françois gelis the early stages of heavy ion...

80
The early stages of Heavy Ion Collisions SEWM, Swansea University, July 2012 z t François Gelis IPhT, Saclay

Upload: others

Post on 03-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

1

The early stages ofHeavy Ion Collisions

SEWM, Swansea University, July 2012

z

t

François GelisIPhT, Saclay

Page 2: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

2

Outline 2

1 Initial state factorization

2 Final state evolution

In collaboration with :

K. Dusling (NCSU)T. Epelbaum (IPhT)T. Lappi (Jyväskylä U.)R. Venugopalan (BNL)

Page 3: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

z

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

François Gelis

3

Stages of a nucleus-nucleus collision 3

Page 4: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

z

t

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

François Gelis

3

Stages of a nucleus-nucleus collision 3

Goals :

• evolution from t = −∞ to the start of hydrodynamics• first principles description in QCD• weakly coupled (but strongly interacting...)

Page 5: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

4

What do we need to know about nuclei? 4

Nucleus at rest

• At low energy : valence quarks

• At higher energy :

• Lorenz contraction of longitudinal sizes• Time dilation B slowing down of the internal dynamics• Gluons start becoming important

• At very high energy : gluons dominate

Page 6: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

4

What do we need to know about nuclei? 4

Slightly boosted nucleus

• At low energy : valence quarks

• At higher energy :

• Lorenz contraction of longitudinal sizes• Time dilation B slowing down of the internal dynamics• Gluons start becoming important

• At very high energy : gluons dominate

Page 7: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

4

What do we need to know about nuclei? 4

High energy nucleus

• At low energy : valence quarks

• At higher energy :

• Lorenz contraction of longitudinal sizes• Time dilation B slowing down of the internal dynamics• Gluons start becoming important

• At very high energy : gluons dominate

Page 8: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

5

Kinematics 5

• Low typical final state transverse momentum p⊥ . 1 GeV• Incoming partons have low momentum fractions x ∼ p⊥/E

• x ∼ 10−2 at RHIC (E = 200 GeV)• x ∼ 4.10−4 at the LHC (E = 2.76 − 5.5 TeV)

Page 9: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

-310

-210

-110

1

10

-410

-310

-210

-110 1

-310

-210

-110

1

10

HERAPDF1.0

exp. uncert.

model uncert.

parametrization uncert.

x

xf

2 = 10 GeV2Q

vxu

vxd

xS

xg

H1 and ZEUS

-310

-210

-110

1

10

François Gelis

6

Nucleon parton distributions 6

Page 10: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

-310

-210

-110

1

10

-410

-310

-210

-110 1

-310

-210

-110

1

10

HERAPDF1.0

exp. uncert.

model uncert.

parametrization uncert.

x

xf

2 = 10 GeV2Q

vxu

vxd

xS

xg

H1 and ZEUS

-310

-210

-110

1

10

François Gelis

6

Nucleon parton distributions 6

Large x : dilute regime

Page 11: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

-310

-210

-110

1

10

-410

-310

-210

-110 1

-310

-210

-110

1

10

HERAPDF1.0

exp. uncert.

model uncert.

parametrization uncert.

x

xf

2 = 10 GeV2Q

vxu

vxd

xS

xg

H1 and ZEUS

-310

-210

-110

1

10

François Gelis

6

Nucleon parton distributions 6

Small x : dense regime, gluon saturation

Page 12: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

7

Saturation domain 7

Page 13: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

7

Saturation domain 7

Saturation criterion [Gribov, Levin, Ryskin (1983)]

αsQ−2︸ ︷︷ ︸

σgg→g

×A−2/3xG(x,Q2)︸ ︷︷ ︸surface density

≥ 1

Q2 ≤ Q2s ≡αsxG(x,Q

2s)

A2/3︸ ︷︷ ︸saturation momentum

∼ A1/3x−0.3

Page 14: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

8

Color Glass Condensate = effective theory of small x gluons 8

[McLerran, Venugopalan (1994), Jalilian-Marian, Kovner, Leonidov, Weigert(1997), Iancu, Leonidov, McLerran (2001)]

• The fast partons (k+ > Λ+) are frozen by time dilationB described as static color sources on the light-cone :

Jµ = δµ+ρ(x−,~x⊥) (0 < x− < 1/Λ+)

• The color sources ρ are random, and described by a probabilitydistribution WΛ[ρ]

