ground motion

23

Upload: analu

Post on 08-Jan-2016

34 views

Category:

Documents


0 download

DESCRIPTION

F.O.N.T. Ground Motion. From Ground Motion studies by A.Seryi et al. (SLAC). ‘Fast’ motion (> few Hz) dominated by cultural noise Concern for structures with tolerances at nm level (Final Quads). G.R.White: 1.6.2001. F.O.N.T. Luminosity Loss at IP. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ground Motion
Page 2: Ground Motion
Page 3: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

From Ground Motion studies by A.Seryi et al. (SLAC)

• ‘Fast’ motion (> few Hz) dominated by cultural noise

• Concern for structures with tolerances at nm level (Final Quads)

Ground Motion

Page 4: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Luminosity Loss at IP

• Relative offsets in final Quads due to fast ground motion leads to beam offsets of several y (2.7 nm for NLC-H 490 GeV).

•Correct using beam-based feedback system or by active mechanical stabilization of Quads or both.

Page 5: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

LC Bunch Structure

NLC-H 500 NLC-H 500 GeVGeV

TESLA 500 TESLA 500 GeVGeV

CLIC CLIC

500 GeV500 GeVParticles/Bunch x Particles/Bunch x

10101010 0.750.75 2.02.0 0.40.4

Bunches/trainBunches/train 190190 28202820 154154

Bunch Sep (ns)Bunch Sep (ns) 1.41.4 337337 0.70.7xx//y y (nm)(nm) 245 / 2.7245 / 2.7 553 / 5553 / 5 202 / 2.5202 / 2.5

•Feedback system demonstrated for NLC-H 500 GeV

•Can be modified for use at TESLA and CLIC

Page 6: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Beam-Beam Interaction

•Beam-beam EM interactions at IP provide detectable signal

•Beam-beam interactions modelled with GUINEA-PIG

•Shown is the kick angle and percentage luminosity loss for different vertical beam offsets

0 10 20 30 400

20

40

60

80

100

Vertical Beam Offset ( sy )

% L

um

ino

sity

Lo

ss

0 10 20 30 400

50

100

150

200

250

300

Vertical Beam Offset ( sy )

Be

am-B

eam

Kic

k (

mra

d )

Page 7: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Fast Feedback Operation

Kicker Gain

Bunch Charge

•Measure deflected bunches with BPM and kick other beam to eliminate vertical offsets at IP

•Feedback loop assesses intra-bunch performance and maintains correction signal to the kicker

•Minimise distance of components from IP to reduce latency

Page 8: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Feedback Components

Stripline BPMStripline BPM

Distance to IPDistance to IP

Stripline radiusStripline radius

Stripline WidthStripline Width

Stripline lengthStripline length

Stripline ImpedanceStripline Impedance

Roundtrip timeRoundtrip time

4.3 m4.3 m

1 cm1 cm

4.4 mm4.4 mm

10 cm10 cm

50 50 0.7 ns0.7 ns

Stripline KickerStripline Kicker

Distance to IPDistance to IP

Stripline radiusStripline radius

Stripline lengthStripline length

Stripline ImpedanceStripline Impedance

Roundtrip timeRoundtrip time

Azimuthal coverageAzimuthal coverage

Drive voltage requiredDrive voltage required

Drive Power 100nm correctionDrive Power 100nm correction

4.3 m4.3 m

6 mm6 mm

75 cm75 cm

50 50 5 ns5 ns

120 degrees120 degrees

250 mV/nm250 mV/nm

12.5 W12.5 W

•BPM response peak near 714 MHz bunch spacing frequency

•Kicker rise-time represents slowest component

•System Design by Steve Smith (SLAC)

Page 9: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Feedback Simulation

•Simulations performed using Simulink in Matlab

[[0 SIGMA_Y]; [267e-9 0]]

Y Posi tionBeam 2

[[0 Y_OFFSET ]; [267e-9 0]]

Y Posi tionBeam 1

T erm inator

In1

In2

Store Beam Info

Round-tripDelay

In1

Kicker Angle

Kicker Monitor

Kicker

IP angle Def lection at BPM

IP-to-BPMDynamics

IP scope

Beam 1

Beam 2Out1

IPDynamics

1

Gain1

1Gain

[[0 bunch_charge]; [250e-9 0]]

