granalladora mantto general

Upload: juan-ochoa

Post on 07-Aug-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 granalladora mantto general

    1/94

    Diseño de una cabina de granallado Pág. 1 

    Resumen

    La finalidad del presente proyecto es el diseño de una cabina como parte integrante

    fundamental de un equipo de granallado, donde granalla de acero, empleada como abrasivo, esimpulsada a través de una turbina sobre piezas metálicas de pequeña y media dimensión, que

    puedan ser golpeadas, procedentes de fundición, forja, estampación o tratamientos térmicos,

    todo ello en un ciclo cerrado con recuperación del polvo generado. Siendo el objetivo principal

    del granallado, la limpieza o preparación de superficies.

    Teniendo presente que el proyecto abarca únicamente el diseño de la cabina, primeramente se

    realizará una descripción general de los diferentes órganos que componen un equipo de estas

    características, facilitando así la comprensión del papel que ésta desempeña.

    Posteriormente se realizará un estudio de mercado para analizar la oferta actual y las últimas

    tendencias seguidas por los fabricantes del sector, y así poder establecer sus especificaciones

    generales. Optando finalmente por un modelo tipo cinta rotativa.

    Tras identificar los diferentes subsistemas que integraran la cabina, se evaluaran las

    alternativas de diseño y se adoptará la solución más conveniente, aportando las justificaciones

    necesarias, en cada caso.

    Hasta este punto, se considera el anteproyecto, cuyo grosor supondrá el 50% del tiempo total

    estimado para la realización del presente proyecto.

     A continuación, se detallará el proceso de diseño de manera descriptiva haciendo referencia a

    los cálculos de dimensionado y a los planos elaborados en Autocad  2002 de conjunto,

    soldadura, así como los despieces detallados que permiten la fabricación de los principales

    componentes.

     Asimismo, se elaborará un plan de mantenimiento preventivo para asegurar el correcto

    funcionamiento de la misma durante su vida prevista, al igual que se profundizará en aspectos

    ambientales y de seguridad.

    Se hará una mención especial a la normativa internacional vigente específica para operaciones

    de granallado.

    Se finaliza con el presupuesto y el estudio de viabilidad económica, resultando una máquina, de

    carácter competitivo, que intenta reducir al máximo sus costes de fabricación.

  • 8/20/2019 granalladora mantto general

    2/94

    Pág. 2  Memoria 

  • 8/20/2019 granalladora mantto general

    3/94

    Diseño de una cabina de granallado Pág. 3 

    Sumario

    1.  INTRODUCCIÓN __________________________________________7 

    1.1. 

    Objectivos del proyecto ................................................................................... 7 

    1.2.   Acance del proyecto ........................................................................................ 7 

    1.3.  Motivación........................................................................................................ 7 

    2.  DESCRIPCIÓN GENERAL DE UN EQUIPO DE GRANALLADO_____9 

    2.1.  Turbina........................................................................................................... 10 

    2.2.  Cabina de granallado..................................................................................... 11 

    2.3.  Sistema de transporte.................................................................................... 11

    2.4. 

    Selector de granalla....................................................................................... 12 

    2.5.  Separador auxiliar.......................................................................................... 13

    2.6.  Captador de polvo.......................................................................................... 13 

    3.  ANÁLISIS DE MERCADO __________________________________15 

    3.1.  Demanda ....................................................................................................... 15 

    3.2.  Oferta ............................................................................................................. 16 

    4.  ESPECIFICACIONES GENERALES DE LA CABINA_____________21 

    4.1.   Aplicaciones................................................................................................... 21 

    4.2.  Capacidad de carga....................................................................................... 21 

    4.3.  Tipo de abrasivo ............................................................................................ 22 

    4.3.1.  Granalla de acero esférica...................................................................................22

    4.3.2.  Granalla de acero angular ...................................................................................23 

    4.4.  Emplazamiento de la turbina......................................................................... 24 

    4.5.  Emplazamiento de la toma de aspiración ..................................................... 25 

    4.6. 

    Emplazamiento del tornillo sin fin .................................................................. 26 

    5. 

    SOLUCIONES CONSTRUCTIVAS GLOBALES _________________27 

    5.1.  Tipo de granalladora...................................................................................... 27 

    5.2.  Órganos integrantes de la cabina.................................................................. 27 

    5.2.1.  Sistema de rotación de las piezas.......................................................................27 

    5.2.1.1.  Cinta ..............................................................................................................29 

    5.2.1.2.  Discos............................................................................................................31 

  • 8/20/2019 granalladora mantto general

    4/94

    Pág. 4  Memoria 

    5.2.1.3.  Rodillos..........................................................................................................31 

    5.2.1.4.  Dispositivo tensor..........................................................................................32 

    5.2.1.5.  Rodamientos.................................................................................................34 

    5.2.1.6. 

     Accionamiento ..............................................................................................35 

    5.2.2. Sistema de recogida de la granalla.....................................................................38 

    5.2.3 

    Puerta de acceso y sistema de carga-descarga.................................................39 

    5.2.4.  Estructura de la cabina........................................................................................40 

    5.2.5. 

    Sistema de protección interior de la cabina ........................................................42 

    5.3.  Selección general de matreriales .................................................................. 42

    5.3.1. Aceros de construcción .......................................................................................42 

    5.3.1.1.  Aceros de construcción de uso general.......................................................43 

    5.3.1.2.  Aceros de construcción resistentes al desgaste..........................................43 

    5.3.2. Aceros de máquinas............................................................................................44

    5.3.3. Elastómeros .........................................................................................................44

    6.  DISEÑO DE LA CABINA ___________________________________47 

    6.1.  Sistema de rotación de las piezas................................................................. 47 

    6.1.1. Cadena cinemática..............................................................................................48 

    6.1.2. Elementos estructurales......................................................................................53 

    6.2.  Sistema de recogida de la granalla ............................................................... 59 

    6.3.  Puerta............................................................................................................. 62 

    6.4.  Estructura de la cabina.................................................................................. 64 

    6.5.  Sistema de protección interior ....................................................................... 66

    6.5.1. Protecciones en Acero Hadfield (X120Mn12).....................................................66

    6.5.2. Protecciones en Caucho natural (NR) ................................................................69

    6.6.  Previsión del cableado eléctrico.................................................................... 70

    6.7. 

    Montaje .......................................................................................................... 70

    7.  MANTENIMIENTO ________________________________________73 

    8.  MEDIDAS DE SEGURIDAD _________________________________75 

    9.  ANÁLISIS AMBIENTAL ____________________________________77 

    9.1.  Fabricación de la máquina............................................................................. 77 

    9.2.  Servicio de la máquina .................................................................................. 77 

    9.2.1. Residuos ..............................................................................................................77

  • 8/20/2019 granalladora mantto general

    5/94

    Diseño de una cabina de granallado Pág. 5 

    9.2.2. Ruido y vibraciones..............................................................................................78

    9.3.  Máquina en el fin de su vida.......................................................................... 79 

    10.  NORMATIVA_____________________________________________81 

    11. 

    PRESUPUESTO Y VIABILIDAD ECONÓMICA__________________83 11.1.  Presupuesto................................................................................................... 83 

    11.1.1. Coste de los componentes ..................................................................................83

    11.1.2. Coste de montaje.................................................................................................83

    11.1.3. Coste total de fabricación ....................................................................................86

    11.1.4. Coste de los servicios de ingeniería....................................................................86

    11.1.5. Precio de venta de la cabina ...............................................................................87

    11.2.  Viabilidad económica del proyecto................................................................ 87 

    CONCLUSIONES _____________________________________________89 

    AGRADECIMIENTOS__________________________________________91 

    BIBLIOGRAFIA ______________________________________________93 

    Referencias bibliográficas ....................................................................................... 93 

    Bibliografia complementária .................................................................................... 94

    Anexos

    A.  CÁLCULOS 

     A.1.  Selección del moto-reductor  

     A.1.1. Velocidad angular del eje rodillo motor  

     A.1.2. Potencia y par necesarios 

     A.1.3. Selección del moto-reductor a partir de catálogos 

     A.2.  Selección de la cinta 

     A.2.1. Carga de material a soportar  

     A.2.2. Selección del tipo de banda 

     A.3.  Tensiones en la cinta 

     A.3.1. Relación de Euler-Eytelwein 

     A.3.2. Fuerza de tensado mínima 

     A.3.3. Fuerza de tensado necesaria 

     A.3.4. Fuerza ejercida por el tornillo 

     A.4.  Comprobación de los rodamientos UCF 

  • 8/20/2019 granalladora mantto general

    6/94

    Pág. 6  Memoria 

     A.4.1. Cargas aplicadas 

     A.4.1.1.  Rodamientos del eje rodillo motor  

     A.4.1.2.  Rodamientos del eje rodillo tensor  

     A.4.1.3. 

    Rodamientos del eje rodillo de cola 

     A.4.1.4.  Rodamientos del eje disco 

     A.4.2. Vida de los rodamientos 

     A.5.  Comprobación de las secciones mínimas de los ejes 

     A.5.1. Eje rodillo motor  

     A.5.2. Eje disco 

     A.6.  Flujo de aire en el interior de la cabina 

     A.6.1. Flujo de aire en el interior de la cabina  A.6.2. Velocidad del aire entrante a la puerta 

     A.6.3. Velocidad del aire circulante en el interior de la puerta 

     A.6.4. Velocidad del aire circulante en el interior de la cabina 

     A.6.5. Velocidad del aire circulante en la tubería de conexión 

    B. 

    NORMATIVA 

    B.1.   ASTM standards 

    B.2.  BS standards 

    B.3.  ISO standards 

    B.4.  NACE standards 

    B.5.  SAE standards 

    B.6.  SSCP standards 

    C.  CATÁLOGOS 

    C.1.  Moto-reductor y brazo de reacción BONFIGLIOLI 

    C.2.  Rodillos TECNORULLI 

    C.3.  Rodamientos SLB 

    C.4.  Cinta DUNLOP-ENERKA 

    C.5.   Asas y tiradores BOUTET 

    C.6.  Plancha goma DUNLOP-ARGENTINA 

    C.7.  Chapa perforada AYSAM 

    D. 

