green combined heat and power (chp)ec.europa.eu/energy/intelligent/projects/sites/iee...for this...

22
1 Green Combined Heat and Power (CHP) How to unfold the potential of bioenergy CHP to contribute to a renewable and efficient energy supply A report based on the findings from regional workshops and interviews on biomass cogeneration within the project CHP goes Green

Upload: others

Post on 21-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

1

Green Combined Heat and Power (CHP)

How to unfold the potential of bioenergy CHP to

contribute to a renewable and efficient energy supply

A report based on the findings from regional workshops and

interviews on biomass cogeneration within the project CHP goes

Green

Page 2: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

2

Table of content

1 Introduction .............................................................................................................................................. 3

2 European key factors for promoting green CHP ........................................................................ 4

2.1 Climate targets ................................................................................................................................ 4

2.2 Directive on Renewable Energy (RES) - 2009/28/EC ..................................................... 5

2.3 Directive on Cogeneration - 2004/8/EC and Energy Efficiency Directive (EED) (2012/27/EC) ............................................................................................................................... 5

2.4 National Energy Efficiency Action Plans (NEEAPs) and Renewable Energy Action Plans (NREAPs) .............................................................................................................. 6

2.5 Cohesion funds and other sources of finance ..................................................................... 6

2.6 Co-ordination around the bioenergy supply chain ........................................................... 6

3 Regional key factors for promoting green CHP ........................................................................... 7

3.1 Policy-related enablers ................................................................................................................ 7

3.2 Commercial-related enablers .................................................................................................... 8

3.3 Awareness-related enablers ...................................................................................................... 8

4 Regional best practice examples....................................................................................................... 9

4.1 Biogas-CHP in a waste treatment utility in Frankfurt am Main, Germany .............. 9

4.2 Solid biomass CHP plant in Valka, Latvia ........................................................................... 11

4.3 Biogas Plant for a district heating Network in Weiherfeld, Germany .................... 12

4.4 Sizeranne Renewable Energy Production (SIPER), Rhône-Alpes, France ............ 13

4.5 Biomethane CHP plant at fire station in Berlin, Germany ........................................... 15

4.6 A wood gasification power plant, Austria ......................................................................... 16

4.7 Biogas plant with split cogeneration in Trebon, Czech Republic ............................. 18

4.8 From waste treatment to biogas, France ........................................................................... 19

5 Summary and conclusions ............................................................................................................... 20

Page 3: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

3

1 Introduction

The use of renewable sources in combined heat and power (CHP) plants allows highest

efficiency while increasing the share of renewables. Thus, this combination is a key

approach to reach the ambitious EU energy and climate targets. Despite this strength,

the potential for CHP fuelled by renewables sources is not yet fully used.

For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes

Green which ran from July 2010 until June 2013. The aim was to promote the increased

and more efficient use of renewable energy sources (RES) by using CHP. The renewable

sources used is mainly biomass, e.g. from agriculture, organic waste or crops. To

promote and install "Green CHP" and the respective technical solutions was the target

for the model cities and regions involved in the “CHP goes Green” project: Berlin,

Frankfurt/Main, Hannover, Graz, Prague, Riga planning region, Lyon and Paris. These

eight model cities and regions represent a wide range of population densities and gross

domestic product (GDP) per capita. They are diverse in terms of energy history, energy

policy, bioenergy resource, and CHP potential. With this broad background they were

able to identify a meaningful set of “key framework conditions” and associated policy

options at the European level. The European association for the promotion of

cogeneration, COGEN Europe, was responsible for European-wide diffusion tasks.

Table1: Characteristics of the model cities of CHP goes Green

Styria Paris

region (Ile-

de-France)

Rhône-

Alpes

Berlin Frank-

furt

Han-

nover

Riga

planning

region

Prague

Surface area

km2

16,400 12,012 43,700 892 248.3 2,291 307 496

Population

thousands

1,200,00

0

11,599,000 6,000,000 3,442,675 672,667 1,100,000 706,400 1,227,000

GDP per

capita Euro

28,200 47,650 30,000 26,295 71,000 39,257 18,883.5 14,000

Households 497,000 5,337,000 497,000 307,377 357,699/ 552,000 325,125 600,000

The following report summarises the key lessons generated during the project. Given the

overall relevance, the focus lies on recommendations regarding the European

framework conditions for green CHP, presented in Chapter 2.

The regional level success factors relevant for all participating regions are summarised

in Chapter 3. Chapter 4 provides practical examples from each region, illustrating the

variety of applications, solutions and advantages of green CHP.

