fundamental thermal machines for the thermodynamics of ...d. chiuchiu 1, g. gubbiotti2 1universit a...

18
Fundamental thermal machines for the thermodynamics of computation J. Stat. Mech. 2016 053110 D. Chiuchi` u 1 , G. Gubbiotti 2 1 Universit` a degli Studi di Perugia 2 Universit` a Roma Tre ICT-Energy conference 17/8/2016 Aalborg D. Chiuchi` u, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 1 / 18

Upload: others

Post on 17-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Fundamental thermal machines for thethermodynamics of computation

    J. Stat. Mech. 2016 053110

    D. Chiuchiù1, G. Gubbiotti2

    1Università degli Studi di Perugia

    2Università Roma Tre

    ICT-Energy conference 17/8/2016 Aalborg

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 1 / 18

  • Outline

    1 Problem formulationGas enclosed by a pistonGas-Piston equationsDimensionless Gas-Piston Equations

    2 Multiple scales method for the Gas-Piston equationsMultiple scales methodRelaxation to equilibriumIsothermal compression

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 2 / 18

  • Gas enclosed by a piston

    x : piston position.

    T : gas temperature.

    T b: reservoir temperature.

    F : external force.

    Question: if the gas-piston system is at equilibrium and F or T b change,how do T and x evolve?

    Standard thermodynamics:

    • Describes the new final equilibrium.• No information on the dynamics.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 3 / 18

  • Gas-Piston equations of Cerino et al. PRE 91, 032128

    Working hypothesis

    • Perfect gas.• Gas-Piston collisions are elastic.• Gas-Reservoir collisions sets the gas particle velocities according to

    the Maxwell-Boltzmann distribution for the reservoir temperature T b.

    • After each collision the gas temperature T =∑

    i mv2 is computed.

    • The gas distribution is always a Maxwellian for the temperature T .• Averaging Gas-Piston and Gas-Reservoir collisions we get equations

    for x and T .

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 4 / 18

  • Gas-Piston equations of Cerino et al. PRE 91, 032128

    ẍ +F

    M− νNν + 1

    1

    xerfc

    (√ m2T

    ẋ)(ẋ

    2+

    T

    m) +

    νN

    ν + 1exp

    (− mẋ

    2

    2T

    ) ẋx

    √2T

    πm= 0,

    Ṫ +2ẋ[mẋ

    2+ T (1− 2ν)

    ]x(ν + 1)2

    erfc(√ m

    2Tẋ)+

    √2T

    πm

    T − T bx

    +2

    x(ν + 1)2

    √2mT

    π

    (2νT

    m− ẋ2

    )exp

    (− mẋ

    2

    2T

    )= 0,

    M piston mass N gas particles numberm gas particle mass F external forceν mM T b reservoir temperature

    Problems:

    • termodynamic limits ν = m/M → 0, N →∞?• analytic solution?

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 5 / 18

  • Dimensionless Gas-Piston Equations

    ẍ + F + erfc( εẋ√

    2T

    )ε2ẋ2 + Tx

    + exp(− ε

    2ẋ2

    2T

    ) ẋx

    √2T

    πε = 0,

    Ṫ − 2 erfc( εẋ√

    2T

    ) ẋx(ε2ẋ2 + T )− 2

    √2T

    πεẋ2

    xexp

    (− ε

    2ẋ2

    2T

    )+

    √2T

    π

    T − Tbεx

    = 0.

    • x , T , F , Tb are the dimensionless version of x , T , F , Tb• m/M → 0 and N →∞ are already taken;• ε2 = NmM is finite;• standard thermodynamics equilibrium conditions

    xeq =TbF, ẋeq = 0, Teq = Tb.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 6 / 18

  • Linear Dimensionless Gas-Piston Equations

    • Not too far from the equilibrium• ε perturbation parameter

    ẍ +F 2

    Tb

    (x − Tb

    F

    )+ 2

    √2

    πTbεF ẋ − F T − Tb

    Tb= 0

    Ṫ + 2F ẋ +

    √2

    πTb

    F

    ε(T − Tb) = 0

    Treated as a third order equation for x coupled with a definition for T

    TbF

    ...x +

    [2

    √Tb√2ε√

    π− TbḞ

    F 2+

    ṪbF

    +

    √Tb√2√

    πε

    ]ẍ +

    [3F +

    √2εṪb√π√Tb

    + 4F

    π

    ]ẋ

    +

    [Ḟ +

    √2F 2

    √πε√Tb

    ]x −√2F√Tb√

    πε= 0

    T =TbF

    ẍ + 2

    √2

    π

    √Tbεẋ + Fx

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 7 / 18

  • Multiple scales method

    ODE

    (t, x , ẋ , ẍ , . . . ,

    (n)x , ε

    )= 0,

    t independent variable, x = x(t) , ε small.

    General idea:

    1 Conjecture N behaviors with different natural time-scales.

    2 Define N + 1 time functions (t0, . . . , tN), ti = ti (ε, t).Each ti isolates a single behaviour with a given time-scale.

    3 Expand x and its time derivatives in ODE according to

    x (t) =N∑i=0

    εixi (t0, . . . , tN)+O(εN+1

    ), ẋ =

    N∑i=0

    ∞∑j=0

    εi∂xi∂tj

    ∂tj∂t

    +O(εN+1

    ), . . .