• Slow partons (k+ < Λ+) may evolve during the collisionB treated as standard gauge fieldsB eikonal coupling to the current Jµ : JµAµ

S = −1

4

∫FµνF

µν︸ ︷︷ ︸SYM

+

∫JµAµ︸ ︷︷ ︸

fast partons

Page 15: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

9

Initial statefactorization

[FG, Lappi, Venugopalan (2008)]

Page 16: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

10

Renormalization group evolution, JIMWLK equation 10

k-

P-

Λ-

0

fields sources

• The cutoff between the sources and the fields is not physical,and should not enter in observables

• Loop corrections contain logs of the cutoff(physically, due to soft gluon radiation)

• In inclusive Deep Inelastic Scattering: cancelled by letting thedistribution of the sources depend on the cutoff

Λ∂W[ρ]

∂Λ= H

(ρ,δ

δρ

)W[ρ] (JIMWLK equation)

• What about nucleus-nucleus collisions?Are the logs still universal?

Page 17: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

11

Handwaving argument for factorization 11

τcoll ∼ E-1

• The duration of the collision is very short: τcoll ∼ E−1

• Soft radiation takes a long timeB it must happen (long) before the collision

• The projectiles are not in causal contact before the impactB the logarithms are intrinsic properties of the projectiles,independent of the measured observable

Page 18: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

11

Handwaving argument for factorization 11

τcoll ∼ E-1

• The duration of the collision is very short: τcoll ∼ E−1

• Soft radiation takes a long timeB it must happen (long) before the collision

• The projectiles are not in causal contact before the impactB the logarithms are intrinsic properties of the projectiles,independent of the measured observable

Page 19: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

11

Handwaving argument for factorization 11

τcoll ∼ E-1

space-like interval

• The duration of the collision is very short: τcoll ∼ E−1

• Soft radiation takes a long timeB it must happen (long) before the collision

• The projectiles are not in causal contact before the impactB the logarithms are intrinsic properties of the projectiles,independent of the measured observable

Page 20: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

12

Power counting 12

In the saturated regime: Jµ ∼ g−1

g−2 g# of external legs g2×(# of loops)

• No dependence on the number of sources Jµ

B infinite number of graphs at each order

Page 21: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

13

Leading Order 13

• All observables can be expressed in terms of classical solutionsof Yang-Mills equations :

[Dµ,Fµν] = Jν1 + Jν2

• Boundary conditions for inclusive observables :retarded, with A → 0 at x0 = −∞

Example : inclusive spectra at LO

dN1

d3~p

∣∣∣∣LO

∫d4xd4y eip·(x−y) �x�y A(x)A(y)

dNn

d3~p1 · · ·d3~pn

∣∣∣∣LO

=dN1

d3~p1

∣∣∣∣LO

· · · dN1d3~pn

∣∣∣∣LO

Page 22: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

14

Next to Leading Order 14

Relation between LO and NLO

ONLO =

[1

2

∫u,v

∫k

[akT

]u

[a∗kT

]v+

∫u

[αT

]u

]OLO

• T is the generator of the shifts of the initial field :

exp

[ ∫u

[αT

]u

]O[class. field at τ︷ ︸︸ ︷Aτ( Ainit︸︷︷︸

init. field

)]= O

[Aτ( Ainit + α︸ ︷︷ ︸

shifted init. field

)]

• ak,α are calculable analytically

• Valid for all inclusive observables,e.g. spectra, the energy-momentum tensor, etc...

Page 23: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

15

Initial state logarithms 15

• In the CGC, upper cutoff on the loop momentum : k± < Λ,to avoid double counting with the sources Jν1,2B logarithms of the cutoff

Central result for factorization

1

2

∫u,v

∫k

[akT

]u

[a∗kT

]v+

∫u

[αT

]u=

= log(Λ+)H1 + log

(Λ−)H2 + terms w/o logs

H1,2 = JIMWLK Hamiltonians of the two nuclei

• No mixing between the logs of the two nuclei

• Since the LO ↔ NLO relationship is the same for all inclusiveobservables, these logs have a universal structure

Page 24: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

16

Factorization of the logarithms 16

• The JIMWLK Hamiltonian H is self-adjoint :∫[Dρ]W

(HO

)=

∫[Dρ]