Page 4: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

4

2 European key factors for promoting green CHP

In order to determine the factors that facilitate the deployment of bioenergy CHP and

draw recommendations for actions that can be taken at the EU level, key stakeholders in

the eight model cities were interviewed.

The surveys in the participating eight model cities and regions clearly showed the

importance of European Union policy for bioenergy success. Also various aspects of

energy markets such as bureaucracy, grid connection and complexity should be given

serious consideration as the details of the implementation of the liberalised market are

developed and finalised.

The model cities cited relevant impacts in areas of climate targets, Directives on

renewables, cogeneration and energy efficiency, National Energy Efficiency Action Plans

(NEEAPs) and Renewable Energy Action Plans (NREAPs), cohesion funds and other

sources of finance as well as issues linked to the supply chain.

2.1 Climate targets

All respondents highlighted the importance of climate targets, especially the EU 2020

Climate and Energy targets, as driving the uptake of bioenergy in their city or region.

This had pushed national level support mechanism for bioenergy which is fundamental

to creating the business case for adopting bioenergy as an energy source.

However, the climate targets are hardly co-ordinated with the CHP legislation and this is

particularly clear when considering support mechanisms. Both bioenergy and CHP are

supported in Germany, France and the Czech Republic at the time of writing, with very

little co-ordination between the two policies. Higher policy co-ordination with respect to

bioenergy and CHP support is deemed beneficial for the more efficient use of bioenergy

on one hand, and the increased use of CHP on the other hand. The lack of co-ordination

may lead to suboptimal outcomes, as it happened in the Czech Republic, where

bioenergy electricity has been incentivised until recently, leading to heat being dumped

and a very low efficiency electricity generating process being supported.

Page 5: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

5

As it is the CO2 agenda driving the uptake of renewables, including bioenergy, Member

States legislation focuses on the bioenergy elements often ignoring the energy efficiency

benefits that can be achieved through CHP. Legislation on climate issues at the EU and

Member State level should therefore take the energy efficiency and sustainability

benefits of CHP combined with bioenergy into account.

2.2 Directive on Renewable Energy (RES) - 2009/28/EC

The Directive on Renewable Energy (RES) - 2009/28/EC (RES Directive) is fundamental

to the success of bioenergy in Europe. It drove the introduction of support mechanism

for bioenergy uptake and bio-CHP at the national level, providing the economic basis for

the success of bioenergy at the city and regional levels. In Member States such as France

or Austria the specific target for bioenergy, introduced at the national level has directly

driven additional action around bioenergy, but it has not always resulted in more

bioenergy CHP. For CHP to be promoted there must be an additional incentive beyond

the fuel type itself, targeting the efficient use of bioenergy with respect to both heat and

electricity. The example provided by the Prague model city is very telling since,

bioenergy CHP started becoming a more attractive option as soon as the support scheme

was amended to not only reward electricity-only bioenergy use.

2.3 Directive on Cogeneration - 2004/8/EC and Energy Efficiency

Directive (EED) (2012/27/EC)

The Directive on Cogeneration - 2004/8/EC (CHP Directive) is seen as important due to

the framework it creates for facilitating the application of CHP. The Directive contains

definitions and an assessment methodology standardising the use of the term high

efficiency CHP and paving the way for support and access to state aid for CHP projects.

Some national support mechanisms provide an additional bonus for the use of bioenergy

to fuel CHP installations. However, this is not a sufficient additional incentive to

persuade bioenergy users to always take on the additional implications of funding a CHP

plant compared to running either a simple combustion or a simple condensing electricity

generating plant.

As the CHP Directive will be repealed by the Energy Efficiency Directive (EED)

(2012/27/EC), with reinforced provisions for CHP, the implementation of the EED offers

new opportunities to realise the potential of bioenergy CHP.

Page 6: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

6

2.4 National Energy Efficiency Action Plans (NEEAPs) and Renewable

Energy Action Plans (NREAPs)

The National Energy Efficiency Action Plans (NEEAPs) and Renewable Energy Action

Plans (NREAPs) could be the driving force in identifying the potential for growth on

bioenergy CHP and for driving action through planning and objective setting. However,

these plans do not connect well to the regional level and thus have not been a specific

driver for greater use of bioenergy CHP. The reporting under the NREAP and the CHP

potential study seem to have been carried out entirely independently of the cities and

regions. Neither the model cities nor other European cities were involved to give input

and hence all actions at the city and region level lack a link to the action plans as

reported at the EU level.

