guide rc project nagy-gyorgy t 2013-04-09

Upload: bogdan-binga

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    1/69

    REINFORCEDCONCRETE DESIGNGUIDE

    1ST PART

    Preparedby

    NAGYGYRGY Tams

    Phd,Lecturer

    [email protected]

    FLORU Codru

    Phd,AssistantLecturer

    [email protected]

    2013

    V2

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    2/69

    REFERENCES

    - - : , ro ec area s ruc ur or e e on, ar ea - : egu genera e pen ru c r

    (+AC:2008)

    SR EN 1992-1-1/NB: 2008, Proiectarea structurilor de beton, Partea 1-1: Reguli generale pentru cldiri.Anexa Naional

    EN 1992-1-1: 2004, Design of concrete structures - Part 1-1: General rules and rules for buildings

    SR EN 1991-1-1:2004, Aciuni asupra structurilor. Partea 1-1: Aciuni generale (+ NA:2006)

    P 100-1/2006, Cod de proiectare seismic - Partea I - Prevederi de proiectare pentru cldiri

    Cadar I., Clipii T., Tudor A., Beton Armat (ed. II), Ed. Orizonturi Universitare, 2004, ISBN 973-638-176-5

    Kiss Z., One T., Proiectarea structurilor de beton armat dup SR EN 1992-1, Ed. Abel, 2008, ISBN973114070-0

    Mosley W.H., Burgey J.H., Hulse R., Reinforced Concrete Design to Eurocode 2, Sixth Edition, 2007, ISBN:

    Nilson A., Darwin D., Dolan Ch., Design of Concrete Structures (13th Ed.), McGraw-Hill Co, 2004, ISBN 0-07-

    248305-9

    Newman J., Choo B. S., Advanced Concrete Technology SET, Ed. Elsevier Science, 2003, ISBN-13:

    9780750656863

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    3/69

    I.DESIGNOFARCCASTINPLACESLAB

    1. ELEMENTS OF A FLOOR

    - ,

    - SLAB AND BEAMS (DISPOSED IN ONE OR TWO DIRECTIONS, WHICH SUPPORTS THESLAB)

    - - , . .- FINISHING, FLOORS, ISOLATIONS (ACOUSTIC, HYDRO-), INSULATIONS

    GIRDERS MAIN BEAMS BEING ALSO IN THE SAME TIME BEAMS OF THE FRAME

    SECONDARY BEAMS DISPOSED PERPENDICULAR TO THE GIRDERS, BEINGEQUIDISTANT (AS IS MUCH AS IT IS POSSIBLE), THE DISTANCE

    ,

    OF A SLAB PANEL RESPECTS THE CONDITION:

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    4/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    The cast-in-place floor is a space structure, because, through concrete and

    s ee re n orcemen a n e ween e componen e emen s s crea e .

    The computation of a space structure is quite difficult, therefore, in design is

    accep e e ca cu a on o eac s ruc ura e emen separa e y, a ng n o

    account the load transmission modes, in vertical direction, toward the supports.

    n s way, cou e a m e a e s a s suppor e y e secon ary

    beams (SB), the secondary beams are supported by the girders (G) and columns

    (C) and the girders together with columns are forming the frame, which transmits

    .

    S SB frame = G + C F terrain

    The route of the loads specifies the order in which the design of the structural element must be done, i.e.design of the slab, then secondary beams, girders, etc.

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    5/69

    I.DESIGNOFARCCASTINPLACESLAB

    1. ELEMENTS OF A FLOOR

    GirdersSecondary beams

    Slab panel

    Columns

    Detail A(o

    pening)

    (bay)

    Transversal sections

    girder secondary beam

    Lsecondary

    beam

    girder

    Detail A

    n x B

    L

    Girdersecondary

    beam

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    6/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    7/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    8/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    9/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    10/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    11/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    12/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    13/69

    Formwork plane

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    14/69

    I.DESIGNOFARCCASTINPLACESLAB

    1. ELEMENTS OF A FLOOR

    - PRE-DIMENSIONING: choosing the structural elements dimensionsaccording to the recommendations, in such a way to correspond also to other

    criteria that the stren th

    - COMPUTATION OF THE LOADS: determination of the design loads,

    knowing the structural elements dimensions, the composition of non-structuralelements, destination and location of the construction;

    - ESTABLISHING THE STATIC SCHEME FOR DESIGN based on the design

    spans o e e emen s;

    - STATIC DESIGN: determining the most unfavourable effects of design loads

    .

    programs or manually, with approximate methods;

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    15/69

    I.DESIGNOFARCCASTINPLACESLAB

    1. ELEMENTS OF A FLOOR

    - THE PROPER DESIGN, through following steps:

    - finalization of the elements cross section based on the results

    from the static calculations and on the used material characteristics;

    - computation of the reinforcement area and setting their layout;

    - execution drawing, which includes the framework plane and

    reinforcement layout, reinforcement details and material consumptions

    vo ume o e concre e an re n orcemen .