    PLANOS

  • 8/20/2019 granalladora mantto general

    7/94

    Diseño de una cabina de granallado Pág. 7 

    1. Introducción

    1.1. Objetivos del proyecto

    El objetivo principal del proyecto es diseñar una cabina, como parte integrante fundamental de

    un equipo de granallado, de manera que sea apta para el granallado de piezas de pequeña o

    media dimensión, procedentes de fundición, forja, estampación o tratamientos térmicos. Todo

    ello enfocado a aplicaciones de limpieza o preparación de superficies.

    1.2. Alcance del proyecto

    El presente proyecto contemplará el equipo completo a nivel de soluciones conceptuales, pero

    no el estudio detallado de todos sus órganos, ya que requeriría un consumo de tiempo superior

    al que es habitual en un proyecto final de carrera. Tan sólo se analizará en detalle la cabina.

    Se preverá el alojamiento del sistema de aportación de energía a la granalla y el sistema de

    evacuación de ésta una vez empleada, no siendo estos dos sistemas objeto de diseño.

    Del equipo eléctrico y electrónico tan sólo se definirán las prestaciones que se requieren por

    parte del equipo mecánico.

    En ningún momento se evaluaran los resultados obtenidos sobre las piezas como consecuencia

    del granallado, ya que los parámetros que influyen directamente sobre ello no son regulables

    por los elementos que integran la cabina.

    Teniendo en cuenta todos estos puntos, se presenta una solución constructiva basada en una

    máquina referencia, cálculos y soporte informático correspondiente.

    1.3. Motivación

     Abrasivos y Maquinaria, S.A., es la empresa que facilita el desarrollo del presente proyecto.

     Actualmente esta empresa, distribuidora y fabricante, importa equipos de granallado italianos.

    Con este estudio se analizará la posibilidad de fabricación propia, evaluando la competitividad

    de los costes de fabricación obtenidos.

  • 8/20/2019 granalladora mantto general

    8/94

    Pág. 8  Memoria 

  • 8/20/2019 granalladora mantto general

    9/94

    Diseño de una cabina de granallado Pág. 9 

    2. Descripción general de un equipo de granallado

    En todo diseño, cuando el elemento a proyectar es parte integrante de un equipo, es preciso

    conocer las bases de funcionamiento de todo el conjunto, así como tener conocimiento del resto

    de órganos que lo componen.

    En los equipos de granallado  o granalladoras  (wheel blasting machines) se procede al

    tratamiento de las piezas, en el interior de una cabina, mediante una lluvia de abrasivo

    proyectada desde una o más turbinas. La dimensión de les palas de la turbina, junto con el tipo

    de granalla utilizado, son factores que influyen directamente sobre el acabado superficial

    conseguido. Para asegurar que las piezas son granalladas en toda su superficie, o parte de ella,

    es necesario dotar la cabina de granallado de un sistema, que permita el movimiento de lasmismas, adecuado al resultado que se pretenda obtener. Dicha operación se complementa con

    un sistema automático de selección de la granalla empleada que permite la recuperación o el

    desecho de la misma en función de su estado.

     A modo de curiosidad, cabe mencionar que actualmente también se emplea la técnica de

    granallado mediante chorro libre, la cual es útil para la preparación de piezas que requieren un

    poder abrasivo de la granalla más elevado. El chorro se direcciona a las piezas a tratar, con la

    ayuda de aire comprimido, mediante pistolas, hecho que evita un excesivo desgaste de lacabina de chorreado. Este tipo de máquinas, conocidas como chorreadoras  (air blasting

    machines) no son objeto del proyecto, pero se ha creído necesaria su mención para no caer en

    el error de catalogar la granalladora como única solución posible al granallado de piezas.

    Previamente al estudio de la oferta actual de granalladoras  es imprescindible identificar y

    conocer las funciones de los diferentes elementos que componen un equipo de estas

    características. La siguiente ilustración servirá de ayuda para su comprensión.

    Fig. 2.1. Equipo de granallado

    1. Turbina (wheel )

    2. Cabina (blasting booth)

    3. Sistema de transporte (conveyor system)

    4. Selector de granalla (separator )

    5. Separador auxiliar  (collector trap) 

    6. Captador de polvo (dust collector ) 

  • 8/20/2019 granalladora mantto general

    10/94

    Pág. 10  Memoria 

    2.1. Turbina

    La turbina es el elemento que proyecta el abrasivo sobre las piezas a tratar. Ésta se alimenta de

    granalla metálica que proviene del tanque de acumulación de la misma. La granalla mediante

    efecto centrífugo es proyectada sobre las piezas a una velocidad directamente proporcional a la

    velocidad de la turbina; su energía cinética provoca el efecto de granallado sobre la superficie

    de las mismas.

    El abrasivo A pasa por la válvula reguladora B y cae libremente en cantidades controladas a

    través del tubo de alimentación de la turbina C. La rueda distribuidora D, directamente acoplada

    a la rueda centrífuga E, acelera el abrasivo a una velocidad cercana a la de la rueda centrífuga

    E. En ese momento el abrasivo se direcciona mediante la jaula de control F hacia las paletas

    G. Mediante la abertura H, la jaula de control F define el punto exacto donde el abrasivo incide

    sobre les paletas G, así como el ángulo de salida del abrasivo. La velocidad de rotación de la

    rueda centrífuga E  define la velocidad de lanzamiento del abrasivo. Tanto la intensidad de

    granallado como la dosificación del abrasivo dependen de la rotación de la rueda centrífuga E y

    la posición de la jaula de control F. El cuerpo principal de la turbina (K, L) está fabricado con

    material de elevada resistencia al desgaste i dispone de una trampilla que garantiza un fácil

    acceso para la sustitución de las piezas dañadas.

    Fig. 2.2. Turbina de granallado

  • 8/20/2019 granalladora mantto general

    11/94

    Diseño de una cabina de granallado Pág. 11 

    2.2. Cabina de granallado

    Es el recinto cerrado donde se proyecta el abrasivo a elevada velocidad y donde están

    contenidas las piezas a granallar. También incluye el sistema de conducción de la granalla para

    su posterior desalojo. El interior de la cabina, carcasa y elementos contenidos en ella, está

    protegido por materiales de elevada resistencia a la abrasión para alargar su vida. Se utilizan

    diferentes sistemas de movimiento para que las piezas puedan ser tratadas en toda su

    superficie, o parte de ella. En función del diseño de dicho sistema se clasifican los diferentes

    tipos de granalladoras, por este motivo se realizará una descripción más detallada durante el

    análisis de mercado.

    2.3. Sistema de transporte

    La mezcla polvo-granalla recuperada en el fondo de la cabina se extrae normalmente del

    interior de ésta con la ayuda de un tornillo sin fin, que es lo que se conocería como el sistema

    de desalojo. Un sistema elevador , basado en un sistema de correas o cadenas con

    cangilones, la recoge y la conduce al selector de granalla.

    Fig. 2.4. Sistema elevador de cadenas Fig. 2.5. Sistema elevador

    de cangilones

    Fig. 2.3. Sistema elevador

    de correas

  • 8/20/2019 granalladora mantto general

    12/94

    Pág. 12  Memoria 

    Fig. 2.6. Selector de granalla

    2.4. Selector de granalla

    La limpieza de la granalla es necesaria por dos motivos:

      Si entre la granalla se encuentran impurezas, como polvo, tierra o escorias, estas seproyectarían a elevada velocidad sobre las piezas y este hecho provocaría la formación

    de una especie de cojín entre la granalla y las piezas, de manera que el rendimiento del

    granallado se reduciría en más de un 50%.

      Si la granalla sucia pasase por la turbina provocaría una deterioro considerable en la

    misma y la vida de sus componentes se reduciría notablemente.

    Por este motivo es necesario el uso de un órgano que separe la granalla que se encuentra en

    buen estado de la deteriorada y el polvo. Esta es precisamente la función que realiza el selector.

    La mezcla polvo-granalla 1  oportunamente distribuida en cascada mediante una chapa

    contrapesada 2  recibe a contracorriente un flujo de aire 3, generado por el ventilador que

    incorpora el captador de polvo, que facilita la separación basada en la diferencia de pesos

    específicos de las partículas. El polvo se trata en el captador 4, la granalla en mal estado 5 se

    recoge en una tolva, para su posterior descarga 6, y la granalla reutilizable 7, después de pasar

    por un filtro de partículas de diámetro superior al deseado, pasa al tanque de granalla

    conectado directamente a la turbina 8.

  • 8/20/2019 granalladora mantto general

    13/94

    Diseño de una cabina de granallado Pág. 13 

    2.5. Separador auxiliar

    Este dispositivo es opcional. Su objetivo es reducir el consumo de abrasivo y facilitar la

    operación de los filtros del captador de polvo. Este elemento permite recuperar cualquier

    partícula útil que ha sido extraída por la corriente de aire que circula en la cabina y en el selector

    de granalla. Tomas de aspiración sobre la cabina y el dispositivo de selección conectadas

    después al captador, o previamente a este separador, mantienen la máquina en depresión

    durante la operación de trabajo.

    La velocidad del aire que atraviesa la cortina de abrasivo determina la eficiencia de la

    operación de limpieza de la mezcla y la dimensión de las partículas rechazadas. La placa de

    ajuste 1 ofrece más o menos resistencia, en función de su posición, al paso del aire delimitando

    de esta manera el tamaño de las partículas que han de ser tratadas en el captador de polvo. La

    regulación del paso de la velocidad del aire se realiza mediante una tajadera de control rotativa

    situada dentro del tubo de succión 2, justo antes de la entrada al filtro.

    2.6. Captador de polvo

    Durante toda operación de granallado se genera polvo que ha de ser extraído por un

    captador.La extracción se realiza tanto en el selector de granalla (y el dispositivo opcional) como

    en la cabina. Aunque a priori sólo parezca necesaria una toma de aspiración en el selector, la

    aspiración en la cabina resulta vital por los siguientes motivos:

    Fig. 2.7. Separador auxiliar

  • 8/20/2019 granalladora mantto general

    14/94

    Pág. 14  Memoria 

      Optimiza el rendimiento del selector de granalla. 

      En el instante de descarga de las piezas, la zona de trabajo estará limpia de impurezas,

    protegiendo así al operario y al medio ambiente. 

       Asegura la no deposición del polvo sobre las piezas.