2.5 Cohesion funds and other sources of finance

In 2010 Europe agreed to allow the spending of up to 4% of the cohesion funds on

energy efficiency projects. CHP can benefit from this source of funding, which appears to

work very well for Riga. The use of Cohesion Funds in Latvia is a best practice case of

mobilising private capital with public funds. However, to bringing down the investment

costs the methodology and framework to assess and quantify the risks of such projects

are crucial and should be adopted to the national situation.

The presence of a bank willing to fund projects at reasonable rates is an important

element of any new project. In this context, the public German KfW bank stands out for

its continuous support of projects while the innovative proKlima partnership of

Hannover stands out for its innovative approach to providing targeted funds.

These examples stand as evidence that the cohesion funds and other sources of finance

can be quite beneficial to promoting bioenergy CHP, as long as the technologies and their

inherent benefits are well understood and there is a sound methodology to assess CHP

projects.

2.6 Co-ordination around the bioenergy supply chain

The bioenergy supply chain has emerged as both an opportunity and a challenge within

the model cities responses. Bio-energy CHP is at the cross-roads between policies on

agricultural, energy, waste management and climate.

Paris, Hannover and Riga all highlight the benefit of linking at the regional level the

bioenergy opportunities into existing strategies focusing on either waste or agriculture

and forestry. In the region of Rhone-Alpes there are clear links developing between

regional agricultural policy, waste management and bioenergy.

Page 7: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

7

In Germany the use of bio-gas and mixing bio-gas with natural gas is a supported

strategy. In Latvia and the Czech Republic there is awareness of the value of bio-gas for

cities but as yet a limited engagement with bio-gas technology. Several model cities also

mention a lack of clarity around bioenergy and concerns of conflict with other bio-use

supply chains (food, raw materials, waste).

The input provided by the model city respondents indicates that there is room for

improvement at European level in terms of ensuring better co-ordination between the

elements of the supply chain. Especially with regard to the overall resource and

sustainability debate, Europe needs to show leadership and guidance on the role

bioenergy has to play in the future, ensuring that investors in the sector are not hindered

by additional uncertainty. Therefore, in the context of current discussions on

sustainability criteria for solid and gaseous biomass, a close co-ordination between DG

Climate Action, DG Energy and DG Agriculture would be beneficial to the process, paying

special attention to forest, agriculture and waste policies at the regional and local levels.

3 Regional key factors for promoting green CHP

Regional workshops were held to gain further feedback on the framework conditions for

bio-CHP success in the regions. Ambitious local and state targets for the deployment of

RES and the reduction of CO2 were endorsed as key elements for driving deployment via

the European level. Specific government and regulatory support policies for green CHP,

such as feed-in-tariffs, buy in obligation contracts and green certificates, were cited as

underpinning the finance of bioenergy CHP. All result directly from European legislation.

The main ones concerning all cities/regions are summarised below:

3.1 Policy-related enablers

As on EU-level also regional and local climate targets act as signal for the promotion of

RES-fuelled CHP. A very good example is the Covenant of Mayors, a voluntary

commitment by cities, towns and regions to exceed the CO2 reduction level set by the

2020 targets. It has been a major success with 2.623 European cities and regions

subscribing so far. The Covenant brings what is still in many member states a national

agenda to the local level. The members of the Covenant set their own targets for CO2

abatement, and in doing so give CO2 abatement a position on the agenda of the city or

region.

Specific support policies for green CHP, such as feed-in-tariffs, buy in obligation

contracts and green certificates, also further the commercial potential of RES-fuelled

CHP. Specific economic advantages to small investors could likewise trigger faster

deployment of small scale applications of specific capacity.

Page 8: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

8

For instance, as underlined during the workshop at Ile-de-France, the French state

supports solid biomass CHP through buy in obligation contracts combined with feed in

tariffs for units with a power over 12 MWel. The consequence of this centralised

conception of electricity production is a low level of actual implementation because of

the problems induced in heat use and in sourcing these very large plants. A

complementary support for smaller plant, installed on district heating network for

instance, would definitely enlarge the scope for potential green CHP.

3.2 Commercial-related enablers

Long-term price certainty and competitiveness of biogas is important to allow for a

degree of profitability and thus create necessary incentives for RES-fuelled CHP

investments. Furthermore an improbability in fossil fuel prices could lead to a switch

towards renewable fuels for CHP technology. Indeed, the consultations held in Riga

underlined that the difficulty of forecasting long-term fossil fuel prices, can serve as a

driving factor for RES-fuelled CHP in Latvia.

Sheer economies of scale through the construction of more RES-fuelled CHP units could

lead to a drop in the cost of the price of fuel and the emergence of effective economies of

scale.