Bunch ChargeBeam 2

[[0 bunch_charge]; [ 250e-9 0]]

Bunch ChargeBeam 1

Q

Y Out1

Beam2

Q

Y Out1

Beam1In1 Out1

Beam Ji tter

BeamQ

Y

BeamParameters

BPMCableDelay

Kick angleKick at IP

BPM-to-IPDynamics

BPMScope

Beam In Position Out

BPM

Page 10: Ground Motion

[[0 SIGMA_Y]; [267e-9 0]]

Y Posi tionBeam 2

[[0 Y_OFFSET ]; [267e-9 0]]

Y Posi tionBeam 1

T erm inator

In1

In2

Store Beam Info

Round-tripDelay

In1

Kicker Angle

Kicker Monitor

Kicker

IP angle Def lection at BPM

IP-to-BPMDynamics

IP scope

Beam 1

Beam 2Out1

IPDynamics

1

Gain1

1Gain

[[0 bunch_charge]; [250e-9 0]]

Bunch ChargeBeam 2

[[0 bunch_charge]; [ 250e-9 0]]

Bunch ChargeBeam 1

Q

Y Out1

Beam2

Q

Y Out1

Beam1In1 Out1

Beam Ji tter

BeamQ

Y

BeamParameters

BPMCableDelay

Kick angleKick at IP

BPM-to-IPDynamics

BPMScope

Beam In Position Out

BPM

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

BPM Processor3 ns rise- time

Page 11: Ground Motion

[[0 SIGMA_Y]; [267e-9 0]]

Y Posi tionBeam 2

[[0 Y_OFFSET ]; [267e-9 0]]

Y Posi tionBeam 1

T erm inator

In1

In2

Store Beam Info

Round-tripDelay

In1

Kicker Angle

Kicker Monitor

Kicker

IP angle Def lection at BPM

IP-to-BPMDynamics

IP scope

Beam 1

Beam 2Out1

IPDynamics

1

Gain1

1Gain

[[0 bunch_charge]; [250e-9 0]]

Bunch ChargeBeam 2

[[0 bunch_charge]; [ 250e-9 0]]

Bunch ChargeBeam 1

Q

Y Out1

Beam2

Q

Y Out1

Beam1In1 Out1

Beam Ji tter

BeamQ

Y

BeamParameters

BPMCableDelay

Kick angleKick at IP

BPM-to-IPDynamics

BPMScope

Beam In Position Out

BPM

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Feedback Performance

Latency = 37.3 nsLatency = 37.3 ns

Page 12: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Feedback Performance

[[0 SIGMA_Y]; [267e-9 0]]

Y Posi tionBeam 2

[[0 Y_OFFSET ]; [267e-9 0]]

Y Posi tionBeam 1

Terminator

In1

In2

Store Beam Info

Round-tripDelay

In1

Kicker Angle

Kicker Monitor

Kicker

IP angle Def lection at BPM

IP-to-BPMDynamics

IP scope

Beam 1

Beam 2Out1

IPDynamics

1

Gain1

1Gain

[[0 bunch_charge]; [250e-9 0]]

Bunch ChargeBeam 2

[[0 bunch_charge]; [ 250e-9 0]]

Bunch ChargeBeam 1

Q

Y Out1

Beam2

Q

Y Out1

Beam1In1 Out1

Beam Ji tter

BeamQ

Y

BeamParameters

BPMCableDelay

Kick angleKick at IP

BPM-to-IPDynamics

BPMScope

Beam In Position Out

BPM

Page 13: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Kicker Gain Optimisation

[[0 SIGMA_Y]; [267e-9 0]]

Y Posi tionBeam 2

[[0 Y_OFFSET ]; [267e-9 0]]

Y Posi tionBeam 1

Terminator

In1

In2

Store Beam Info

Round-tripDelay

In1

Kicker Angle

Kicker Monitor

Kicker

IP angle Def lection at BPM

IP-to-BPMDynamics

IP scope

Beam 1

Beam 2Out1

IPDynamics

1

Gain1

1Gain

[[0 bunch_charge]; [250e-9 0]]

Bunch ChargeBeam 2

[[0 bunch_charge]; [ 250e-9 0]]