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    16/69

    I.DESIGNOFARCCASTINPLACESLAB

    . -

    SLAB

    IF YES SLAB REINFORCED IN A SINGLE DIRECTION

    (Conf. P100-1/2006)

    Section aa

    hs

    hs = M 10 mm

    l = interaxis

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    17/69

    I.DESIGNOFARCCASTINPLACESLAB

    . -

    BEAMS

    DIMENSION RECOMMENDATIONS

    L 1215 irders

    HEIGHT

    Minimum,hminL/20 secondary beams

    Optimum, hopt

    L/(1215) secondary beams

    =

    =

    .

    min

    h, b = M x 50 mm

    L = interaxis

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    18/69

    I.DESIGNOFARCCASTINPLACESLAB

    . -

    COLUMNS (is chosen)

    bCOL = (bG + 5cm) 350 mm

    hCOL 1,2 bCOL

    h, b = M x 50 mm

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    19/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    ACTION CHARACTERISTICS EXAMPLES

    PERMANENTVariationintimeisnegligible

    Selfweight:structuralelements,finishing,etc.

    VARIABLEVariationintimeis

    important

    buildings(liveloads)

    Windnow

    ACCIDENTALHighintensity,reducedtimeofaction

    Earthquake

    Explosion

    Designvalueofaction

    Partialsafetycoefficient

    Characteristicvalueofaction

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    20/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    GENERALLY, THESE LOADS CAN BE CONSIDERED UNIFORMLY

    DISTRIBUTED ON THE SLAB SURFACE AND THERE ARE EXPRESSED IN

    kN/m2.

    FOR THE CHARACTERISTIC VALUES k

    DESIGN VALUES d

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    21/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    PERMANENT DEAD CHARACTERISTIC LOADS :

    SELFWEIGHTP ,- RC SLAB

    , - PLASTER- FLOOR

    ,

    - Asphalt

    - Mosaic

    , 2

    , 2

    - Pavement

    - Cement concrete lining

    ,

    , 2

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    22/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    MATERIALS

    [kN/m3

    ]CONCRETES

    R.C. 25.0

    FINISHINGPLASTERS

    emen mor ar .

    Cementlimemortar 19.0

    Limeor lastermortar 17.0

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    23/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    VARIABLE LIVE CHARACTERISTIC LOADS:

    IMPOSEDLOADSQ ,

    - CATEGORIES OF USE ,- PARTITION WALLS ,(according to SR EN 1991-1-1:2004)

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    24/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    PERMANENT DESIGN LOADS

    VARIABLE DESIGN LOADS

    PARTIALSAFETYFACTORFORACTIONS

    F

    PERMANENT LOADS g =1.35

    VARIABLE LOADS q =1.50

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    25/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    LOAD COMBINATION

    - In the design, actions are combined to produce the most unfavorable effects

    on the structure

    - The combinations are specific for the limit state which is used in design

    - Dimensioning and verification of the concrete sections and the reinforcements

    will be done in Ultimate Limit State (ULS)

    - General form in conf. of CR 0, ch. 4.3 (!):

    ,1 0, ,

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    26/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    ESTABLISHING THE STATIC SCHEME

    - In order to find out the stresses (bending and shear), the slab reinforced in onedirection can be re laced with a 1.0 m wide slab considered in the short s an of theslab panels, this means that on the discharge direction of loads.

    From the static point of view, this strip is equivalent with a continues beam.

    Supports of the slab are the secondary beams, while the design spans (lc ) of the

    secondary beams)

    interaxisspan:l

    designspan,usedinstaticdesign: lc = l0

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    27/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    ESTABLISHING THE STATIC SCHEME

    -The real slab is replaced with a continues beam having spans oflc and linear

    distributed loads of pd x 1 m [kN/m]

    Envelope curvesgd,gs/qd,gs =0,5

    gd,gs/qd,gs =5

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    28/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    ESTABLISHING THE STATIC SCHEME

    -The real slab is replaced with a continues beam having spans oflc and linear

    distributed loads of pd x 1 m [kN/m]

    envelopecurves

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    29/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    CHARACTERISTIC AND DESIGN STRENGTH

