanddeterminethedriftof

    bothintheindividualstoriesandtheentireframe. Afterobtainingthevaluesfordriftfrom

    STAADtheywerecomparedtotheallowabledriftlimitsforbothwindandseismicgiveninthe

    InternationalBuildingCodeandASCE705. Thecontrollingwinddriftwasdeemedacceptable

    bycode,howeverthestorydriftandoverallstructuredriftduetoseismicloadswerefoundto

    beabovetheacceptablecodelimits. Althoughthevaluesdidnotmeettheacceptablelimits

    foundinthecode,itisbelievedthatthereasonforthiscouldbecontributedtothefactthatthe

    stiffnessofthecompositejoistfloorsystemwasnottakenintoaccount. Since,thefloorsystem

    servesasadiaphragm,itcanalsobeassumedthatitalsohassomelevelofstiffnessand

    thereforewouldhelptoresistandtransfersomeamountoflateralloadingtothecolumnsand

    ultimatelythefoundations.

    Alongwiththedriftcalculations,thedesignstrengthofseveralcriticalmembersofthedifferent

    frameswereanalyzedbasedontheloadsandmomentsfoundintheSTAADanalysis. All

    membersthatwerelookedatwerewellwithintheirultimatecapacitygivenbytheAISC

    SpecificationforStructuralSteelBuildings,13thEdition. Finally,anoverturningmomentand

    upliftcheckwasdonetoseeifthiswouldbeanissueforthefoundations. Itwasdetermined

    thatintheeastwestdirectiontheremaybeanissuewithuplift. Thiswillbefurtherexamined

    intheproposalandcouldleadtofurtherdiscussionofthefoundationsystemusedonthe

    project.

    Ultimately,itwasconcludedthatthelateralsystemissufficientlydesignedtocarrythelateral

    loadingofthebuilding. Thedriftissueswillbediscussedandexaminedingreaterdetail

    throughtheproposalandfollowingresearch.

  • 8/12/2019 Follett Tech 3

    30/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page30

    AppendixA:BuildingLayout

  • 8/12/2019 Follett Tech 3

    31/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page31

    TypicalFloorLayout

  • 8/12/2019 Follett Tech 3

    32/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page32

    CompositeJoistSystemIsometricSection

  • 8/12/2019 Follett Tech 3

    33/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page33

    AppendixB:WindandSeismicData

  • 8/12/2019 Follett Tech 3

    34/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page34

    WindLoadingCoefficientsandStoryResultsFloor Kz Kzt Kd Kh V (mph) I qh (lb/ft

    2) qz (lb/ft

    2)

    2nd 0.849 1.0 0.85 1.253 90.0 1.0 22.085 14.964

    3rd 0.948 1.0 0.85 1.253 90.0 1.0 22.085 16.709

    4th 1.023 1.0 0.85 1.253 90.0 1.0 22.085 18.031

    5th 1.081 1.0 0.85 1.253 90.0 1.0 22.085 19.053

    6th 1.13 1.0 0.85 1.253 90.0 1.0 22.085 19.917

    7th 1.172 1.0 0.85 1.253 90.0 1.0 22.085 20.657

    8th 1.216 1.0 0.85 1.253 90.0 1.0 22.085 21.433

    Roof 1.256 1.0 0.85 1.253 90.0 1.0 22.085 22.138

    qz=0.00256KzKztKdV2I(lb/ft

    2) qh=0.00256KhKztKdV

    2I(lb/ft

    2)

    Wind (North - South Direction)

    Floor Height(ft)

    TributaryHeight(ft)

    Kz qz

    (psf)Windward

    (psf)Leeward

    (psf)Total(psf)

    StoryForce(kips)

    StoryShear(kips)

    OverturningMoment (ft-k)

    Ground 0.00 0.00 0.849 0.00 0.00 0.00 0.00 0.00 128.694 6487.847

    Second 14.33 13.667 0.849 14.964 10.403 -5.758 16.161 15.166 128.694 6487.847

    Third 25.33 11.000 0.948 16.709 11.616 -5.758 17.374 13.123 113.528 4905.356

    Fourth 36.33 11.000 1.023 18.031 12.535 -5.758 18.293 13.817 100.405 3728.723

    Fifth 47.33 11.000 1.081 19.053 13.246 -5.758 19.003 14.354 86.588 2076.624

    Sixth 58.33 11.000 1.130 19.917 13.846 -5.758 19.604 14.807 72.235 1826.709

    Seventh 69.33 13.167 1.172 20.657 14.361 -5.758 20.118 18.190 57.427 1113.563

    Eighth 82.67 13.500 1.216 21.433 14.900 -5.758 20.658 19.150 39.237 536.123

    Roof 96.33 13.833 1.256 22.138 15.390 -5.758 21.148 20.088 20.088 277.877

    Wind (East - West Direction)