Bunch ChargeBeam 1

Q

Y Out1

Beam2

Q

Y Out1

Beam1In1 Out1

Beam Ji tter

BeamQ

Y

BeamParameters

BPMCableDelay

Kick angleKick at IP

BPM-to-IPDynamics

BPMScope

Beam In Position Out

BPM

Luminosity loss as function of Luminosity loss as function of gain input and beam offsetgain input and beam offset

Page 14: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Luminosity Performance

•Lower gains gives better performance at smaller offsets, higher gains give better performance at higher offsets

•Vary gain dependent on observed beam conditions

0 5 10 15 20 25 30 35 400

10

20

30

40

50

60

70

80

90

100

Vertical Beam Offset ( sy )

% L

um

ino

sit

y L

os

s Feedback OffGain = 4.0 ́10 -6

Gain = 5.0 ́10 -6

Gain = 6.4 ́10 -6

Page 15: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Bunch Jitter Effects

•Introduction of random bunch-bunch jitter causes feedback system to exacerbate luminosity loss at larger gains

•Shown is the effect of randomly offsetting the bunches in a train about a zero offset, assuming a gaussian noise distribution

1e-7 4e-6 8e-6 1.2e-5 1.6e-5 2.0e-50

10

20

30

40

50

60

70

Kicker Gain

Pe

rce

nta

ge

Lu

min

os

ity

Lo

ss

No Beam Offset

Beam Jitter RMS = 0.1 sy

Page 16: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Effect of Angle Offset

0 1 2 3 40

10

20

30

40

50

60

70

Vertical Beam Angle Offset ( sy'

)

Pe

rcen

tag

e L

um

ino

sity

Lo

ss

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

Vertical Beam Offset ( sy'

)

Be

am-B

eam

Kic

k ( m

ra

d )

•Beams get small additional kick if incoming with non-compensated crossing angle, also additional lumi loss

•Effect not addressed with this feedback system- if significant angle offset present, additional feedback system further up-stream of IP required

y’y’= 27 = 27 radrad y’y’= 27 = 27 radrad

Page 18: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

IR Pair Backgrounds

•e+e- Pairs and ’s produced in Beam-Beam field at IP

•Interactions with material in the IR produces secondary e+e- ,, and neutron radiation

•Study background encountered in Vertex and tracking detectors with and without FB system and background in FB system itself

•Use GEANT3 for EM radiation and Fluka99 for neutrons

Page 19: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

EM Backgrounds at BPM

•Absorption of secondary emission in BPM striplines source of noise in Feedback system

•System sensitive at level of about 3 pm per electron knocked off striplines

•Hence, significant noise introduced if imbalanced intercepted spray at the level of 105

particles per bunch exists

•GEANT simulations suggest this level of imbalance does not exist at the BPM location z=4.3m for secondary spray originating from pair background

Page 20: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Detector EM Backgrounds

•Insertion of feedback system at z=4.3 m has no impact on secondary detector backgrounds arising from pair background

•Past studies suggest backgrounds adversely effected only when feedback system installed forward of z=3 m

Page 21: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Detector n Backgrounds

Default IR: 6.6 Default IR: 6.6 ± 1.5 × 10± 1.5 × 1099

IR with FB: 8.6 ± 2.6 × 10IR with FB: 8.6 ± 2.6 × 1099

(neutrons/cm(neutrons/cm22/1 MeV n equiv./yr)/1 MeV n equiv./yr)

•No significant increase in neutron flux in vertex detector area seen arising from pair background

•More statistics being generated

VTD Layer

Hit

s/cm

2 /1

MeV

n e

qu

iv./y

r

Page 22: Ground Motion
Page 23: Ground Motion

G.R.White: 1.6.2001G.R.White: 1.6.2001

F.O.N.F.O.N.T.T.

Summary

•Ground motion moving final Quads major source of luminosity loss at a future linear collider

•Fast IP feedback system simulations shows considerable luminosity recovery even beyond linear kick region

•Backgrounds do not seem to be an issue for detector components or the FB system itself in suggested BPM and kicker installation positions

•Hardware tests commencing at SLAC (Simon Jolly)

•Simulations to be extended to include TESLA and CLIC