analysis of dielectrophoretic force by using comsol · result –positive dep • equilb h h l...

18
Analysis of Dielectrophoretic Force by Using COMSOL Department of Biomedical Engineering, Yonsei University Taewoo Lee COMSOL CONFERENCE SEOUL 2013

Upload: others

Post on 17-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Analysis of Dielectrophoretic Force by Using COMSOL

Department of Biomedical Engineering,Yonsei Universityy

Taewoo Lee

COMSOL CONFERENCE SEOUL 2013

Page 2: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Prof. Han-Sung KimCompuater Aided Biomedical Engineering Lab.p g ghttp://cabe.yonsei.ac.kr

Prof. Sang Woo LeeNano Bio System Research LabNano Bio System Research Lab.http://nbsrl.yonsei.ac.kr

Page 3: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Dielectrophoresis is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric fielddielectric particle when it is subjected to a non-uniform electric field.

Page 4: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

OutputSide view

p

Ground

Cover glass Silicon rubber

Glass substrate Electrode Medium (Cells or Beads)

Cover glass Silicon rubber

Top view

Cells or BeadsCells or Beads

Page 5: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Side view

Top view

SiO2 insulator Opening window

Page 6: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Unit model for simulation

45μmElectrode without SiO2

(Opening window)

13μm

zx

y

Gap betweenthe electrodes

0μm

5μm

yxElectrode with SiO2-8μm

0μm-5μm 10μm

Page 7: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Governing equations

• Dielectrophoretic (DEP) forcep

• Elecrohydrodynamic force

- Electrothermal force

• Gravitational & buoyant forcey

Page 8: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

COMSOL Multiphysics 3.5a

MEMS

ModuleElectrostatics Electrostatics

COMSOL

MultiphysicsHeat Transfer

Convection and

Conduction

MEMSMEMS

ModuleMicrofluidics

Incompressible

Navier-Stokes

Page 9: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Results

• Slice: Temperature

• Arrow: Total heat flux

• Streamline: Velocity field

Page 10: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Result – Positive DEP

l b h h l d• Equilibrium height: Particle radius

N1.47e-19

N2.87e-9

1e-19

1e-20

1e-10

1e-11

1e-21

1e-22

1e-12

1e-13

1.78e-23

z

5.92e-15

Equilibrium heighty

DEP force EHD force

Equilibrium height

Page 11: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Result – Positive DEP

N

3.6e-10

N5.37e-10

y

2.7e-10

1.8e-10

Trapped position x

y

0.9e-10

7.26e-12

Page 12: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Result – Negative DEP

l b h h f• Equilibrium height: Net force = 0

N1.34e-9

N6.17e-14

1e-9

1e-10

1e-14

1e-15

1e-11

1e-12

1e-16

1e-17

z

2.11e-15 8.11e-18

y

DEP force EHD force

Page 13: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Result – Negative DEP

l b h h f• Equilibrium height: Net force = 0

DE

xy

Cxy

Page 14: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Result – Negative DEP

9.6e-15

N1.26e-14

7.2e-15

4.8e-15

2 4e-15

xy

2.4e-15

4.67e-16

Dotted line ATrapped position

Page 15: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

Simulation vs. Experiment

Positive DEP

Negative DEPNegative DEP

5μm polystyrene beads

Page 16: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

CM factor (Cells vs. Beads)

CM factor

Cells

Beads

CM factor

Frequency

Page 17: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

DEP traps for single cell (B16F10)

Positive DEP force (3Vpp, 100kHz)Negative DEP force (3Vpp, 1kHz)

Positive DEP Trap in various window shapes

Rh b S HRhombus Square Hexagon

Page 18: Analysis of Dielectrophoretic Force by Using COMSOL · Result –Positive DEP • Equilb h h l dlibrium height: Particle radius N 1.47e-19 N 2.87e-9 1e-19 1e-20 1e-10 1e-11 1e-21

ThankThankyouyou