    CONCRETE

    ua y o concre e s e ne y e s reng c ass, w c s e c arac er s c

    compressive strength on cylinders

    Concrete class is ,

    REINFORCEMENT Design strength of reinforcement

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    30/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    CHARACTERISTIC AND DESIGN STRENGTH

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    31/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    FINALIZING THE THICKNESS OF THE SLAB

    Design section of the slab

    hs

    s s

    Reinforcement oftheslab popt (%)forreinforcingwith

    fyk =400500N/mm2 fyk =300400N/mm

    2

    , , , ,

    In2directions 0,20 0,50 0,25 0,50

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    32/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    FINALIZING THE THICKNESS OF THE SLAB

    Checking of the chosen thickness (necessary)

    MEd the maximum bending moment from the static design

    = 1000 mm

    or = f() table , where 1 0.5, in function of popt

    100

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    33/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    FINALIZING THE THICKNESS OF THE SLAB

    Computation of the necessary slab thickness

    where,

    /2

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    34/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    FINALIZING THE THICKNESS OF THE SLAB

    Computation of the necessary slab thickness

    max , ; , ;10

    on

    ,

    0.1 2 !!!!!!!!! in function of the Exposure Classand Structural class (Ch. 4.4 ) 5 , 10 25

    hs = M x 10 mm

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    35/69

    I.DESIGNOFARCCASTINPLACESLAB

    5. DIMENSIONING OF THE SLAB

    If

    OK

    ,

    ,

    If

    RE-CALCULATION OF THE LOADS MOMENTS FINALIZING THE SLAB THICKNESS, ,

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    36/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    CALCULATION OF THE REINFORCEMENT AREA

    Effective depth:

    2

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    37/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    DETAILING RULES principal reinforcements

    (SR EN 1992-1-1/ Ch. 9)

    , 0.26 0.0013

    , 0.04

    . . . 80 straight (bound) bars 0.1 2 6

    welded bars (welded fabrics) 5

    ngyt1

    Slide 37

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    38/69

    Slide 37

    ngyt1 in conformity with the N.A.tamas.nagygyorgy; 02.03.2011

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    39/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    DETAILING RULES principal reinforcements

    (SR EN 1992-1-1/ Ch. 9)

    - At the edge of the slab

    , 25%,- Perpendicular to the girder , 6/. lo

    gsgslo /4

    GP gsgs

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    40/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    DETAILING RULES secondary reinforcements

    (SR EN 1992-1-1/ Ch. 9)

    s

    2.5 300 .. ngyt2

    Slide 39

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    41/69

    Slide 39

    ngyt2 in conformity with the N.A.tamas.nagygyorgy; 02.03.2011

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    42/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    DETAILING RULES welded wire mesh (fabric) reinforcements

    (SR EN 1992-1-1/ Ch. 9)

    - At the edge of the slab

    , 50%,- Perpendicular to the girder

    ,, 5/150logsgs lo /4GP gsgs

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    43/69

    I DESIGN OF A RC CAST IN PLACE SLAB

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    44/69

    I.DESIGNOFARCCASTINPLACESLAB

    4.52cm2 3.50cm2

    .SLAB LAYOUT reinforcement with inclined bars

    5.58cm2 3.50cm2

    I DESIGN OF A RC CAST IN PLACE SLAB

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    45/69

    I.DESIGNOFARCCASTINPLACESLAB

    .SLAB LAYOUT reinforcement with straight bars

    4.52cm2 3.50cm2

    5.58cm2 3.50cm2

    I DESIGN OF A RC CAST IN PLACE SLAB

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    46/69

    I.DESIGNOFARCCASTINPLACESLAB

    .SLAB LAYOUT reinforcement with welded wire mesh (welded fabric)

    I DESIGN OF A RC CAST IN PLACE SLAB

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    47/69

    I.DESIGNOFARCCASTINPLACESLAB

    .

    CHECKINGTHESLABFORSHEARFORCES

    Generally, in the case of usual slabs with low thickness, the reinforcement isresulting from the design for bending and reinforcement for shear force is not

    .

    To verify this:

    ,

    , ,100 1/3 0.035 3/2 1/2 , 0.18/

    1 200 2.00

    0.02

    II DESIGN OF THE SECONDARY BEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    48/69

    II.DESIGNOFTHESECONDARYBEAM

    1. COMPUTATION OF LOADS

    . .

    s.b

    losbbG bG

    Gs.b

    G

    B

    bsb

    II DESIGN OF THE SECONDARY BEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    49/69

    II.DESIGNOFTHESECONDARYBEAM

    1. COMPUTATION OF LOADS

    s.b.

    s.b

    bsblosbbG bG

    Gs.b

    G

    P , , B ITISTHETOTAL

    LOAD!!!