Finally, stable heat demand, potentially throughout the year such as in hospitals, indoor

pools and hotels adds to the economic feasibility of RES-fuelled CHP projects.

3.3 Awareness-related enablers

Self-initiative and green mentality by consumers as well as by public regulators and

private companies are an important first steps towards the examination of RES-fuelled

CHP as a key low carbon technology. For example, the workshop in Riga emphasised the

distinct role of self-initiative and green thinking as a driver for bioenergy development

in Latvia in general and for the examined city in particular.

Intersectoral collaboration and networking can lead to effective experience exchange

and investment boost. As an example, biogas CHP subsidies could present a

collaboration opportunity between cities, waste management companies and

agricultural companies to develop green CHP projects. This prospect was particularly

emphasised during the course of the workshop held at Ile-de-France. In France the

national operator ADEME and the regional council provide subsidies for investment in

methane units. This could lead to the ‘development of territorial projects driven by cities

through partnerships with waste management and agro companies’.

Page 9: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

9

4 Regional best practice examples

4.1 Biogas-CHP in a waste treatment utility in Frankfurt/Main, Germany

Rhein Main Biokompost GmbH

Project description

In Frankfurt/Main biogenic waste is utilized in one of Europes modernst waste treatment utilities.

Especially for the demand of the city of Frankfurt/Main a combination of fermentation and composting was realized.

The combination of dry fermentation and composting offers a high operational standard for the disposal of waste.

The biogas, produced in the fermenter, is used for powering the CHP units.

The heat is used in the fermentation process and for heating the facility in winter. The electricity produced is feed in the grid.

Climate benefits

There are several environmental benefits by generating electricity in a biogas driven CHP-unit and a partially local use of heat.

In comparison to heat supply with natural gas boilers and electricity purchase from power plants without CHP you can reach a broad reduction of greenhouse emissions.

By the fermentation the methane emissions are avoided by the following composting.

The greenhouse potential of methane is twenty four times higher than carbon dioxide.

RMB Frankfurt am Main

Page 10: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

10

Repowering

In November 2010 the existing CHP unit (780 kWth, 499 kWel) was replaced by three motors with now 635 kWth and 680 kWel.

The advantages of the new plant are:

Higher electrical efficiency The same amount of biomass generates more electricity.

Higher reduction of CO2 emissions Until now reduction of CO2 of about 1.320 tonnes per year, (in future 1.980 per year)

Low-emission running Clean burning and cleaning of exhaust emission avoid formaldehyde emission

Low running costs Higher subsidies according to EEG. The legislative authority supports the installation with different bonuses, e.g. Bonus for innovative technology, Bonus for CHP, bonus for reduction of the emission of formaldehyde.

CHP modules (Copyr. RMB)

Fact Sheet:

Project name: Biogas- BHKW bei der Rhein Main Biokompost GmbH

Location: Rhein-Main-Biokompost GmbH Peter-Behrens Straße 8 60314 Frankfurt

Year of installation: September 1999 Repowering Nov. 2010

Biogenic waste 30.000 to / year

Power BHKW-units

Thermal power: 635 kW 2x 232 kW 1x 171 kW el. power 680 kW 2x 250 kW 1x 180 kW Fuel power. 1.590 kW

Biogas: ca. 1,8 Mio m³ per year Daily Biogas quantity:

Ca. 5.100 m³, which is equivalent to ca. 2.500 Liter heating oil or ca. 25.000 kWh

CO2-reduction Ca. 1.980 to / year

Contact:

RMB GmbH Peter Dumin Tel.: 069/ 40 89 86 0 Fax: 069/ 40 89 86 10 [email protected] www.rhein-main-biokompost.de

Author/ Contact:

Energiereferat 79A Galvanistraße 28 60486 Frankfurt Tel.: 069/212 39193 [email protected] www.energiereferat.stadt-frankfurt.de

Homepage of the Project CHP goes green

www.chp-goes-green.info

Page 11: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

11

4.2 Solid biomass CHP plant in

Valka, Latvia

Energy production

The solid biomass CHP plant was installed as

a base load provider of the city Valka. The

plant started to operate on October 2012.

The useful heat of the CHP plant will be used

to ensure the production of hot water and

heat for the inhabitants of the city. The

produced electricity will be provided to the

electrical grid. The promoter of the project

was „Enefit Power & Heat Valka” Ltd., where

Energy Company from Estonia “Esti energia”

and City Council of Valka shares the capital of

the company. For the implementation of the

project also subsidies were acquired in

framework of EU Cohesion Fund activity

"The Development of RES-CHP” in 2009.