    Los filtros de los captadores de polvo, actualmente cartuchos en lugar de bolsas, retienen en su

    superficie el polvo que proviene del selector y la cabina. La limpieza de estos filtros acostumbra

    a ser automática mediante un chorro pulsante. Un pulso corto de aire a elevada presión se

    inyecta dentro de un cartucho mientras el resto continua trabajando. Dado que el chorro

    pulsante es muy breve no es necesaria la parada del flujo de aire contaminado durante la

    limpieza. Para evitar el riesgo de explosión que suponen ciertos materiales en polvo, como el

    aluminio y el magnesio, el captador debe constar de un sistema anti-incendio si trabaja en seco.

    En ocasiones se hace uso de filtros que trabajan en húmedo para evitar tal riesgo.

    La limpieza de los cartuchos se comprueba mediante un manómetro midiendo la caída de

    presión existente entre el lado contaminado del aire antes de los filtros y el lado limpio después

    de los filtros. Cuanto más grande sea dicha caída más cargados están los cartuchos y con más

    dificultad fluye el aire. La observación del manómetro ayuda a establecer un adecuado

    programa de funcionamiento del captador.

    Fig. 2.8. Captador de polvo de cartuchos y conexiones del manómetro

  • 8/20/2019 granalladora mantto general

    15/94

    Diseño de una cabina de granallado Pág. 15 

    Fig. 3.1. Diferentes tipos de

    aplicaciones

    3. Análisis de mercado

    3.1. Demanda

    La limpieza y preparación de piezas previamente al pintado o revestimiento, así como el “shot

    peening”, aplicación especial para el alargamiento de la vida de las piezas sometidas a fatiga,

    tienen un amplio campo de aplicación en la industria actual. De ahí que nazca la necesidad de

    diseñar equipos que faciliten tales operaciones. A modo de ejemplo, a continuación se recogen

    varias de sus aplicaciones.

      Estampación metálica

      Fundición

      Bisagras, tornillería, tiradores

      Piezas de ingeniería mecánica

      Componentes de transmisión y embrague

      Industria de Herramienta

      Componentes de rodamientos

      Regulación de fluidos

      Cubertería

      Instrumentos quirúrgicos e implantes

      Industria turbinas aeronáuticas

      Componentes de armas de fuego

      Componentes de cerámica, plástico y caucho

      Piedra natural

  • 8/20/2019 granalladora mantto general

    16/94

    Pág. 16  Memoria 

    3.2. Oferta

    En función de las piezas a tratar la oferta de granalladoras es muy variada. A continuación se

    recoge a grandes rasgos las soluciones más extendidas en el mercado actual.

    Granalladora a tapiz o de cinta rotativa (Véase Fig. 3.2.a, p. 18)

    Este tipo de granalladora es la más universal de toda la familia de equipos de granallado ya que

    por su concepción permite granallar piezas que pueden ser rotadas fácilmente de dimensiones

    muy diferentes y en lotes sin importar de que material estén hechas. Se obtienen excelentes

    resultados tanto en pequeñas y delicadas piezas como en grandes piezas de forja. En función

    de la capacidad de carga varia el número de turbinas instaladas. Los equipos de 20 a 60 litros

    de capacidad constan de una turbina, añadiendo una más se puede llegar a conseguircapacidades del orden de 900 litros.

    El ciclo de trabajo de la máquina empieza con la carga de las piezas sobre una cinta,

    manualmente o mediante un cargador de piezas automatizado. Tras el cierre de la puerta,

    manipulado por el operario, se inicia el ciclo de granallado. Las turbinas y la cinta empiezan a

    girar provocando el movimiento de la cinta una rotación constante en las piezas para que todas

    queden expuestas a la lluvia de granalla proyectada por las turbinas.

    Una vez finalizado el ciclo de granallado el equipo se para de manera automática, permitiendo

    la abertura de la puerta para proceder a la descarga automática de las piezas.

    Cabe destacar, que a pesar de ser una máquina concebida para el tratamiento de piezas en

    lote, en los últimos años se han desarrollado sistemas de alimentación en continuo para el

    granallado de grandes cantidades de piezas optimizando de esta manera la operación.

    Granalladora a tambor  (Véase Fig. 3.2.b, p. 18) 

    Las granalladores a tambor están cualificadas para realizar tratamientos económicos y

    rentables de piezas pequeñas y medianas, que no pueden ser granallas a tapiz o en cinta

    continua por ser demasiado pequeñas o delgadas. La limitación de la capacidad de carga en

    otros tipos de granalladoras, en ocasiones, es motivo de que este tipo de máquina resulte la

    más adecuada.

    Su operativa de trabajo es similar a la de cinta rotativa. El movimiento rotativo de las piezas se

    consigue con el giro constante de un tambor que las contiene en su interior.

  • 8/20/2019 granalladora mantto general

    17/94

    Diseño de una cabina de granallado Pág. 17 

    Granalladora de mesa rotativa (Véase Fig. 3.2.c, p. 18)

    Están especialmente indicadas para el tratamiento de piezas delicadas, que no pueden ser

    golpeadas, piezas que sólo se deban granallar a una cara, como así también aquellas que por

    su complejidad, peso y tamaño no puedan ser procesadas en máquinas granalladoras de cintarotativa para cargas a granel o granalladoras de gancho. Los platos donde se depositan las

    piezas pueden ser de diferentes diámetros, pueden ir desde los 600 mm a los 2500 mm. Se

    puede equipar la máquina con dos platos, equipos de doble mesa, presentando esta opción la

    ventaja de tener menor tiempo muerto ya que se puede estar cargando una pieza mientras en

    el interior de la cabina se está granallando otra.

    Dependiendo de las piezas a granallar, en ocasiones resulta conveniente incorporar a la mesa

    pequeños platos, normalmente de 2 a 18, siendo sus principales aplicaciones la limpieza de

    llantas, calentadores de agua, shot peening de engranajes de cajas de velocidad, coronas y

    piñones de transmisiones, etc. Este tipo de máquinas se conocen como granalladoras de

    satélites (Véase Fig. 3.2.d, p. 18).

    Granalladora de ganchos (Véase Fig. 3.2.e, p. 18)

    La línea de granalladoras de ganchos son versátiles ya que permiten en un mismo equipo

    procesar diferentes tipos de piezas, como materiales de pequeña dimensión que no pueden ser

    golpeados, o piezas que por su complejidad, peso y tamaño no pueden ser procesadas en

    equipos de carga a granel.

    El gancho una vez ubicado en el interior de la cabina gira delante de las turbinas exponiendo las

    piezas a los haces de granalla. Los rieles que soportan los ganchos pueden ser de distinta

    configuración como ser, un riel único para un solo gancho, un sistema de carga “Y” con 2

    ganchos o un sistema oval con múltiples ganchos.

    El avance puede ser continuo o discontinuo conforme sea el requerimiento del usuario. Las

    granalladoras de pasaje de ganchos continuos o túneles (Véase Fig. 3.2.f, p. 18) permiten

    procesar grandes producciones de piezas, disminuyendo considerablemente los tiempos

    muertos de carga y descarga respecto de equipos de ganchos discontinuos. Además, permiten

    procesar piezas que luego han de ser pintadas utilizando el mismo transportador aéreo para

    ambos procesos, evitando manipulaciones innecesarias de las piezas.

  • 8/20/2019 granalladora mantto general

    18/94

    Pág. 18  Memoria 

    Fig. 3.2. Sistemas de movimiento de las piezas: a. Granalladora a tapiz. b. 

    Granalladora a tambor. c. Granalladora de mesa rotativa. d. 

    Granallora de satélites. e. Granalladora de ganchos de avance

    discontinuo. f.  Granalladora de ganchos de avance continuo. g.

    Granalladora de rodillos para chapas. h.  Granalladora de rodillos

    para cerámicos. i.  Granalladora para interior de tubos. j. 

    Granalladora para exterior de tubos. k. Granalladora para perfiles y

    estructuras. l. Granalladora para alambres en rollo.

    Granalladora de rodillos (Véase Fig. 3.2.g y Fig. 3.2.h) 

    En este tipo de máquinas las piezas son transportadas por una cama de rodillos paralelos o

    bandas de acero o goma, para pasajes horizontales.

    Esta solución está especialmente indicada para el granallado de chapas, flejes planos,

    mármoles, cerámicos y porcelanattos.

    Existen soluciones específicas para el granallado de tubos  (interno o externo), tambores

    metálicos, barras, alambres en rollo, perfiles o estructuras, que utilizan sistemas similares a

    los descritos o combinación de ellos adaptados a las necesidades marcadas por el tipo de pieza

    a tratar. No se ha creído necesario realizar una descripción detallada de cada una de ellas dado

    que sus configuraciones son similares. No obstante, también se ilustran de manera

    esquemática sus principios de funcionamiento en la Fig. 3.2.

  • 8/20/2019 granalladora mantto general

    19/94

    Diseño de una cabina de granallado Pág. 19 

    En el mercado actual se encuentran un sin fin de fabricantes y distribuidores de equipos de

    granallado. La maquinaria que ofrecen basa sus principios de funcionamiento en todo lo

    expuesto en el presente apartado, aunque el diseño externo del equipo sea propio a cada

    fabricante.

     A continuación, se muestran algunas imágenes de granalladoras que ofrecen diferentes firmas

    del sector.

    Fig. 3.3. Granalladoras de mesa rotativa

    Fig. 3.4. Granalladoras a tapiz o cinta rotativa

  • 8/20/2019 granalladora mantto general

    20/94

    Pág. 20  Memoria 

    Fig. 3.5. Granalladoras a tambor

    Fig. 3.6. Granalladoras de ganchos

    Fig. 3.7. Granalladoras de rodillos

  • 8/20/2019 granalladora mantto general

    21/94

    Diseño de una cabina de granallado Pág. 21 

    4. Especificaciones generales de la cabina

    4.1. Aplicaciones

    La cabina deberá ser apta para el granallado en toda la superficie de piezas (que pueden ser

    golpeadas) de pequeña y media dimensión de:

      fundición de hierro, acero o aluminio 

      piezas forjadas 

      piezas estampadas 

      piezas tratadas térmicamente 

    Las áreas de uso de la cabina serán a grandes rasgos las siguientes:

      Eliminación de rebabas de piezas de fundición, piezas forjadas, piezas tratadas

    térmicamente, componentes mecanizados ... 