(HW

)O

Inclusive observables at Leading Log accuracy

〈O〉Leading Log

=

∫ [Dρ

1Dρ

2

]W1[ρ

1

]W2[ρ

2

]OLO [ρ1, ρ2]︸ ︷︷ ︸

fixed ρ1,2

• Logs absorbed into the scale evolution of W1,2

Λ∂W

∂Λ= HW (JIMWLK equation)

• Universality : the same W’s for all inclusive observables

Page 25: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

17

Final stateevolution

[Dusling, Epelbaum, FG, Venugopalan (2010)][Dusling, FG, Venugopalan (2011)]

[Epelbaum, FG (2011)]

Page 26: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

QS

-1

François Gelis

18

Energy momentum tensor at LO 18

Page 27: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

QS

-1

François Gelis

18

Energy momentum tensor at LO 18

Tµν for longitudinal ~E and ~B

TµνLO

(τ = 0+) = diag (ε, ε, ε,−ε)

B far from ideal hydrodynamics

Page 28: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

0 500 1000 1500 2000 2500 3000 3500

g2 µ τ

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

max

τ2 T

ηη /

g4

µ3 L

2

c0+c

1 Exp(0.427 Sqrt(g

2 µ τ))

c0+c

1 Exp(0.00544 g

2 µ τ)

[Romatschke, Venugopalan (2005)]

François Gelis

19

Weibel instabilities for small perturbations 19

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen(2007),...]

Page 29: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

0 500 1000 1500 2000 2500 3000 3500

g2 µ τ

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

max

τ2 T

ηη /

g4

µ3 L

2

c0+c

1 Exp(0.427 Sqrt(g

2 µ τ))

c0+c

1 Exp(0.00544 g

2 µ τ)

[Romatschke, Venugopalan (2005)]

François Gelis

19

Weibel instabilities for small perturbations 19

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen(2007),...]

• For some k’s, the field fluctuations ak divergelike exp

√µτ when τ→ +∞

• Some components of Tµν have secular divergences whenevaluated at fixed loop order

• When ak ∼ A ∼ g−1, the power counting breaks down andadditional contributions must be resummed :

g e√µτ ∼ 1 at τmax ∼ µ−1 log2(g−1)

Page 30: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

20

Improved power counting 20

Loop ∼ g2 , T ∼ e√µτ

u

Tµν(x)

vΓ2(u,v)

• 1 loop : (ge√µτ)2

• 2 disconnected loops :(ge√µτ)4

• 2 nested loops : g(ge√µτ)3

B subleading

Leading terms at τmax

• All disconnected loops to all ordersB exponentiation of the 1-loop result

Page 31: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

20

Improved power counting 20

Loop ∼ g2 , T ∼ e√µτ

Tµν(x)

• 1 loop : (ge√µτ)2

• 2 disconnected loops :(ge√µτ)4

• 2 nested loops : g(ge√µτ)3

B subleading

Leading terms at τmax

• All disconnected loops to all ordersB exponentiation of the 1-loop result

Page 32: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

20

Improved power counting 20

Loop ∼ g2 , T ∼ e√µτ

Tµν(x)

Γ3(u,v,w)

• 1 loop : (ge√µτ)2

• 2 disconnected loops :(ge√µτ)4

• 2 nested loops : g(ge√µτ)3

B subleading

Leading terms at τmax

• All disconnected loops to all ordersB exponentiation of the 1-loop result

Page 33: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

21

Resummation of the leading secular terms 21

Tµνresummed

= exp

[1

2

∫u,v

∫k

[akT]u[a∗kT]v︸ ︷︷ ︸

G(u,v)

+

∫u

[αT]u

]Tµν

LO[Ainit]

= TµνLO

+ TµνNLO︸ ︷︷ ︸

in full

+ TµνNNLO

+ · · ·︸ ︷︷ ︸partially

• The evolution remains classical, but we must average over aGaussian ensemble of initial conditions

• The 2-point correlation G(u, v) of the fluctuations is known

• Fluctuations ⇔ 1/2 quantum per mode

Page 34: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

21

Resummation of the leading secular terms 21

Tµνresummed

= exp

[1

2

∫u,v

∫k

[akT]u[a∗kT]v︸ ︷︷ ︸

G(u,v)

+

∫u

[αT]u

]Tµν

LO[Ainit]

=

∫[Dχ] exp

[−1

2

∫u,v

χ(u)G−1(u, v)χ(v)

]Tµν

LO[Ainit + χ+ α]