The new solid biomass CHP plant was built

instead of the old Valka boiler house, where

fossil fuels were used. This shows that the

new CHP plant produces the energy more

efficient and on more environmentally

friendly way. In addition, ensuring new job

opportunities for the inhabitants of Valka

County.

The characteristics of the solid

biomass CHP plant

One steam boiler with the capacity of 11.55

MW is installed, which ensures the necessary

amount of steam to run the CHP unit. The

steam characteristics are as follow: steam

pressure 55 bar, steam temperature 450oC.

The average stem flow is 12 tones per hour.

It is supplied to steam turbine with the

electrical capacity 2.4 MWel for the

electricity production. The electrical capacity

of the turbine is based on the hot water load

of the city Valka. The CHP plant operating

hours are planned to be 8000 per year. The

wood fuel (woodchips) mainly is used for the

energy production, which is supplied from

the closest counties.

For this purpose two short period fuel

storage places with the total area 574 m2 are

built. The total project costs were around

11.4 million euro, from which around 36%

have obtained from the EU Cohesion Fund.

Address Rujienas street 5,

Valka, Latvia

Start of operation October 2012

Technological solution Steam turbine

Electrical and heat

capacity 2.4 MWel; 8 MWth

Fuel type

Wood fuel

residues

(woodchips)

Operating hours,

h/year 8000

Total Project

investments, € 11.4 mil.

Subsidies, € 4,1 mil.

Page 12: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

12

4.3 Biogas Plant for a district heating Network in Weiherfeld, Germany

The power station Weiherfeld belongs to a newly constructed neighbourhood with approx.

1.800 new accommodation units for eventually 4.500 - 5.000 inhabitants, in the suburban town

of Langenhagen. All housing units in this area are to use district heating grid for warm water and

heating supply.

The power station Weiherfeld is run by biogas since December 2008. It is connected to the

biogas plant Kaltenweide by an 1,5 km long biogas pipeline. In addition the power station

consists of one natural gas CHP unit and two natural gas peak boilers.

„We combine the bio gas production from renewable primary products with the efficient use in a

block heat and power plant and spare around 8.600 t CO2 per year. Calculative we reach a

primary energy factor of 0,00 for the heat“ declares Manfred Schüle, business manager of

Energie-Projektgesellschaft Langenhagen mbH (EPL).

Technical specification, Characteristics of the facility

Location of the plant Energiezentrale Weiherfeld, Maria-Montessori-Straße 38, 30855 Langenhagen

cogeneration technology Jenbacher 412 Gas Otto Motor

electrical power, thermal power 6.7 Mio. kWhel, 6,8 kWhth kind of fuel biogas

CO2 savings 8.600 t/a

operating hours 8300 year of installation/start of operation 2008 Investment Appr. 500.000 Euro

Pictures

Author

Energie Projekt Gesellschaft Langenhagen (EPL)

Contact

Energiezentrale Weiherfeld,

Maria-Montessori-Straße 38,

30855 Langenhagen,

www.epl-energie.de

Page 13: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

13

4.4 Sizeranne Renewable Energy Production (SIPER), Rhône-Alpes,

France

PROJECT OWNER The Jamonet family, comprised of two parents and their three children, has decided to diversify their resources. Their farm integrates several different activities: cereal production (corn, wheat, barley) with a cereal drying and storage activity, the transport and trade of liquid products and organic matter for anaerobic digestion. The SIPER limited liability company unites the entire family around a large-scale anaerobic digestion project.

A family project developer for a regional plant

Initiated in 2007, the SIPER project (Sizeranne Renewable Energy Production) aims at

diversifying farming activities via a renewable energy production unit.

In a large industrial basin, this unit will transform 50,000 tonnes of organic matter via supply and hygienisation modules. These inputs (liquid, paste, solid) will originate from local sources, and in particular from the agri-food industry (AFI). They will be transferred into two digesters, each with a volume of 3,400 m3.

The digestion method chosen is the "completely mixed" method and shall be implemented by the Envitec-Biogas company. A building with a surface area of 2,000 m2 integrating a bio-filtration system shall be subject to negative pressure and shall house the organic matter and technical equipment.

After treatment, the biogas shall be transported to two 889 kWe cogeneration engines for electricity and heat generation. A 6 MW dual-fuel boiler house (biogas - natural gas) shall also be built to use the biogas in the event of additional requirements or plant malfunction. The heat produced shall be used by the process (digester, hygienisation unit, drying unit) and by a public heat grid. This will supply renewable heat to the buildings in the industrial area of Bourg de Péage. The unit shall be commissioned in the third quarter of 2013.