      Preparación superficial para pintura, revestimientos ... 

      Queda excluido el alivio de tensiones para mejorar la fatiga y la resistencia a la

    corrosión de ciertos componentes (shot peening) debido al elevado grado de

    precisión que requiere. 

    El equipo se enfocará a pequeños y medianos talleres del sector que no precisen el granallado

    de un gran volumen de piezas. Fabricándose el mismo bajo pedido.

    4.2. Capacidad de carga

    Los siguientes parámetros definirán la carga que se tratará en el interior de la cabina:

    Masa máxima por carga : kg50=Mmáx.carga  

    Masa máxima por pieza : kg5=Mmáx.pza.  

    Volumen máximo de carga : 3máx.carga

    m0,04=V  

  • 8/20/2019 granalladora mantto general

    22/94

    Pág. 22  Memoria 

    Volumen mínimo de pieza : 36-mín.pza. m10x1=V (Hipótesis: cubo de 10 mm de lado)

    4.3. Tipo de abrasivo

    4.3.1. Granalla de acero esférica

    Se utilizará todo tipo de granalla de acero esférica con dimensión variable en función del tipo

    de trabajo a realizar.

    Características generales

    Granalla procedente de la fusión de chatarras seleccionadas, con tratamiento térmico posterior.

    Micro estructura martensítica revenida. Adecuada para trabajos de proyección por turbina. Se

    emplea en todas las operaciones donde se pretende obtener una superficie lisa y uniforme.

    Características químicas

       Análisis:

      Dureza : 40/50 HRC

      Densidad aparente: 3,2÷3,8 3dm/kg

      Peso específico teórico: 7,3 3dm/kg

    Fig. 4.1. Granalla de acero esférica

    Tabla. 4.1.  Análisis típico (%) conforme SAE J 827

    C Mn P S Si

    0,85-1,2 0,60-1,20 0,050 máx. 0,050 máx. 0,4 mín.

  • 8/20/2019 granalladora mantto general

    23/94

    Diseño de una cabina de granallado Pág. 23 

    Distribución granulométrica

    4.3.2. Granalla de acero angular

    Se admitirá el uso de granalla de acero angular  siempre que esté en los límites de dureza

    indicados para la granalla esférica (40/50 HRC).

    Características generales

    Granalla procedente de la trituración de la granalla redonda, por lo que posee las mismas

    características básicas. Partículas poliédricas y compactas, con alto poder de impacto y de

    abrasión. Su empleo, esencialmente, es el mismo que la granalla esférica, si bien su uso serecomienda en aquellos casos en que se desea un decapado más profundo y rugoso.

    Características químicas

       Análisis:

    Fig. 4.2. Granalla de acero

    angular

    Tabla. 4.2.  Granulometrías disponibles

    Tipo S-780 S-660 S-550 S-460 S-390 S-330

    Nominal mm. 2 1,7 1,4 1,2 1 0,8

    Tipo S-780 S-660 S-550 S-460 S-390 S-330

    Nominal mm. 2 1,7 1,4 1,2 1 0,8

    C Mn P S Si

    0,85-1,2 0,60-1,20 0,050 máx. 0,050 máx. 0,4 mín.

    Tabla. 4.3.  Análisis típico (%) conforme SAE J 827

  • 8/20/2019 granalladora mantto general

    24/94

    Pág. 24  Memoria 

    Fig. 4.3.  Turbina-motor

      Dureza: se fabrican en 4 tipos, cuyos valores en HRC son:

    * La granalla de acero angular de dureza 45/50 HRC será la única apta para los trabajos a

    realizar en la cabina a diseñar.

      Densidad aparente: 3,2÷3,8 3dm/kg

      Peso específico teórico: 7,3 3dm/kg

    Distribución granulométrica

    4.4. Emplazamiento de la turbina

    El diseño de la cabina deberá tener presente el alojamiento de una sola turbina de velocidad

    regulable mediante un variador de frecuencia, 1000÷3000 1−min   (motor de 4 Kw ), con

    posibilidad de giro en ambos sentidos.

    Tipo SG MG LG HG

    dureza en HRC 45/50 * 50/55 55/60 >60

    Tabla. 4.4. Análisis típico (%) conforme SAE J 827

    Tipo G-12 G-14 G-16 G-18

    nominal mm. 1,7 1,4 1,2 1

    Tipo G-25 G-40 G-50 G-80

    nominal mm. 0,7 0,4 0,3 0,2

    Tabla. 4.5.  Granulometrías disponibles

  • 8/20/2019 granalladora mantto general

    25/94

    Diseño de una cabina de granallado Pág. 25 

    Es importante conocer las medidas de la base de apoyo del conjunto motor-turbina para así

    prever su emplazamiento en la parte superior de la estructura de la cabina (véase Fig. 4.4).

    Las protecciones interiores de la carcasa, aunque no esté representado gráficamente en la Fig.

    4.4, se atornillan a la misma exteriormente. Esto permitirá introducir desde el interior de la

    cabina dichas protecciones en el momento del montaje. La carcasa tiene un grosor de 20 mm,

    las protecciones de 10 mm y la turbina tiene un diámetro y un ancho de 380 mm y 50 mm 

    respectivamente.

    4.5. Emplazamiento de la toma de aspiración

    Se deberá prever una toma de aspiración en la cabina mediante brida (véase Fig. 4.5), para el

    tratamiento de parte del polvo que se genere durante la operación de granallado.

    El equipo no constará de separador auxiliar (dispositivo opcional). El tratamiento del polvo se

    realizará exclusivamente en el captador, de ahí que sólo sea necesaria una toma de aspiración

    cuyas dimensiones son las ilustradas en la siguiente figura.

    Fig. 4.4.  Dimensiones de la turbina (Dimensiones facilitadas

    por Abrasivos y Maquinaria, S.A.)

  • 8/20/2019 granalladora mantto general

    26/94

    Pág. 26  Memoria 

    4.6. Emplazamiento del tornillo sin fin

    Se deberá tener en cuenta el futuro alojamiento de un tornillo sin fin en el fondo de la cabina

    para el desalojo de la granalla. Se estiman 120 mm y 25 mm como diámetro exterior y diámetro

    del eje respectivamente.

     A parte del espacio requerido en el interior de la cabina, el diseño de la estructura ha de permitir

    la extracción del tornillo y la fijación de un rodamiento, para un eje de 25 mm, situado en elextremo contrario donde se pretenda ubicar el elevador de cangilones , cuya fijación también

    deberá contemplarse. 

    Sin necesidad de conocer los detalles técnicos del rodamiento en cuestión, se puede

    contemplar su fijación, sólo a un lado de la estructura, conociendo las dimensiones del soporte

    que contendrá dicho rodamiento tal y como se indica en la Fig. 6.6.

    Fig. 4.5. Dimensiones brida de la toma de aspiración

    a = 96 mm

    e = 70

    s = 12 mm

    Fig. 4.6. Soporte del rodamiento del eje tornillo sin fin

  • 8/20/2019 granalladora mantto general

    27/94

    Diseño de una cabina de granallado Pág. 27 

    5. Soluciones constructivas globales

    5.1. Tipo de granalladora

    Tras realizar el análisis general de las últimas tendencias seguidas por los diferentes

    fabricantes, la granalladora a tapiz o cinta rotativa es la que más se ajusta a las necesidades

    exigidas. Por tratarse de la más universal de todas ellas, será una máquina de gran salida en el

    mercado actual.

    5.2. Órganos integrantes de la solución escogida

    Realizando un estudio más exhaustivo de este tipo de máquina, se identifican los diferentes

    órganos que componen la cabina, todos ellos necesarios para su correcto funcionamiento.

      Sistema de rotación de las piezas

      Sistema de recogida de la granalla

      Puerta de acceso y sistema de carga-descarga

      Estructura de la cabina

      Sistema de protección interior

    5.2.1. Sistema de rotación de las piezas

    Tal y como se introducía en el apartado de análisis de mercado, el sistema de rotación de las

    piezas utilizado en este tipo de granalladoras está constituido por 3 rodillos, 2 discos y una cinta

    dispuestos tal y como se indica en la Fig. 5.1.

    El sistema es accionado mediante el rodillo superior 1, transmitiéndose el movimiento al resto

    de elementos mediante la cinta 5, que a su vez alberga las piezas a granallar. Ésta junto con los

    discos laterales 4 dibujan un tambor, de diámetro D y longitud L, en el que tiene lugar la rotación

    de las piezas. El rodillo 2, a parte de evitar el roce de la cinta en sus zonas interiores, dada la

    disposición de los elementos de giro, normalmente ejerce la función de tensor con la ayuda de

    un dispositivo que permita su desplazamiento vertical.

  • 8/20/2019 granalladora mantto general

    28/94

    Pág. 28  Memoria 

    Para evitar la deformación de la cinta, ya bien en el momento de la carga de las piezas o

    durante el proceso de granallado (situación en la que se produce un continuo golpeo de las

    piezas sobre la cinta como consecuencia de la rotación de estas), se sitúan normalmente 3

    rodillos de amortiguación bajo la zona muerta de la cinta dispuestos según la Fig. 5.2.

    Fig. 5.1. Sistema de rotación de las piezas en una granalladora a tapiz

    Fig. 5.2. Situación de los rodillos

    de amortiguación

  • 8/20/2019 granalladora mantto general

    29/94

    Diseño de una cabina de granallado Pág. 29 

    5.2.1.1. Cinta

    La cinta realiza tres claras funciones:

       Alberga las piezas a granallar.

      Transmite el movimiento entre los rodillos.

      Permite el paso de la granalla utilizada y contaminantes al fondo de la cabina para su

    posterior selección..

    Por todo ello, su concepción ha de permitir el cumplimiento de una serie de requisitos.

    1. Ha de ser lo suficientemente robusta como para soportar los 50 Kg. de carga máxima

    permitida.

    2. Debe absorber los repetidos impactos recibidos por parte de las piezas como consecuencia

    de su rotación.

    3. Dado su papel como transmisión, ha de ser lo suficientemente elástica como para permitir

    la variación de su forma al paso por los rodillos, y a su vez, lo suficientemente rígida como

    para evitar un elevado deslizamiento funcional entre el rodillo y la cinta, el cual se resume

    en una pérdida de relación de transmisión y de rendimiento.