• The evolution remains classical, but we must average over aGaussian ensemble of initial conditions

• The 2-point correlation G(u, v) of the fluctuations is known

• Fluctuations ⇔ 1/2 quantum per mode

Page 35: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

22

Analogous scalar toy model 22

φ4 field theory coupled to a source

L =1

2(∂αφ)

2 −g2

4!φ4 + Jφ

Strong external source: J ∝ Q3

g

• In 3+1-dim, g is dimensionless, and the only scale in the problemis Q

• This theory has unstable modes (parametric resonance)

• Two setups have been studied :

• Fixed volume system• Longitudinally expanding system

Page 36: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

23

Pathologies in fixed order calculations 23

Tree

-40

-30

-20

-10

0

10

20

30

40

-20 0 20 40 60 80

time

PLO εLO

• Oscillating pressure at LO : no equation of state

• Small NLO correction to the energy density (protected by energyconservation)

• Secular divergence in the NLO correction to the pressure

Page 37: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

23

Pathologies in fixed order calculations 23

Tree + 1-loop

-40

-30

-20

-10

0

10

20

30

40

-20 0 20 40 60 80

time

PLO+NLO εLO+NLO

• Oscillating pressure at LO : no equation of state• Small NLO correction to the energy density (protected by energy

conservation)• Secular divergence in the NLO correction to the pressure

Page 38: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

24

Spectrum of fluctuations 24

Initial conditions

φ(t0, x) = ϕ(t0, x) +

∫d3k

(2π)32k

[ck e

iλkt0 Vk(x) + c.c.]

• ϕ(t0, x) = classical background field

• ck = complex random Gaussian number:⟨ck⟩= 0 ,

⟨ckc∗l

⟩= (2π)3 k δ(k− l)

• λk, Vk determined by:[−∇2 +

1

2g2ϕ2(t0, x)

]Vk(x) = λ

2kVk(x)

Page 39: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

25

Resummed energy momentum tensor 25

-1.5

-1

-0.5

0

0.5

1

1.5

2

10 100 1000 10000

time

px+py+pz

ε

• No secular divergence in the resummed pressure

• The pressure relaxes to the equilibrium equation of state

Page 40: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

26

Time evolution of the occupation number 26

0.01

0.1

1

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5

f k

k

Bose-Einstein with µ=0.54,T=1.31

T/(ωk-µ)-1/2 with µ=0.54,T=1.31

const / k5/3

t = 0

60

200

1000

2000

5000

104

• Resonant peak at early times

• Late times : classical equilibrium with a chemical potential

• µ ≈ m + excess at k = 0 : Bose-Einstein condensation?

Page 41: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

27

Bose-Einstein condensation 27

10-2

10-1

100

101

102

103

104

0 0.5 1 1.5 2 2.5 3 3.5

f k

k

t = 0

50

150

300

2000

5000

104

T/(ωk-µ)-1/2

10-2

10-1

100

101

102

103

104

0 0.5 1 1.5 2 2.5

t = 0

20

40

60

80

100

120

140

• Start with the same energy density, but an empty zero mode

• Very quickly, the zero mode becomes highly occupied

• Same distribution as before at late times

Page 42: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

28

Volume dependence 28

×10-6

×10-5

×10-4

×10-3

×10-2

×10-1

×100

×101 ×10

2 ×103 ×10

4

f(0)

/ V

time

L = 20 L = 30 L = 40

f(k) =1

eβ(ωk−µ) − 1+ n0δ(k) =⇒ f(0) ∝ V = L3

Page 43: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

29

Evolution of the condensate 29

10-1

100

101

102

103

104

100

101

102

103

104

105

f 0

time

203 lattice , 256 configurations , V(φ) = g

4/4!

g2 = 1

2

4

8

• Formation time almost independent of the coupling• Condensate lifetime much longer than its formation time• Smaller amplitude and faster decay at large coupling

Page 44: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

30

Longitudinal expansion: spectrum of fluctuations 30

Initial conditions

φ(τ0, η, x⊥) = ϕ(τ0, x⊥) +

∫d2k⊥dν

(2π)3

[cνkH

(2)iν (λkτ0)Vk(x⊥) e

−iνη + c.c.]