Page 14: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

14

PURPOSE • Providing additional activity for the farm. • Transforming locally-produced organic matter, without on-site storage. • Producing local, renewable energy. Electricity shall be reinjected into the existing ERDF

power grid and the heat shall be used to supply a public heat network. • Contributing to regional development via its location in the Bourg de Péage industrial area.

� Two digesters with a volume of

3,400 m³ � Installed power capacity: 1,788 kWe � Expected production:

- 14,400 MWh/year of heat energy 14,000 MWh/year of electricity - 50,000 t/year of transformed organic

matter � Overall energy efficiency of 67 % � Overall investment: €9,400 K � Public aid: - French Ministry of Agriculture: €325,000 - Rhone-Alps region: €200,000 - General Council of La Drôme: €100,000 - ADEME Rhone-Alps: €299,000

SPECIFIC FEATURES

� Private producer / public

distributor � Transformation of local organic

matter � Technological innovations

Installation

SIPER is a regional project grouping together farmers, local authorities, industrialists from the agri-food industry and local stakeholders. It creates virtuous circles with regard to treating organic matter, by short circuits and guaranteed back to the ground of a high agronomic quality product. A heat grid developed by the Syndicat Des Energies de la Drôme (renewable energy board) will distribute the heat generated to the industrialists located in the Industrial Area.

CONSTRUCTOR: ENVITEC PM: GIRUS PMS: VALERSYS

Contact details: Lionet TRICOT - Rhônalpénergie-Environnement 10 rue des Archers - 69002 LYONS, FRANCE Tel.: +33 (0)4 78 37 29 14 - Fax: +33 (0)4 78 37 64 91 Email address: [email protected] - Website: www.raee.org - www.chp-goes-green.info

Supported by:

Page 15: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

15

4.5 Biomethane CHP plant at fire station in Berlin, Germany

In one of Berlin’s most important fire department – the station of the Charlottenburg-Nord professional fire brigade – Berlin Energy Agency (BEA) is operating its first bionatural gas fuelled (CHP) combined heat and power unit. With an output of 240 kWel and 365 kWth, it is one of the first and biggest plants of its kind in Berlin. Compared to conventional power generation with fossil fuels, annual carbon dioxide emissions are reduced by 1.350 tons. At the fire station, heat is supplied centrally from a heating system located in the basement of the administrative building. In addition to the CHP, BEA also has installed a new natural gas fuelled condensing boiler with a thermal output of 854 kW to support the existing low-temperature boiler at times when large amounts of heat and hot water are required (peak load).

Among other things, BEA has renewed pressure maintenance, hot water preparation and heat distribution in the building. All of the power generated is fed into the public grid and paid for as specified in the Renewable Energies Act (REA). The bio-natural gas is supplied by GASAG. The gas comes from various biogas plants located in Brandenburg, Saxony-Anhalt and Mecklenburg-West Pomerania.

Pilot project in the context of “CHP goes green“

To reduce the heat requirement of the property with a heated floor space of 21,500 m², BIM as the building manager has completely modernised in respect of energy efficiency the administrative building of the fire station West, investing about 10 million euro from the Konjunkturpaket II (economic stimulus package). Among other things, BIM has redesigned the facade using a thermal insulation composite system and replaced the windows and the electrical installations. The combined heat and power unit is a model project in the context of the EU’s “CHP goes Green” initiative. With the support of Berlin’s energy supplier GASAG, the Senate Department for Urban Development and the “Intelligent Energy Europe” programme, “green” CHP is to be promoted in the housing industry and among public and private service providers and other customer groups.

Fire station

Charlottenburg-Nord

CHP: 240 KWth and 365 kWel

Annual yield: 1.440 MWh

CO2-saving: 1.350 t per year

Contact

Berliner Energieagentur

GmbH

Französische Straße 23

10117 Berlin

Phone: 030 / 293330-0

Fax: 030 / 293330-99

E-mail: office@berliner-e-

agentur.de

Page 16: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

16

4.6 A wood gasification power plant, Austria

A wood gasification power plant fed by wood chips delivers the farm and residential building of an agricultural enterprise with heat and electricity

� Operator

Family Krammer, Köflach

� Description of Facility and Application

The plant of the family Krammer was comissioned in 2010 and reached the level of 11.000 operating hours at the beginning of 2013. The plant supplies the farm and the residential building of the agricultural enterprise with heat, the produced electricity is fed into the electricity grid according the green feed-in tariff system. The plant is free of fine dust and all emissions are significantly below the official regulations. The wood chips are produced in the own agricultural enterprise.