    4. Su estructura ha de permitir el paso de la granalla utilizada, polvo, escorias, etc. y retener

    las piezas que están siendo granalladas.

     Actualmente, en función de la capacidad de carga de la cabina, existen dos soluciones para la

    cinta.

    Cinta de metálica

    Cinta de acero, conformada tal y como se muestra en la Fig. 5.3, empleada en granalladoras

    capaces de voltear piezas de masa superior a 30 kg hasta una masa máxima de carga de 3000

    kg.

    Cinta de goma

    Cinta de goma dotada de un alma formada por elementos de gran rigidez (véase Fig. 5.4). Para

    equipos con capacidades de carga hasta 1000 Kg. y un máximo de 30 Kg. por pieza.

  • 8/20/2019 granalladora mantto general

    30/94

    Pág. 30  Memoria 

    Fig. 5.4.  Cinta de goma

    Dado que la cabina a diseñar ha de ser apta para el granallado de piezas de masa no superior

    a 5 Kg. en lotes de 50 Kg. como máximo. La cinta de goma se ajusta perfectamente a las

    necesidades del presente proyecto.

    Tal y como se observa en las anteriores imágenes (Fig. 5.3 y Fig. 5.4), para permitir el paso de

    la granalla, la cinta presenta agujeros de mayor o menor diámetro, más o menos espaciados,

    en función de la necesidad de desalojo de granalla y contaminantes requerida en la zona de

    granallado.

    Para evitar el deslizamiento continuo de las piezas, hecho que impediría el volteo de estas(véase Fig. 5.5), existe la opción de vulcanizar la cinta de goma tal y como se ilustra en la Fig.

    5.6.

     Así pues, finalmente se opta por un elemento flexible de goma vulcanizada.

    Fig. 5.3.  Cinta metálica

    Fig. 5.6. Cinta de goma

    vulcanizada

    Fig. 5.5.  Posible

    deslizamiento de

    las piezas

  • 8/20/2019 granalladora mantto general

    31/94

    Diseño de una cabina de granallado Pág. 31 

    5.2.1.2. Discos

    Los discos laterales, ejercen varias funciones:

      Es un elemento de la transmisión.

      Evita el desplazamiento lateral de la carga.

      Su forma y dimensiones determina el espacio destinado a la deposición de las piezas.

    En un principio, de entre los fabricantes actuales de granalladoras, no se encuentran diferentes

    soluciones constructivas para los discos. No obstante, el diseño puede variar en función de

    cada uno de ellos. Por tal motivo, éstos serán el resultado de un diseño propio.

    5.2.1.3. Rodillos

    Tal y como se ha descrito anteriormente, hay tres rodillos que guían la cinta y tres rodillos

    amortiguadores bajo la zona de carga . Dado que sus funciones son claramente distintas, su

    construcción, en consecuencia, también lo es.

    Rodillos amortiguadores

    Existen varias alternativas para este tipo de rodillos.

    La más costosa sería la construcción de los mismos bajo diseño propio, solución que se

    intentará evitar dado que actualmente existe un gran número de distribuidores que sirven

    rodillos aptos para un sin fin de aplicaciones.

    Dentro de la opción de compra existe la posibilidad de adquirir rodillos de acero y

    posteriormente recubrirlos de un material amortiguador y resistente al impacto a la granalla (

    dado que la banda está agujereada).

    El último recurso consistiría en comprar rodillos ya recubiertos , que aunque su capacidad de

    carga sea superior a la requerida, su coste resultaría inferior a la anterior opción.

     Así pues, la opción más económica consiste en comprar rodillos de amortiguación seriados 

    por fabricantes del sector (véase Fig. 5.7), conformados por un rodillo central de acero

    (rodamientos incorporados) y anillos de goma resistentes al impacto y a la abrasión.

  • 8/20/2019 granalladora mantto general

    32/94

    Pág. 32  Memoria 

    Rodillos de transmisión

    Estos rodillos no podrán ser en ningún caso macizos como los anteriores, ya que la deposición

    de granalla en la superficie de contacto rodillo-cinta provocaría un deterioro considerable de los

    mismos, a parte de hacer peligrar la adherencia en la tracción. Es por ellos que deberán ser el

    resultado de un diseño propio.

    Por dicho motivo su conformado deberá permitir el paso de la granalla a través de ellos, a la vez

    que transmita el movimiento de la cinta. La solución finalmente adoptada se describirá

    detalladamente en su correspondiente apartado de diseño.

    5.2.1.4. Dispositivo tensor

    Uno de los aspectos tecnológicos más importantes de las transmisiones por bandas es

    asegurar una tensión mínima del elemento flexible para que las tensiones en los extremos de

    los elementos cilíndricos (rodillos) motores o receptores sea suficiente para asegurar la

    adherencia para la tracción.

    Si la transmisión está en reposo, o sea, no se transmiten fuerzas o momentos entre los

    miembros motores y los miembros receptores, estos sistemas acostumbran a mantener una

    tensión inicial (tensión estática), en el elemento flexible (banda) gracias a un sistema tensor.

    Dicha tensión puede obtenerse de diferentes maneras donde es relevante el miembro a través

    del cual se actúa y el sistema de accionamiento.

    Fig. 5.7. Rodillo amortiguador

  • 8/20/2019 granalladora mantto general

    33/94

    Diseño de una cabina de granallado Pág. 33 

    Tensado por un eje

    El tensado se obtiene por medio del movimiento de uno de los ejes de la transmisión con el

    órgano correspondiente, generalmente el motor. Dicho movimiento se consigue desplazando o

    basculando dicho eje.

    Tensado por polea tensora

    El tensado se obtiene mediante una polea tensora, o sea, un dispositivo formado por un soporte

    móvil (que desplaza o bascula) que empuja una polea loca contra la banda. Esta solución

    conviene que actúe en la rama menos tensa dado que así fatiga menos la banda. Existe la

    opción de que el dispositivo actúe hacia la parte interior o exterior del elemento flexible.  

    Autotensado

    Si el motor se deja bascular libremente sobre un determinado punto próximo al eje motor, se

    puede conseguir que la combinación de tensiones de las dos ramas produzca el efecto del

    tensado (autotensado). El planteamiento de este sistema guarda cierta analogía con el freno

    diferencial.

     A pesar de que el tensado por un eje  tenga la ventaja de que el elemento flexible no está

    sometido a más flexiones que las necesarias por la transmisión, ni obliga a incorporar nuevas

    poleas o rodillos con sus soportes, ejes y rodamientos, no sería idóneo para la cabina de

    granallado ya que el desplazamiento del eje motor no resultaría tan sencillo dado que no se

    trata de un conjunto especialmente ligero. El sistema de tensado por rodillo tensor   permite

    mantener el eje motor y receptor fijos, aspecto especialmente importante ya que se pretende

    mantener los ejes perfectamente alineados y un continuo desplazamiento complicaría este

    propósito. El sistema de autotensado, además de no requerir polea tensora presenta la ventaja

    de que cuanto más grandes son las tensiones, más fuerte es el tensado. La banda está tensada

     justo lo necesario, y no un valor fijo, como ocurre en los casos anteriores. No obstante, el hecho

    de que el motor bascule libremente implica el diseño de un sistema de protección exterior para

    evitar el contacto del motor con posibles elementos adyacentes o el propio operario.

    Por todo lo expuesto, finalmente se opta por un tensado por rodillo tensor sobre corredera y

    hacia el exterior   (solución adoptada por la gran mayoría de fabricantes), ya que dada la

    disposición de los elementos de giro, resulta ser la opción más cómoda (véase Fig. 5.8).

  • 8/20/2019 granalladora mantto general

    34/94

    Pág. 34  Memoria 

    Respecto a la forma de accionamiento del sistema de tensión, simplemente se ejercerá la

    fuerza requerida mediante tornillo.

    5.2.1.5. Rodamientos

    Se escogerán rodamientos que eviten la desalineación del eje. En el mercado actual se

    encuentran los rodamientos oscilantes de 2 hileras de bolas y los rodamientos UC.

    En los rodamientos de oscilantes de 2 hileras de bolas (series 1200, 1300, 1400, 2200, 2300) el

    aro exterior oscila con respecto al interior. La pista de rodadura del anillo exterior es una

    superficie esférica cóncava, por lo que giran conjuntamente dos hileras de bolas. Por lo tanto ,

    el anillo interior y exterior pueden oscilar sin que se transmitan cargas de momentos a las bolas.

    La desalineación permitida es del 4º. Pero dichos rodamientos tienen el inconveniente de que a

    pesar de tener 2 hileras de bolas, son bastante débiles, y no soportan ni mucha carga ni

    muchas revoluciones, ya que las bolas deben trabajar sobre una superficie prácticamente plana(aro exterior) y no sobre una canaleta como un rodamiento radial. La canaleta le da a la bola

    una mayor contención, haciendo que soporte incluso una buena carga axial, a pesar de ser

    radiales. Esto no sucede en los rodamientos oscilantes de bolas.

    Sin embargo, los rodamientos UC, combinan lo mejor del radial de 1 hilera de bolas, absorben

    la carga radial y una buena carga axial, y permiten la desalineación por su aro exterior

    redondeado (bombeado), el cual trabaja sobre un soporte con la misma forma. Además, por no

    producirse la oscilación en las bolas sino en el lomo, el rodamiento se puede blindar y proteger

    Fig. 5.8.  Tensado por rodillo tensor sobre corredera y hacia el exterior [Ref. 1]

  • 8/20/2019 granalladora mantto general

    35/94

    Diseño de una cabina de granallado Pág. 35 

    mejor de los contaminantes (todos los autocentrantes son blindados) que los rodamientos de la

    serie 1200 y 1300 en los que hay que recurrir a otros métodos. La fijación en el tipo UC se

    realiza por prisionero (tornillo).

    Por todo lo expuesto, se opta por rodamientos autocentrantes UC (véase Fig. 5.9) ya que losrodamientos oscilantes de 2 hileras de bolas están siendo reemplazados por éstos en la

    mayoría de los casos.