• ϕ(τ0, x⊥) = classical background field (boost invariant)

• cνk = complex random Gaussian number:⟨cνk⟩= 0 ,

⟨cνkc

∗σl

⟩= (2π)3 δ(k⊥ − l⊥)δ(ν− σ)

• λk, Vk determined by:[−∇2

⊥ +1

2g2ϕ2(τ0, x⊥)

]Vk(x⊥) = λ

2kVk(x⊥)

Page 45: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

31

Longitudinal expansion: initial time 31

• The EoM is singular when τ→ 0 : one must start at τ0 6= 0

∂2τφ+1

τ∂τφ−

1

τ2∂2ηφ−∇2

⊥φ+g2

6φ3 = 0

• The spectrum of fluctuations of the initial field also depends onτ0, in such a way that the end result is independent of τ0

×10-1

×100

×101

×102

×103

×104

×10-2 ×10

-1 ×100 ×10

1

τ

PT(τ0=0.01)

ε(τ0=0.01)

PT(τ0=0.1)

ε(τ0=0.1)

Page 46: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

32

Longitudinal expansion : occupation number 32

τ = 0.1 [40 × 40 × 320]

0

0.5

1

1.5

2

2.5

3

k⊥

0

100

200

300

400

500

600

ν

×10-2

×100

×102

×104

×106

100

102

104

• Note : ν is the Fourier conjugate of the rapidity η• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a thermalizedsystem)

Page 47: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

32

Longitudinal expansion : occupation number 32

τ = 10 [40 × 40 × 320]

0

0.5

1

1.5

2

2.5

3

k⊥

0

100

200

300

400

500

600

ν

×10-2

×100

×102

×104

×106

100

102

104

• Note : ν is the Fourier conjugate of the rapidity η• Initially, only the ν = 0 modes are occupied

• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a thermalizedsystem)

Page 48: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

32

Longitudinal expansion : occupation number 32

τ = 50 [40 × 40 × 320]

0

0.5

1

1.5

2

2.5

3

k⊥

0

100

200

300

400

500

600

ν

×10-2

×100

×102

×104

×106

100

102

104

• Note : ν is the Fourier conjugate of the rapidity η• Initially, only the ν = 0 modes are occupied• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a thermalized

system)

Page 49: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

32

Longitudinal expansion : occupation number 32

τ = 100 [40 × 40 × 320]

0

0.5

1

1.5

2

2.5

3

k⊥

0

100

200

300

400

500

600

ν

×10-2

×100

×102

×104

×106

100

102

104

• Note : ν is the Fourier conjugate of the rapidity η• Initially, only the ν = 0 modes are occupied• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a thermalized

system)

Page 50: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

32

Longitudinal expansion : occupation number 32

τ = 150 [40 × 40 × 320]

0

0.5

1

1.5

2

2.5

3

k⊥

0

100

200

300

400

500

600

ν

×10-2

×100

×102

×104

×106

100

102

104

• Note : ν is the Fourier conjugate of the rapidity η• Initially, only the ν = 0 modes are occupied• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a thermalized

system)

Page 51: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

32

Longitudinal expansion : occupation number 32

τ = 200 [40 × 40 × 320]

0

0.5

1

1.5

2

2.5

3

k⊥

0

100

200

300

400

500

600

ν

×10-2

×100

×102

×104

×106

100

102

104

• Note : ν is the Fourier conjugate of the rapidity η• Initially, only the ν = 0 modes are occupied• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a thermalized

system)

Page 52: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

32

Longitudinal expansion : occupation number 32

τ = 300 [40 × 40 × 320]

0

0.5

1

1.5

2

2.5

3

k⊥

0

100

200

300

400

500

600

ν

×10-2

×100

×102

×104

×106

100

102

104

• Note : ν is the Fourier conjugate of the rapidity η• Initially, only the ν = 0 modes are occupied• Rapid expansion of the distribution in ν (νmax ∼ τ2/3 for a thermalized

system)

Page 53: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

33

Longitudinal expansion : equation of state 33

10-2

10-1

100

101

10 100

τ

τ-4/3

τ-1

2PT + P

L

ε

• After a short time, one has 2PT+ P

L≈ ε

• Change of behavior of the energy density: τ−1 → τ−4/3. Sinceone has ∂τε+ (ε+ P

L)/τ = 0, this suggests that P

Lgets close to

ε/3

Page 54: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

34

Longitudinal expansion : isotropization 34

×10-3

×10-2

×10-1

×100

×101

0 50 100 150 200 250 300

τ

2PT + P

L

ε

PT

PL

• At early times, PL

drops much faster than PT

(redshifting of thelongitudinal momenta due to the expansion)