    Q , ,

    , , ,

    II. DESIGN OF THE SECONDARY BEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    50/69

    II.DESIGNOFTHESECONDARYBEAM

    2. STATIC DESIGN OF THE SECONDARY BEAM

    The secondary beam will be computed as a continues beam, with design

    s ans the su orts bein the irders.,

    11

    II. DESIGN OF THE SECONDARY BEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    51/69

    II.DESIGNOFTHESECONDARYBEAM

    3. DIMENSIONING OF THE SECONDARY BEAM

    As1 Step2 As1 Step2

    A = the minimum between the reinforcements obtained

    from the adjacent spans inStep 1 (here from M1 and M2)

    As1 Step1 As1 Step1

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    52/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    Checking the chosen height (necessary)

    MEd - maximum bending moment from the static design

    bsb - from pre-dimensioningor = f() table, where 1 0.5

    , in function of popt 1.2 1.8

    100

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    53/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    Computation of the necessary height

    ,

    long /2 stirrcnom

    ds

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    54/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    Computation of the necessary height

    max , ; , ;10

    on

    !!!!!!!!!!!!!!!!!! in function of the Exposure Class

    ,

    2025

    durability

    and Structural class (Ch. 4.4 )

    , 10 25

    hsb = M x 50 mm and then verification hsb/bsb =1,5 3,0 ???

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    55/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    If

    OK, ,If

    RE-CALCULATION OF THE LOADS

    MOMENTS

    FINALIZING THE HEIGHT OF THE SECONDARY BEAM, ,

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    56/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    simple reinforced T section

    e e ec ve w o e ange eff , epen s on e we an ange

    dimensions, the type of loading, the span, the support conditions and the

    transverse reinforcement.

    The effective width of the flange (beff ) should be based on the distance 0between points of zero moment.

    (B) (B) (B)

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    57/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    simple reinforced T section

    beff

    , , , , 0 , 0,

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    58/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    simple reinforced T section

    Table method

    /

    /

    If > lim re-dimensioning of the section

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    59/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    (SR EN 1992-1-1/ Ch. 9 and P100/1-2006, Ch.5)

    - or non-se sm c zones, . .

    - for seismic zones (b = bw), 0.50 0.0013

    - according to P100/1-2006, .

    14

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    60/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    (SR EN 1992-1-1/ Ch. 9 and P100/1-2006, Ch.5)

    - At the edge of the beam

    , 15%,- Anchorage of bottom reinforcement at end support- Anchorage at intermediate supports

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    61/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    >0.3lo >0.3lo >0.3lo

    ~10cm ~10cm ~10cm

    l10d

    lbdmin2

    28secondary

    min2

    lbd min2

    min2

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    62/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    (ch. 8.4.4) 12345, ,

    ,

    /4/

    4

    for anchorages in compression, . ,, 0.6, ;10;100

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    63/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    double reinforced rectangular cross section

    s1 unknown

    As2

    (reinforcementfromthespan)

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    64/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    double reinforced rectangular cross section

    ITISTHE MINIMUMIs calculated

    - If > re-dimensionin of the section

    2

    EFFECTIVEAREA !!!

    - If a < 0 1

    - If 0 < < , from As1 = Aa + As2

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    65/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    Computation the shear resistance of concrete

    1/3 3/2 1/2 , , .

    , . 1 2.00

    0.02

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    66/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    If minimum shear reinforcement will be provide,

    , 0.08

    , 0.751 300

    For providing of double-arm stirrups 400

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    67/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    If is imposed = 45o (crack),

    = 90o (stirrups)

    where z0,9d

    choose Asw = n xsw snec

    and then must be verified if

    II.DESIGNOFTHESECONDARYBEAM

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    68/69

    3. DIMENSIONING OF THE SECONDARY BEAM

    DETAILING RULES

    To have a ductile failure , ,

    . 1Where 1 0.6 1 250

    III.DESIGNOFSLABDEFLECTION

  • 7/30/2019 Guide RC Project Nagy-Gyorgy T 2013-04-09

    69/69

    1. DESIGN OF SLAB DEFLECTIONS Axis VM

    Permanent loads applied simultaneously

    Variable loads applied in chess and/or strips

    Design combination in SLS in conformity of CR 0, ch. 4.4:

    1,1 ,1 2, ,