    En el mercado actual, para los citados rodamientos, existen alojamientos de diferentes formas:

    tipo F (cuadrado), FL (romboide), FC (redondo), etc.. Cuando no se requiere una elevada

    precisión y la carga a soportar tampoco es importante, los alojamientos tipo F  (véase Fig.

    5.10) resultan ser los más utilizados por su simplicidad de montaje y su coste inferior respecto al

    resto.

    Normalmente, la denominación de este tipo de rodamientos y su respectivo alojamiento no se

    realiza por separado, se hace referencia al conjunto rodamiento-alojamiento. En este caso se

    resumiría como rodamientos UCF.

    5.2.1.6. Accionamiento

    El sistema deberá ser accionado, a través de uno de los rodillos, mediante un sistema motriz

    capaz de proporcionar una velocidad lineal constante a la cinta. No será necesaria la variación

    de dicha velocidad para obtener diferentes resultados sobre las piezas, ya que tal misión está

    Fig. 5.9.  Rodamiento UC Fig. 5.10.  Rodamiento UC en

    alojamiento tipo F

  • 8/20/2019 granalladora mantto general

    36/94

    Pág. 36  Memoria 

    restringida a parámetros relativos a la turbina.

    Los sistemas motrices fijos actualmente empleados se componen generalmente por un motor  

    más un sistema de reducción de velocidades que transmite el par motor al eje de salida para

    su posterior empleo.

    Se realizará la selección del tipo de motor y posteriormente la elección del tipo de reducción

    necesaria para el buen funcionamiento de la máquina.

    Los motores eléctricos presentan la característica de ser silenciosos, sin emisión de humos, de

    par constante y más limpios que los de explosión. A más a más, dada la futura ubicación de la

    máquina en el interior de una nave industrial, la facilidad de acceso al suministro eléctrico

    aventaja este tipo de motor frente al de explosión ya que este último implica un control periódico

    del nivel de combustible del depósito. A pesar de la autonomía que ofrece el motor de

    explosión, la incorporación de un sistema de extracción de humos, el ruido de funcionamiento y

    los problemas de marcha como son la carburación y el encendido hacen descartar

    definitivamente el uso de este motor. Así pues, el motor  eléctrico se considera la solución más

    adecuada para esta aplicación.

    Los motores eléctricos son básicamente rotativos, versátiles, y de fácil control. Hay de tres tipos:

    motor de corriente continua, motor de corriente alterna síncrono y motor de corriente alterna

    asíncrono o de inducción. Teniendo presente las características principales de funcionamientode cada uno de ellos, se descarta la máquina de corriente continua porque a pesar de la

    facilidad en el control de su velocidad, para una misma potencia este tipo de motor requiere

    más mantenimiento y más coste de adquisición que el motor de inducción. El motor de corriente

    continua es más indicado para aplicaciones de control. El motor síncrono tiene un rendimiento

    más elevado que el motor asíncrono y destaca por mantener su velocidad angular

    rigurosamente constante con la frecuencia de alimentación, pero esta ventaja no es

    imprescindible en la máquina a diseñar dado que no se requiere una velocidad tan precisa sino

    que la velocidad de los tres rodillos de igual diámetro sea la misma, es decir, que la velocidad

    lineal de la cinta a lo largo de su recorrido sea lo más parecida posible. Por todo ello se escoge

    una máquina asíncrona trifásica que se caracteriza por ser robusta, simple y de bajo

    rendimiento, siendo esta solución la más económica. Los motores de jaula de ardilla son los

    más utilizados, porque en relación con los de anillos rozantes, son más ligeros, más

    económicos, de fácil mantenimiento y no provocan chispas. Por todo esto finalmente se

    empleará un motor eléctrico de inducción de jaula de ardilla.

  • 8/20/2019 granalladora mantto general

    37/94

    Diseño de una cabina de granallado Pág. 37 

    Una vez decidido el tipo de motor se ha de escoger el tipo de transmisión mecánica para

    obtener la reducción deseada. Las técnicas más utilizadas son las reducciones por cadena,

    correa o sistema de engranajes. La transmisión por cadena necesita de lubricación y precisa de

    más mantenimiento, sufre más desgaste y genera más ruido que la transmisión por correa. La

    transmisión por correa seria la solución más económica, pero su límite del factor de reducción

    alrededor de i=10 no es suficiente para la reducción que se requiere. En cualquier caso, una

    solución tanto por cadena o correa para reducir la velocidad a la salida del motor resulta muy

    voluminosa en nuestro caso. Por último quedaría la opción de una transmisión por engranajes,

    solución más precisa, pero también la menos económica, dado que a priori se desconoce el

    número de unidades a construir ya que se trataría de la construcción bajo pedido. Es por todo

    lo expuesto, que se opta por la compra de un reductor de engranajes comercializado. En el

    mercado actual existe una amplia gama de reductores que ofrecen prestaciones similares a las

    requeridas más que válidas para el buen funcionamiento de la máquina a diseñar. Dentro de la

    oferta de reductores de engranajes, existen diferentes soluciones constructivas que se adaptan,

    más o menos adecuadamente, a los requerimientos de la cabina de granallado.

    Los reductores tornillo sin fin ofrecen factores de reducción elevados con reducidas

    dimensiones respecto a los reductores de engranajes cónicos, y cilíndricos helicoidales, los

    cuales son de mayor tamaño con factores de reducción inferiores. Los inconvenientes más

    destacables que presenta el reductor de tornillo sin fin respecto a los reductores mencionados

    es su bajo rendimiento de la transmisión (usualmente η= 0,50÷0,90) y los efectos térmicos

    derivados de esta disipación de energía. A pesar de las ventajas de robustez sobre los ejes de

    entrada y salida que pueden ofrecer los otros reductores se opta por el uso de un reductor de

    tornillo sin fin por su mejor emplazamiento en la máquina a diseñar y su mejor adaptabilidad

    de las características de funcionamiento. Los reductores de tornillo sin fin son reductores de

    ejes cruzados, normalmente a 90º, cuya cinemática está producida por un tornillo sin fin, de una

    aleación de acero tratado superficialmente y una corona de bronce centrifugado para reducir la

    fricción entre ambos piñones y así optimizar su bajo rendimiento. En la mayoría de los casos

    son reversibles, la condición de irreversibilidad del reductor se ve influida por la velocidad de

    rotación y el rendimiento, el cual está sujeto a la condición de que el rendimiento teórico es

    inferior a un 50%. La condición inversa, la reversibilidad, queda indicada por un rendimiento

    superior al 50%.Las relaciones de transmisión que puede llegar a presentar este tipo de

    reductor son del orden de i = 7÷100 y los pares que puede transmitir también son elevados.

    Finalmente se puede afirmar que su construcción es compacta y su funcionamiento suave y

    silencioso.

  • 8/20/2019 granalladora mantto general

    38/94

    Pág. 38  Memoria 

    Fig. 5.11. Moto-reductores de tornillo sin fin

    Existen dos vías para obtener el accionamiento deseado. Una de ellas consiste en la elección

    del motor y el reductor por separado y posteriormente proceder a su acoplamiento. En cambio,

    la solución más cómoda, compacta y económica es la elección de un moto-reductor ya

    existente en el mercado. Si algún fabricante dispone de moto-reductores de tornillo sin fin, y

    alguno de ellos se ajusta a las necesidades exigidas por la cabina, sin duda alguna, se tomará

    como solución óptima la elección de dicho moto-reductor  (véase Fig. 5.11)

    5.2.2. Sistema de recogida de la granalla

    La granalla empleada, tal y como se ha venido mencionando en apartados anteriores, ha de ser

    seleccionada para su posterior uso o rechazo en función de su estado. Para ello la cabina ha de

    permitir su recogida para su posterior evacuación y tratamiento.

    Tal y como se ilustra en la Fig. 5.12, dicho objetivo se consigue mediante tolvas tras su paso por

    la cinta agujereada. Para evitar que impurezas de tamaño considerable provenientes de las

    piezas sean tratadas en el selector, se acostumbra a incorporar un filtro que evite su

    permanencia en el circuito de reciclaje de granalla, optimizando así su función. El filtro en

    cuestión en la gran mayoría de los casos se reduce a situar una bandeja cribadora en la parte

    superior del tornillo sin fin.

  • 8/20/2019 granalladora mantto general

    39/94

    Diseño de una cabina de granallado Pág. 39 

    1. Preparada parala aplicación

    2. Carga

    3. Granallado

    4.Descarga

    5.2.3. Puerta de acceso y sistema de carga-descarga

    Es importante determinar cual será el sistema de alimentación de la cabina porque este hecho

    condicionará el tipo de puerta o puertas a diseñar.

    Cuando las piezas a granallar pueden ser golpeadas y cargadas en lote, como ocurre en el

    caso de las granalladoras a tapiz  , el equipo de granallado puede llevar incorporado un

    cargador de piezas automatizado tal y como se ilustra en la Fig. 5.13.

    En el caso de acoplar dicho sistema de carga, la apertura y cierre de una única puerta deberá

    automatizarse.

    Si el volumen de piezas a tratar es muy elevado, en el mercado actual existen soluciones

    basadas en un sistema de alimentación en continuo, tal y como se ilustra en la Fig. 5.14. Donde

    Fig. 5.13. Cabina con cargador automático.

    Fig. 5.12. Esquema de recogida-evacuación de la granalla

  • 8/20/2019 granalladora mantto general

    40/94

    Pág. 40  Memoria 

    la inclinación de la cinta provoca un movimiento helicoidal sobre los segmentos que lleva

    incorporados permitiendo que las piezas sean extraídas mientras simultáneamente giran.

    Ya que el volumen de carga es relativamente pequeño, queda excluida la opción de

    alimentación en continuo. Respecto a la incorporación de un sistema de carga automatizado,

    dado que este hecho encarecería en gran medida el coste de la cabina y la manipulación de las

    piezas es factible mediante uno o dos operarios, a priori, se optará por una carga manual y en

    consecuencia una puerta manual. Esta decisión no interfiere en el diseño del resto de la

    cabina. En el caso de que la cabina, en un futuro, precisase la automatización de la puerta tan

    sólo implicaría cambios en la puerta y la previsión de fijaciones en la estructura de la cabina

    para los elementos que permitan la automatización.