• Drastic change of behavior when the expansion rate becomes smallerthan the growth rate of the unstability

• Eventually, isotropic pressure tensor : PL≈ P

T

Page 55: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

35

Summaryand Outlook

Page 56: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

36

Summary 36

• Factorization of high energy logarithms in AA collisions• universal distributions, also applicable in pA or DIS• controls the rapidity dependence of correlations• limited to inclusive observables

• Resummation of secular terms in the final state evolution• stabilizes the NLO calculation• leads to the equilibrium equation of state• isotropization even with longitudinal expansion• full thermalization on longer time-scales• Bose-Einstein condensation if overoccupied initial state

(so far, all numerical studies done for a toy scalar model)

What’s next? QCD

• generalizable to Yang-Mills theory

• gauge invariant

• seamless integration with the CGC description of AA collisions

• computationally expensive ( ∼ [scalar case] ×3× (N2c − 1))

Page 57: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

37

Extra

Page 58: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

ρ1

g 1 g-1

AApA

g-4

g-2

1

g2

g4

p q

p

q

p

q

François Gelis

38

Dense-dilute collisions 38

Page 59: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

ρ1

g 1 g-1

AApA

g-4

g-2

1

g2

g4

p q

p

q

p

q

François Gelis

38

Dense-dilute collisions 38

Expected complications

• More diagrams to consider even at Leading Order• More terms in the evolution Hamiltonian if ρ ∼ g:

g2ρ2(∂

∂ρ

)2∼ g4ρ2

(∂

∂ρ

)4

Page 60: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

39

Exclusive processes 39

Page 61: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

39

Exclusive processes 39

Example : differential probability to produce 1 particle at LO

dP1

d3~p

∣∣∣∣LO

= F[0]×∫d4xd4y eip·(x−y)�x�yA+(x)A−(y)

∣∣∣z=0

• The vacuum-vacuum graphs do not cancel in exclusivequantities : F[0] 6= 1 (in fact, F[0] = exp(−c/g2)� 1)

• A+ and A− are classical solutions of the Yang-Mills equations,but with non-retarded boundary conditions

Page 62: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

40

Thermalization in Yang-Mills theory 40

• Recent analytical work : Kurkela, Moore (2011)

• Going from scalars to gauge fields :

• More fields per site (3 Lorentz components × 8 colors)

• More complicated spectrum of initial conditions

• Expansion : UV overflow on a fixed grid in η

Page 63: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

41

BEC and dilepton production 41

Page 64: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

41

BEC and dilepton production 41

Two topologies for virtual photons at LO

Connected ω ∼Minv ∼ Qs k⊥ ∼ Qs

Disconnected ω ∼Minv ∼ Qs k⊥ � Qs

B excess of dileptons with k⊥ �Minv

Page 65: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

42

Links to Quantum Chaos 42

• Quantum Chaos : how does the chaos at the classical levelmanifests itself in quantum mechanics?

• Berry’s conjecture [M.V. Berry (1977)]High lying eigenstates of such systems have nearly randomwavefunctions. The corresponding Wigner distribution is almostuniform on the energy surface

• Srednicki’s eigenstate thermalization hypothesis[M. Srednicki (1994)]For sufficiently inclusive measurements, these high lyingeigenstates look thermal. If the system starts in a coherent state,decoherence is the main mechanism to thermalization

Page 66: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

43

Phenomenology[Dumitru, FG, McLerran, Venugopalan (2008)]

[Dusling, FG, Lappi, Venugopalan (2010)]

Page 67: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

44

2-particle correlations in AA collisions 44

[STAR Collaboration, RHIC]

• Long range rapidity correlation

• Narrow correlation in azimuthal angle

• Narrow jet-like correlation near ∆y = ∆ϕ = 0

Page 68: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

45

Probing early times with rapidity correlations 45

detection (∼1 m/c)

freeze out (∼10 fm/c)

latest correlation

AB

z

t

• By causality, long range rapidity correlations are sensitive to thedynamics of the system at early times :

τcorrelation ≤ τfreeze out e−|∆y|/2

Page 69: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

0 0.5 1 1.5 2

g2µτ

0

0.2

0.4

0.6

0.8

[(g

)4/g

2]

Bz

2

Ez

2

BT

2

ET

2

[Lappi, McLerran (2006)]