� Advantages for Operator/Energy User

The plant is operated heat driven, that means as soon as there is a heat demand in the agricultural enterprise or in the residential building and the temperature level in the 5.000 liter buffer tank is below a defined level the wood gasification plant starts automatically and is at full power in 3 to 5 minutes. Then it runs until the buffer tank is sufficiently supplied with heat and then it turns itself off again. The produced electricity is fed into the electricity grid according the green feed-in tariff system.

The advantages for the user are:

� Operation of the plant with wood chips from the own agricultural enterprise

� Full supply with heat from the wood gasification power plant (no peak load boiler necessary) – about 95.000 kWh/year

� Fully automated operation mode makes a comfortable operation without continuous support possible

� The produced electricity (40.000 kWh/year) is sold by fixed feed-in tariffs for 13 years according the Austrian Ökostromgesetz (green electricity act)

Sources of pictures: Krammer/REP

Renewable Energy Products GmbH

Page 17: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

17

Technical Specifications

Cogeneration Technology Wood gasification power plant

Type HV12_7 REP Renewable Energy Products GmbH

Fuel Wood chips G50

Year of Installation 2010

Thermal Power Output 31 kWth

Electrical Power Output 13 kWel

Subsidies Feed-in tariff for green electricity

Annual Operating Hours 3.500 to 4.000h

� Contact Information

REP Renewable Energy Products GmbH Ing. Franz Krammer Concept Strasse 1 A-8101 Gratkorn Tel.:+43/(0)316-685500-0 Email: [email protected]

� CHP Info Point in Styria/Graz Grazer ENERGIEAgentur Kaiserfeldgasse 13/I, A-8010 Graz Tel: +43-316-811848-0

Homepage www.grazer-ea.at/BiomasseKWK

Contact Persons:

Ernst Meißner, ext. 15, email [email protected]

Rudolf Großauer, ext. 28, email [email protected]

Page 18: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

18

4.7 Biogas plant with split cogeneration in Trebon, Czech Republic

Biogas plant in Trebon - the first Czech biogas plant with split cogeneration

The 1 MWe biogas plant in Třeboň, South Bohemia, is the first Czech biogas plant with significant supply of heat. The plant is situated about 2 km north from the town’s periphery and the input substrates are pig slurry and energy crops, mainly corn and grass silage (15,5 and 4,3 kt/a).

The special design feature is only a small (175 kWe) cogeneration unit at the spot to cover the electricity and heat self consumption of biogas production, while the majority of produced raw gas is transported by a dedicated 4,3 km long pipeline to the spa facility in the town, where a new biogas CHP plant (844 kWe) was built, which supplies heat to the spa central heating system and an adjacent multi-apartment residential building. Two heat accumulators with total volume of 200 m3 are installed to equalize the daily fluctuations of heat demand. Thanks to this concept, most of the heat generated can be effectively used (over 5 000 MWh/a) and the overall efficiency of biogas energy utilization is about 60% compared to typically only 35% at biogas plants with no heat supply.

The main contractors were MT Energie for the biogas production plant and Stavcent for the CHP plant and the piping. The cogeneration units were supplied by Tedom (the smaller one) and GE Jenbacher.

The financing was covered by a bank loan and a subsidy from EU structural funds (30%). The project received the award “The Czech Energy and Environmental Project of the Year 2009”.

Technical specifications Location Třeboň, South Bohemia, CZ Capacity 175+844 kWe, 223+840 kWt Fuel raw biogas CO2 reduction 9 950 t/a In operation December 2009 Capital costs 125 M CZK (5 M €)

CHP goes Green Partner:

SEVEn Americká 17, 120 00 Praha 2 phone +420 221 592 523, [email protected] www.svn.cz

Operator:

Bioplyn Třeboň s.r.o. Dukelská 134, 379 01 Třeboň phone +420 384 721 211 [email protected]

Page 19: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

19

4.8 From waste treatment to biogas, France

The SIVOM of Yerres and Sénarts Valley, groups

16 cities and is responsible for the treatment of

their waste. The Varennes Jarcy biogas plant has

a treatment capacity of 80 000 tons per annum.

The SIVOM opened the biogas plant in 2002 in

order to provide an answer for odor issues and

to prevent waste incineration. Waste arriving on

the platform are mechanically sorted before

entering the digesters.