    4 Collect ε coefficients.

    5 Transform the ODE in PDEs system.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 8 / 18

  • Multiple scales method

    6 Solve the ε0 equation for x0.

    7 Subs x0 in the ε1 equation.

    8 Set all the arbitrary functions in x0 to avoid secular terms in x1.

    9 Solve the ε1 equation for x1.

    10 Iterate for alle the remaining xi

    At the end of the procedure:

    • All the x0, . . . , xN are specified.• xap (t) =

    ∑N−1i=0 ε

    ixi (t0, . . . , tN) +O(εN)

    is asymptotic up totN(t, ε) = O (1).

    • Crosscheck on the ansatz on the number of timescales N.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 9 / 18

  • Back to the Linear Dimensionless Gas-Piston Equations

    Additional working hypothesis:

    • Tb is constant (w.l.o.g. Tb = 1)

    • F is slowly varying over time(F = F (εt)

    ).

    [..........Long expression for xap..........]

    [..........Long expression for Tap.........]

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 10 / 18

  • Relaxation to equilibrium

    • F = 1• x(t = 0) = 1 + x0, ẋ(t = 0) = ẋ0, T (t = 0) = 1 + T0

    xap(t) =1 + K3ε2 exp

    (√2π

    t

    ε(πε2 − 1)

    )+ exp

    (−εt(π + 2)√

    ·[C1 sin(t) + C2 cos(t) +

    (− tε

    3

    2(εtθ2 − 2η)C1 + θtC2ε2 + C3ε

    )sin(t)

    +(− θ

    2t2

    2C2ε

    4 + (C2ηt − C3tθ)ε3 + (C5 − C1tθ)ε2)cos(t)

    ]+O

    (ε3)

    withη = −

    √2π4

    (π + 4), θ = − (π2−4π−4)

    C1 = ẋ0, C2 = x0, C3 =(πT0+πx0+2x0)√

    2π, C5 = −πT02 , K3 =

    πT02.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 11 / 18

  • Relaxation to equilibrium - xap goodness

    • Simulate x numerically• Compute ∆x = maxt∈[0,∞[(|x − xap|)• Study ∆x as function of ε, x0, ẋ0 and T0

    −10 −5 0 5 1010

    −3

    10−2

    10−1

    −2

    0

    2

    4

    −10 −5 0 5 1010

    −3

    10−2

    10−1

    −2

    0

    2

    4

    −10 −5 0 5 1010

    −3

    10−2

    10−1

    −2

    0

    2

    4

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 12 / 18

  • Relaxation to equilibrium - thermodynamics

    Analytic expression for the heat exchanged with the reservoir betweent = 0 and t = t

    Qrelap (0, t) =x(0)− x(t) +ẋ2(0)−ẋ2(t)

    2 +T (0)−T (t)

    2

    =(1 + x0 − xap(t)) +ẋ20−ẋ2ap(t)

    2 +1+T0−Tap(t)

    2 +O (ε) ,

    • New non-equilibrium result.• Analytic curve of the heat exchanged with the reservoir.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 13 / 18

  • Isothermal compression

    • x(t = 0) = 1, ẋ(t = 0) = 0, T (t = 0) = 1• Gas compressed in a finite time, then relaxes to equilibrium

    F =

    1 for t < 0

    1 + faεt for 0 ≤ t ≤ 1aε

    1 + f for t >1

    aε.

    • f is F increment. 1aε is the compression duration.

    xap(t) =

    1faεt+1 + ε2(− 2a

    2f 2

    (faεt+1)5 +√

    af (π+2)(faεt+1)3

    )+O

    (ε4)

    if t ∈ [0, 1aε ]

    as in relaxation case if t > 1aε .

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 14 / 18

  • Isothermal compression - thermodynamics

    Analytic formula for the net heat exchanged with the reservoir during thecompression and the following relaxation

    Q linap (a) =x(0)− 1 +ẋ2(0)

    2 +T (0)−1

    2 + f a ε

    ∫ 1aε

    0x(t)dt

    = ln(1 + f )−2(faε)2

    [(1+f )2−12

    ][(1+f )+

    12

    ](1+f )4

    +2faε2

    √2π

    [(π+

    32 )(1+f )

    2−π+24]

    (1+f )2+O

    (ε3)

    • New result: analytic expectation value for the heat produced dutingan isothermal compression lasting 1aε .

    • Consistency: the second principle is satisfied by this formula.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 15 / 18

  • Isothermal compression - thermodynamics

    Validity constrains of Q linap (a):

    • f > 0• af . 1• f − ln(1 + f )� ε2

    Quality test for Q linap (a)

    • Simulate numerically x• Compute

    ∆Q = |Q lin(a)− Q linnum(a)|• Study ∆Q as function of ε, a ed f• ∆Q = O

    (ε3)

    101

    100

    101

    0.25

    0.5

    0.75

    1

    1.25

    1.5

    1.75

    2

    2.25

    2.5

    2.75

    3

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    100

    102

    102

    101

    100

    1.4

    1.6

    1.8

    2

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 16 / 18

  • Conclusions

    • Dimensionless version of the eq. from PRE 91, 032128.• Application of the multiple scales method to the Linear Gas-Piston

    Equations.

    • Analytic formulas on the thermodynamic of non-equilibrium processes.• Thermodynamic cycles with the “slow expansion” approach.

    D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 17 / 18

  • D. Chiuchiù, G. Gubbiotti J. Stat. Mech. 2016 053110 ICT-Energy conference 18 / 18

    Problem formulationGas enclosed by a pistonGas-Piston equationsDimensionless Gas-Piston Equations

    Multiple scales method for the Gas-Piston equationsMultiple scales methodRelaxation to equilibriumIsothermal compression