François Gelis

46

Color field at early time 46

Page 70: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

0 0.5 1 1.5 2

g2µτ

0

0.2

0.4

0.6

0.8

[(g

)4/g

2]

Bz

2

Ez

2

BT

2

ET

2

[Lappi, McLerran (2006)]

François Gelis

46

Color field at early time 46

QS

-1

• The field lines form tubes of transverse size ∼ Q−1s

• Rapidity correlation length : ∆η ∼ α−1s

Page 71: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

47

2-hadron correlations from color flux tubes 47

• η-independent fields lead to long range correlations :

• Particles emitted by different flux tubes are not correlatedB (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow

Page 72: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

47

2-hadron correlations from color flux tubes 47

• η-independent fields lead to long range correlations :

R

QS

-1

• Particles emitted by different flux tubes are not correlatedB (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow

Page 73: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

47

2-hadron correlations from color flux tubes 47

• η-independent fields lead to long range correlations :

R

QS

-1

• Particles emitted by different flux tubes are not correlatedB (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow

Page 74: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

47

2-hadron correlations from color flux tubes 47

• η-independent fields lead to long range correlations :

vr

• Particles emitted by different flux tubes are not correlatedB (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ

The collimation in ∆ϕ is produced later by radial flow

Page 75: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

48

Centrality dependence 48

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400

Am

pli

tud

e

Npart

radial boost model

STAR preliminary

• Main effect : increase of the radial flow velocity with the centralityof the collision

Page 76: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

0

0.2

0.4

0.6

0.8

1

1.2

-6 -5 -4 -3 -2 -1 0 1 2

1/N

trig

dN

ch/d

∆η

∆η

pTtrig

= 2.5 GeV

pTassoc

= 350 MeV

Au+Au 0-30% (PHOBOS)

p+p (PYTHIA)ytrig = 0

ytrig=0.75

ytrig=1.5

François Gelis

49

Rapidity dependence 49

Page 77: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

0

0.2

0.4

0.6

0.8

1

1.2

-6 -5 -4 -3 -2 -1 0 1 2

1/N

trig

dN

ch/d

∆η

∆η

pTtrig

= 2.5 GeV

pTassoc

= 350 MeV

Au+Au 0-30% (PHOBOS)

p+p (PYTHIA)ytrig = 0

ytrig=0.75

ytrig=1.5

François Gelis

49

Rapidity dependence 49

Prediction at LHC energy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

-4 -2 0 2 4 6 8 10 12

d2N

/(d

2p

T d

2q

T d

yp d

yq)

[GeV

-4]

yq - yp

Pb+Pb at LHC

× 10-2

× 0.5

× 0.65× 0.85

pT = 2 GeV

qT = 2 GeV

yp = 0

yp = -1.5

yp = -3

yp = -4.5

Page 78: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

50

Backup

Page 79: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

51

Boundary conditions 51

A+(x)=

∫y

G0++(x, y)[J(y)−V ′(A+(y))

]−G0+−(x, y)

[J(y)−V ′(A−(y))

]A−(x)=

∫y

G0−+(x, y)[J(y)−V ′(A+(y))

]−G0−−(x, y)

[J(y)−V ′(A−(y))

]G̃0+−(p) = 2π z(p) θ(−p0)δ(p

2)

• A+ and A− are solutions of the classical EoM

• Decompose the fields in Fourier modes :

Aε(x) ≡∫

d3~p

(2π)32Ep

[a(+)ε (x0, ~p) e

−ip·x + a(−)ε (x0, ~p) e

+ip·x]

Boundary conditions

x0 = −∞ : a(+)+ (~p) = a

(−)− (~p) = 0

x0 = +∞ : a(+)− (~p) = z(p)a

(+)+ (~p) , a

(−)+ (~p) = z(p)a

(−)− (~p)

Page 80: François Gelis The early stages of Heavy Ion Collisionspyweb.swan.ac.uk/sewm/sewmweb/talks/gelis.pdf0 500 1000 1500 2000 2500 3000 3500 g 2 m t 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08

François Gelis

52

Moyal bracket 52

• Wigner transform of the commutator

• Explicit expression :

{{A,B}} =2

h̄A(Q,P) sin

(h̄

2(←∇Q

→∇P

−←∇P

→∇Q

)

)B(Q,P)

• Quantum deformation of the Poisson bracket :

{{A,B}} = {A,B}+ O(h̄2)