    FloorHeight

    (ft)

    TributaryHeight

    (ft)Kz

    qz(psf)

    Windward(psf)

    Leeward(psf)

    Total(psf)

    StoryForce(kips)

    StoryShear(kips)

    OverturningMoment (ft-

    k)

    Ground 0.00 0.00 0.849 0.00 0.00 0.00 0.00 0.000 474.909 23767.869

    Second 14.33 13.667 0.849 14.964 10.140 -9.353 19.493 57.664 474.909 23767.869

    Third 25.33 11.000 0.948 16.709 11.322 -9.353 20.675 49.228 417.245 17927.222

    Fourth 36.33 11.000 1.023 18.031 12.218 -9.353 21.571 51.361 368.017 13608.280

    Fifth 47.33 11.000 1.081 19.053 12.910 -9.353 22.263 53.010 316.656 9889.078

    Sixth 58.33 11.000 1.130 19.917 13.496 -9.353 22.849 54.404 263.646 6650.892

    Seventh 69.33 13.167 1.172 20.657 13.997 -9.353 23.350 66.551 209.242 4050.000

    Eighth 82.67 13.500 1.216 21.433 14.523 -9.353 23.876 69.770 142.692 1947.879

    Roof 96.33 13.833 1.256 22.138 15.001 -9.353 24.354 72.922 72.922 1008.730

  • 8/12/2019 Follett Tech 3

    35/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page35

    SeismicLoadingCoefficientsandStoryResults

    SeismicParametersforWashingtonParkCondominiums

    Ss S1 SiteClass Fa Fv Sds Sd1SeismicDesign

    Category

    SeismicUse

    Group

    0.128 0.058 C 1.6 2.4 0.137 0.093 B I

    I R Cu Ta TL Ts Cs k V(kips)

    1 3.5/5 1.7 1.082 12 0.6333 0.01706 1.291 248.3248

    BaseShearCalculation

    FloorHeight

    (ft)

    Tributary

    Height

    (ft)

    DeadLoad

    (kips)wxhx

    k Cvx

    Lateral

    Force

    (Fx)

    Story

    Shear

    (Vx)

    Overturning

    Moment

    (ftkips)

    Ground 0.00 7.167 1939.190 0 0 248.325 248.325 15451.152

    2nd 14.33 13.667 2050.530 63764.65 0.0291058 7.228 248.325 15451.152

    3rd 25.33 11.000 1501.591 97419.23 0.0444676 11.042 241.097 12345.445

    4th 36.33 11.000 1501.591 155186.6 0.0708359 17.590 230.055 9754.098

    5th 47.33 11.000 1488.721 216478.4 0.0988129 24.538 212.464 7320.232

    6th 58.33 11.000 1488.721 283517.5 0.1294133 32.137 187.927 5118.067

    7th 69.33 13.167 1540.881 366773.9 0.1674162 41.574 155.790 3227.610

    8th 82.67 13.500 1540.881 460325.8 0.2101186 52.178 114.217 1609.312

    Roof 96.33 13.833 1503.864 547324.3 0.2498296 62.039 62.039 858.184

    Total W= 14555.970 2190790

  • 8/12/2019 Follett Tech 3

    36/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page36

    AppendixC:CenterofMassandRigidity

    Area1

    Area2Area3

    Area5Area4

    (0,0)

  • 8/12/2019 Follett Tech 3

    37/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page37

    TorsionConstants

    FloorCenterofRigidity CenterofMass

    IX (in4) Iy (in

    4) IP (in4)

    XR(ft) YR(ft) XR(ft) YR(ft)

    Second 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Third

    104.92

    39.89

    102.3

    34.7

    2837888.75

    353494.66

    3191383.41

    Fourth 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Fifth 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Sixth 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Seventh 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Eighth 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

    Roof 104.92 39.89 102.3 34.7 2837888.75 353494.66 3191383.41

  • 8/12/2019 Follett Tech 3

    38/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page38

    AppendixD:PortalFrameAnalysisCalculations

  • 8/12/2019 Follett Tech 3

    39/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page39

    PortalFrameE

  • 8/12/2019 Follett Tech 3

    40/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page40

  • 8/12/2019 Follett Tech 3

    41/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page41

    PortalFrameF

  • 8/12/2019 Follett Tech 3

    42/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page42

  • 8/12/2019 Follett Tech 3

    43/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page43

    PartialPortalFrameA

  • 8/12/2019 Follett Tech 3

    44/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page44

    AppendixE:TorsionalForceTables

  • 8/12/2019 Follett Tech 3

    45/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PA

    B.Follett Page45

    WindTorsionalForces

  • 8/12/2019 Follett Tech 3

    46/47

  • 8/12/2019 Follett Tech 3

    47/47

    Technical WashingtonParkCondominiumsReport#3 Mt.Lebanon,PASeismicTorsionalForces