    Cabe destacar que la descarga será en todo momento automática. Dados los elementos de

    giro, incorporando un contactor inversor   con enclavamiento mecánico, se permite invertir el

    sentido de giro del motor y en consecuencia el sentido de trabajo de la cinta, facilitando la

    descarga las piezas ya granalladas.

    5.2.4. Estructura de la cabina

    En el momento de diseñar la cabina, se deberá tener presente en todo momento que sus

    dimensiones deberán ser compatibles con una fácil manipulación de la carga por parte del

    Fig. 5.14. Granalladora a tapiz de alimentación en continuo

  • 8/20/2019 granalladora mantto general

    41/94

    Diseño de una cabina de granallado Pág. 41 

    operario.

     Además, siempre bajo el criterio de minimizar el volumen de la misma ya que el acoplamiento

    de órganos complementarios (turbina, elevador, selector y captador) puede llegar a requerir un

    espacio para instalar todo el equipo excesivamente elevado.

     Así pues, teniendo presente una altura media del operario de 1,75 m y que la apertura de la

    puerta será manual, a grandes rasgos, se fijan los rangos para las cotas reflejadas en la

    siguiente figura:

    Donde:

    a = altura de la maneta de la puerta = 900÷950 mm

    b = altura del asa de la puerta = 1000÷1100 mm

    c = altura total de la cabina = 1300÷1400 mm

    Cabe destacar que bajo la puerta debe dejarse espacio libre para facilitar, en el momento de la

    carga, que los pies del operario tengan acceso y así aprovechar que el cuerpo del operario esté

    lo más próximo posible a la cabina.

    Fig. 5.15. Dimensiones generales de la cabina

  • 8/20/2019 granalladora mantto general

    42/94

    Pág. 42  Memoria 

    5.2.5. Sistema de protección interior de la cabina

    Dado que el coste de los materiales metálicos resistentes al desgaste es elevado y sus

    propiedades mecánicas limitan en cierto modo su manipulación, resulta rentable la construcción

    de ciertos elementos con materiales de inferior calidad y prever el acoplamiento de proteccionesa aquellos que lo requieran con material de elevadas prestaciones.

    Es por ello que previamente a la selección del material es necesario una previa valoración del

    tipo de ataque que reciben las diferentes zonas interiores de la cabina por parte de la granalla.

      Ataque directo: serán todas aquellas zonas y elementos situados en el área de trabajo de

    la turbina que se encuentren en contacto directo con la granalla cuando ésta, tras ser

    proyectada por la turbina, impacta directamente sobre su superficie a elevada velocidad.

      Ataque indirecto:  Cuando la granalla rebota disminuye considerablemente su energía

    cinética y en consecuencia su ataque pierde intensidad. Es por ello que las zonas más

    alejadas de la parte impactada directamente por la turbina o parcialmente protegidas por

    elementos adyacentes se protegerán con materiales de resistencia al desgaste inferior.

    5.3. Selección general de materiales

    La selección del material para cada una de las piezas o componentes es una de las decisiones

    centrales del proceso de diseño de una máquina. Dicha selección no debe desligarse del

    método de conformación ni del proceso de fabricación de la pieza en cuestión, siempre con la

    finalidad de que la pieza cumpla con las especificaciones requeridas con el mínimo coste

    posible.

    Por todo lo expuesto el presente apartado, tras un análisis de los materiales disponibles en el

    mercado actual, se hace una selección general para posteriormente, en el apartado de diseño,

    especificar el material empleado en cada caso.

    5.3.1. Aceros de construcción

    Los aceros de construcción agrupan los aceros al carbono, aceros micro aleados y los aceros

    de baja aleación, destinados a la fabricación de construcciones unidas por soldadura, roblones

    o tornillos. Sus propiedades más relevantes son el límite elástico y los valores mínimos de

    resiliencia según la temperatura, mientras que las propiedades tecnológicas de incidencia

    mayores son, el precio, la facilidad de soldadura, resistencia a la corrosión, la aptitud para la

  • 8/20/2019 granalladora mantto general

    43/94

    Diseño de una cabina de granallado Pág. 43 

    conformación en frío y, en determinados productos, las características de acabado superficial.

    5.3.1.1. Aceros de construcción de uso general (UNE EN 10025-94)

    Son productos de acero no aleados presentados en forma de chapas y perfiles laminados en

    caliente destinados a construcciones soldadas, roblonadas o atornilladas, o en forma de

    pletinas y barras destinados a la fabricación de piezas mecánicas, todos ellos utilizados a

    temperatura ambiente sin tratamiento térmico posterior.

    Para toda clase de construcciones metálicas y piezas mecánicas de responsabilidad moderada,

    los aceros de coste inferior son el S235, S275 y el S355, con soldabilidad decreciente al

    aumentar el carbono equivalente (CEV).

    El acero  S275 (siendo el J2 el de mayor soldabilidad), se usa habitualmente en forma deperfiles y chapas en las estructuras de edificios y de máquinas, es por ello que tanto la

    estructura como piezas de poca responsabilidad se construirán de este acero (véase Tabla 5.1,

    p. 45).

    5.3.1.2. Aceros de construcción resistentes al desgaste

    En el interior de la cabina se requieren aceros de una dureza y resistencia al desgaste

    elevadas, además de una resistencia mecánica y tenacidad adecuadas. Para este tipo de

    aplicaciones se usan diversos tipos de aceros, como los aceros de bonificación, aceros de

    bonificación al B o aceros austeníticos al Mn. Todos ellos se tratan térmicamente con el fin de

    aprovechar sus posibilidades.

    En el caso de las piezas que reciban el ataque directo de la granalla, se empleará acero

    austenítico al Mn, también conocido como acero Hadfield (ASTM A128 grado A, o bien, DIN

    X120Mn12 1.3401). Contiene un 12% de Mn, de estructura austenítica estable a temperatura

    ambiente, muestra una resistencia al desgaste excelente, además de buena resistencia y

    tenacidad. Todo ello se debe a la particularidad que, cuando se le somete a un trabajo de

    repetidos impactos, la superficie se endurece hasta valores de 500 HB. Es soldable con ciertas

    precauciones, pero se mecaniza con grandes dificultades. Su coste es bastante elevado y ese

    hecho restringe su uso a piezas y elementos sometidos a condiciones de abrasión muy

    severas, como lo es la aplicación que nos ocupa (véase Tabla 5.2, p. 45).

    Cuando se trate de la construcción de piezas que deban ser metálicas y reciban un ataque

    indirecto se empleará un acero de bonificación (UNE 36.051-91). De entre ellos, el 28Mn6

    (véase tabla 5.3, p. 45) se cataloga de ser un acero de buena resistencia al desgaste, de buen

  • 8/20/2019 granalladora mantto general

    44/94

    Pág. 44  Memoria 

    mecanizar pero requiere precalentamiento en el plegado y la soldadura, además de precisar un

    recocido de estabilización tras el oxicorte. Después de conformadas las piezas adquieren, con

    el temple y el revenido, una gran resistencia y dureza.

    5.3.2. Aceros de máquinas

    Los aceros destinados a la fabricación de piezas resistentes son los aceros bonificados.

    Generalmente para piezas sometidas a fatiga, tales como árboles y ejes de transmisión. Son

    materiales aptos para aplicarles un temple o un revenido, al igual que un acabado superficial

    para endurecer su superficie. Son productos de acero aleado y no aleado presentados en forma

    de barras laminadas en caliente o en frío, y piezas forjadas.

    Para ejes moderadamente solicitados, como es el caso en el presente proyecto, se utilizará un

    acero con denominación 2 C 35 (UNE 36.051-91). Este acero semisuave de resistencia media,

    se caracteriza por un temple bajo y una buena tenacidad. Se puede templar en agua y se usa

    para piezas de dimensiones pequeñas y medianas moderadamente solicitadas como árboles,

    bielas, bulones, tornillos y cremalleras (véase tabla 5.4, p. 46).

    6.3.3. Elastómeros

    Los elastómeros son materiales basados en polímeros de comportamiento elástico,

    consistencia flexible (en comparación con los plásticos) y elevada resiliencia. De entre loselastómeros despertarán los termoestables o permanentes, dado que una vez polimerizados o

    vulcanizados, mantienen su consistencia y no se deforman plásticamente en caliente.

    De entre los cauchos de buenas propiedades mecánicas, el caucho natural, NR (ISO 1629),

    parece responder a las necesidades requeridas, como demandan cinta y las protecciones de

    ataque indirecto de la granalla en el interior de la cabina (véase Tabla 5.5, p. 46).

    El caucho natural destaca por sus excelentes propiedades mecánicas: resistencia a la tracción,

    a la abrasión y a la fatiga, y alta tenacidad, sólo superadas por los poliuretanos, cuyas elevadas

    prestaciones no son requeridas en el presente proyecto. También destaca por su baja

    deformación permanente a 20 ºC, por el buen comportamiento a bajas temperaturas y por sus

    buenas propiedades eléctricas.

    Entre su amplia gama de aplicaciones destacan aquellas en que el material está sometido a

    solicitaciones dinámicas, gracias a su excelente resistencia mecánica, a la buena resistencia a

    la fatiga y a la baja disipación por histéresis.

  • 8/20/2019 granalladora mantto general

    45/94

    Diseño de una cabina de granallado Pág. 45 

    Carbono C   ≤ 0,21 %Manganeso Mn   ≤ 1,60 %

    Fósforo P   ≤ 0,045 %

     Azufre S   ≤ 0,045 %

    Resistencia a la tracción

    d

  • 8/20/2019 granalladora mantto general

    46/94

    Pág. 46  Memoria 

    Densidad 0,93 Mg/m3

    Coeficiente de dilatación 216 µm/m·K

    Calor específico 2500 J/kg·K

    Resistencia a la tracción 20÷28 MPa

     Alargamiento a la rotura 300÷900 %

    Dureza 30÷95 Sh A

    Resiliencia [4÷5]

    Resistencia a la abrasión [3÷4]

    Coste 0,75 €/kg

    Elastómero termoestable NRPropiedades físicas

    Propiedades mecánicas

    Propiedades tecnológicas

     

    Tabla 5.4. Características del acero

    2 C 35 [Ref. 2]

    Tabla 5.5. Características del caucho

    natural (NR) [Ref. 3]

    Carbono C 0,32 - 0,39 %

    Manganeso Mn 0,50 -0,80 %

    Resistencia a la tracción

    d

  • 8/20/2019 granalladora mantto general

    47/94

    Diseño de una cabina de granallado Pág. 47 

    6. Diseño

     A continuación, se realizará una descripción detallada de todos los elementos que entran en

     juego dentro de los diferentes órganos que integran la cabina. Todo ello incluye las cadenas

    cinemáticas y las piezas estructurales que las componen, describiendo la función de todas ellas.