The biogas produced fuels a CHP unit. The electricity is sold to the grid in the frame of a

15 years long buy-in obligation contract with a specific feed-in tariff. The heat is used

for the process and to heat the administrative buildings. The digestate is composted so

farmers can use it as fertiliser.

Technical specification on the biogas CHP unit

Location City of Varennes Jarcy, Essonne, Ile-de-France

Heat use On site use for the process and heating of

administrative building

Electricity production 1,1 GWhe

Kind of fuel Biogas

CO2 reduction 1 760 tons

Years of installation 2002

Start of operation 2002

Contact

ARENE Ile-de-France

94 bis avenue de Suffren

75 015 Paris, France

Tel: +33 (0)1 53 85 73 83

E-mail: [email protected]

SIVOM de la Vallée d’Yerres et des Sénarts

Route du Tremblay - 91480 Varennes-Jarcy

Website : http://www.sivom.com/

Page 20: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

20

5 Summary and conclusions

Combined heat and power (CHP) plants fuelled with renewable sources is a key

component of a low carbon energy supply and thus crucial for achieving European,

national and regional climate targets. For this reason the project CHP goes Green

promoted more efficient use of renewable energy sources by using CHP.

Based on interviews and workshops in the model cities and regions the project team

found out that several barriers lead limit the development of the sector:

• The lack of awareness among policymakers, consumers, suppliers, engineering

and installation companies, banks and finance sector is one of the main barriers

that can be overcome by making information about this sector more accessible.

• As some of the stakeholders have noted, redtape and overly bureaucratic

procedures at all levels can represent a huge impediment in pursuing a green

CHP project. The lack of co-ordination and over-weighty procedures between

departments responsible for authorisation/information/support should be

addressed in order to enable low carbon technologies like bioenergy CHP to

reach their real potential. If de-carbonisation and energy efficiency are priorities

at the national/regional/local levels, more can be done to make it easier and less

costly for industry to develop projects that get us closer to those goals.

• Physical connection problems to the electricity grid arising from DSO/TSO

structures and difficulty of permitting were also identified as a barrier to more

widespread deployment of bioenergy CHP.

However, the barriers mentioned above it became clear that policy-makers on different

political levels can shape the framework conditions for the uptake of bioenergy CHP. On

European level the key factors are the following:

• European Climate and Energy Policy is driving the overall position of bioenergy

CHP.

• Careful design of support schemes encouraging combined heat and power

production as well as appropriate support for the different size and scale of

projects could be monitored via the reporting processes on renewables and EEAP

• Cohesion funds are a potentially very important element for funding investments

in bioenergy CHP. Other European level funds and financing instruments also

play a role.

• European level co-ordination around the bioenergy supply chain would reduce

the perceived risk in the sector improving the economics and the confidence of

new and existing investors.

Page 21: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

21

These factors are preconditions for growth of bioenergy CHP. They will enable higher

deployment of efficient renewable energy through several mechanisms:

• An attractive business case for the investor: this factor is fundamental and

underpins any plans for promotion of bioenergy CHP.

• A public body with responsibility for implementing energy efficiency/CO2

reduction improvements at the local level and hence motivated to advance new

low carbon technologies.

• Linked market actors who are in a position to cover the fuel supply chain which

remains a challenge for significant take-up of bioenergy related solutions.

• Regional policy or city strategies which support the development of the bio-fuel

sector, agricultural development, forestry development, wasted disposal or

processing initiatives can all be usefully linked to green CHP.

• Public-private partnerships to promote good examples consistent with the city

strategy.

To sum up, political decision makers from European to local level can considerably

contribute to an efficient and renewable supply by shaping the framework conditions

for green CHP.

Page 22: Green Combined Heat and Power (CHP)ec.europa.eu/energy/intelligent/projects/sites/iee...For this reason, the programme “Intelligent Energy Europe” funded the project CHP goes Green

22

Project Coordinator

Elisabeth Dubbers, Berliner Energieagentur GmbH, Französische Straße 23, 10117 Berlin

(Germany)

Partners

Berliner Energieagentur GmbH (Germany)

Cogen Europe (Belgium)

City of Frankfurt (Germany)

Ekodoma (Latvia)

Rhonalpénergie (France)

Arene Ile-de France (France)

Grazer Energieagentur (Austria)

Energy Efficiency Center (Czech Republic)

Climate Protection Agency Hannover (Germany)

Disclaimer

The sole responsibility for the content of this webpage lies with the authors. It does not

necessarily reflect the opinion of the European Union. Neither the EACI nor the European

Commission are responsible for any use that may be made of the information contained therein.