    Los cálculos realizados se encuentran en el anexo A de “Cálculos”.

    En ocasiones, se hará referencia a la numeración asignada de la pieza en el plano de conjunto

    (adjunto en el Anexo D), facilitando así su localización y comprensión. Se referenciará de la

    siguiente manera:

    pza. nº xx/P1Ha-b-…/P1.zzDonde: xx = nº de pieza asignado en el plano nº 1 de conjunto

    a, b, …= nº de hoja del plano nº 1 donde se visualiza la pieza nº xx

    1.zz = nº del plano de pieza soldada o de despiece ( su omisión implica la

    no existencia del mismo)

    Para realizar esta descripción, al igual que en el capítulo anterior, se ha dividido la máquina

    según sus funciones en los siguientes subsistemas:

      Sistema de rotación de las piezas

      Sistema de recogida de la granalla

      Puerta de acceso

      Estructura de la cabina

      Sistema de protección interior

    6.1. Sistema de rotación de las piezas

     A continuación se describirán los diferentes elementos que forman parte de este sistema. Se

    han diferenciado entre los elementos de la cadena cinemática y los elementos estructurales que

    lo componen.

  • 8/20/2019 granalladora mantto general

    48/94

    Pág. 48  Memoria 

    6.1.1. Cadena cinemática

    La cadena cinemática utilizada para la transmisión de potencia en este sistema es la siguiente:

    1. MOTO-REDUCTOR (pza. nº 3/P1H1-2-5 y pza. nº 4/P1H1-2-5)

    En el Anexo A “Cálculos”, en el apartado A.1, se ha realizado el estudio de energía, de

    momentos, de fuerzas y movimientos y ha resultado necesario el uso de un moto-reductor de

    las siguientes características:

    El moto-reductor escogido es la solución compacta presentada por el fabricante BONFIGLIOLI 

    [Ref. 4], del cual se adjuntan catálogos en el Anexo C por si se desea ampliar su información.

    2. BRAZO DE REACCIÓN (pza. nº 5/P1H1-2-5)

    Dada la disposición del moto-reductor, el cual se encuentra suspendido, es necesario el

    acoplamiento de una brazo de reacción para asegurar su posición mediante un punto fijo de

    apoyo. Es por ello que se escoge el brazo, recomendado por el mismo fabricante del reductor.

    Para más información véase Anexo C.

    Tabla 6.1.  Características generales del moto-reductor

    Fig. 6.1. Brazo de reacción BONFIGLIOLI VF 49 

    Pn n2 M2 i polos ns n Pn Mn Ms/Mn Ma/Mn

    W min-1 Nm nº min-1 min-1 W Nm

    57 10,9 50 80 6 1000 870 120 1,32 1,9 1,7

     Reductor Modelo VF 49_80 Motor Modelo K63B6 IP55

  • 8/20/2019 granalladora mantto general

    49/94

    Diseño de una cabina de granallado Pág. 49 

    3. EJE RODILLO MOTOR (pza. nº 7/P1H3-5/P1.01)

    Tal y como se adelantaba en el apartado de soluciones constructivas globales, el rodillo deberá

    permitir el paso de granalla para evitar la deposición de la misma sobre su superficie, hecho que

    imposibilitaba la compra de un rodillo macizo estandarizado. Es por ello, que éste será productode un diseño propio y específico para la presente aplicación.

    La primera decisión a tomar es el acero del cual se fabricará el eje rodillo. En un principio no

    está en la zona de ataque directo de la granalla, pero teniendo presente que la cinta o banda

    transportadora estará agujereada para permitir la evacuación de la misma en el fondo de la

    cabina, se considerará un elemento sometido a un ataque indirecto, y tal como se justificaba en

    el apartado de selección general de materiales, un acero bonificado 28Mn6 resulta ser la

    solución más acertada.

    Partiendo de un calibrado redondo de 50 mm de diámetro (tolerancia f7) y 1086 mm de longitud

    total, debidamente mecanizado para alojar los rodamientos y el resto de elementos que

    componen la estructura del eje rodillo, se conformará el eje central (plano nº 1.01.01). En uno

    de sus extremos, donde se ubicará el moto-reductor se le practicaran dos chaveteros para

    alojar dos chavetas de 8x7x20 A UNI 6604, asegurando así la transmisión del movimiento

    rotativo. Para evitar el desplazamiento lateral del accionamiento se mecanizará una ranura para

    situar un anillo elástico (D=25 mm) y se realizará un roscado interior en el extremo del árbol (M-

    6), para que con la ayuda de una tapa, arandela y tornillo quede el conjunto totalmente fijado.

    En el Anexo A de “Cálculos”, apartado A.5, se encuentra el cálculo de la sección mínima

    exigida para este eje.

    Para permitir el paso de la granalla se parte de la idea de que el rodillo esté formado por aspas,

    las cuales se consiguen soldando a la eléctrica (con aportación) 3 discos cortados a láser de 10

    mm  de espesor, dos de ellos situados en los extremos del tramo del eje central (plano nº

    1.01.02) habilitado para ello y el tercero en el punto medio de dicho tramo. En la periferia de los

    discos hay 8 ranuras de 6,5 mm dispuestas a 45º para prever el alojamiento de 8 pasamanos

    debidamente cortados, que tras la soldadura, junto con los discos dibujaran las aspas

    deseadas.

    Una vez el conjunto ha sido soldado este debe someterse una operación de torneado para

    asegurar un diámetro exterior de 150 mm y que éste sea concéntrico al eje central.

    Cabe destacar que para asegurar la posición de la cinta sobre el rodillo y evitar su

    desplazamiento lateral , los extremos del rodillo presentarán una conicidad de 3º.

  • 8/20/2019 granalladora mantto general

    50/94

    Pág. 50  Memoria 

    Finalmente, una vez conformada la pieza, con el templado y el revenido (40 HRC) se

    conseguirá una gran resistencia y dureza.

    4. CINTA (pza. nº 6/P1H3-5-6)

    Dado que la cinta ha de ser principalmente un elemento flexible de goma, el caucho natural,

    NR, será el material más idóneo. No obstante, los repetidos impactos recibidos por las piezas al

    voltear, obligan a dotar a la cinta de una carcasa de tracción de bajo alargamiento y capaz de

    absorber dichos impactos.

    Tal y como se expone en el Anexo A de “Cálculos”, apartado A.2, la elección de una banda

    transportadora DUNLOFLEX (ancho=800, largo=2710 mm), de la casa DUNLOP-ENERKA 

    [Ref. 5] formada por una carcasa tipo D315 (tejido EP) y recubierta de caucho natural (NR)

    consiguiendo un espesor total 10 mm cumple con los citados requisitos.

    La cinta deberá ser servida, por parte del fabricante o distribuidor, unida por sus extremos y

    presentando unos salientes de 15 mm de radio y 600 mm de longitud (véase Fig. 6.2) situados

    en la parte exterior de la misma, todo ello conseguido mediante vulcanizado. Dichos salientes

    serán equidistantes entre sí (338,75 mm), una vez unida la cinta. Cabe recordar que la

    existencia de los mismos era necesaria para asegurar el volteo de las piezas.

     A su vez la banda transportadora estará perforada, dentro de los límites establecidos en la Fig.

    6.2, con agujeros de diámetro de 8 mm procurando el paso de la granalla y evitando que las

    piezas puedan colarse a través de la cinta (recuérdese que se hizo la hipótesis de volumen

    Fig. 6.2. Esquema de la cinta

  • 8/20/2019 granalladora mantto general

    51/94

    Diseño de una cabina de granallado Pág. 51 

    mínimo de pieza de 36101 m x  -  tomando un cubo de 10 mm de lado). Se tomará una distancia

    entre centros de 20 mm tal y como se indica en la Fig. 6.3.

    Se deberá dejar una distancia prudencial alrededor de las zonas vulcanizadas sin agujerear,

    siendo elección del fabricante las dimensiones de dicha zona. Al igual que los redondeados de

    los extremos de los salientes vulcanizados.

    5. EJE DISCO (pza. nº 11/P1H3-5/P1.02)

    La posición de dos ejes disco en los extremos de la cinta, dejando un espacio libre entre ellos

    de unos 695 mm, semidibujan, junto con la cinta, el tambor donde voltearan las piezas a

    granallar.

    Dada la disposición de la turbina, la cara del disco que está en contacto con las piezas sufrirá el

    ataque directo de la granalla. El acero Hadfield resultaba ser el más idóneo, como material de

    fabricación, en el caso de componentes que trabajan bajo severas condiciones de desgaste.

     Aún así, ya que tan sólo se trata de una de las caras del mismo, resulta más económico

    proteger dicha zona y fabricar todo el eje disco de un material de coste inferior, dado que el

    resto del elemento no recibe en ningún momento el impacto de la granalla. Por dicho motivo

    finalmente se opta por un acero de bonificación 2 C 35, acero generalmente utilizado para ejes

    moderadamente solicitados (véase Anexo A de “Cálculos”).

     Así pues, partiendo de un calibrado de 50 mm de diámetro y 135 mm de longitud, mecanizado

    convenientemente para alojar el rodamiento que se situará en el interior de la cabina (25 mm de

    diámetro), se conformará el eje central. De manera concéntrica se soldará un disco (cortado a

    láser) de 480 mm de diámetro y 10 mm de espesor, debidamente agujerado para poder fijar la

    protección prevista con tuercas de M-16 , al extremo de mayor radio.

    Fig. 6.3. Detalle de la cinta agujereada

  • 8/20/2019 granalladora mantto general

    52/94

    Pág. 52  Memoria 

    Dado que los discos son arrastrados por la cinta, este hecho obliga a que éstos presenten cierto

    grosor para asegurar la adherencia disco-cinta. Es por ello que se decide soldar un pasamano,

    de 8 mm de espesor, doblado