hawt

Upload: sagar-more

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 HAWT

    1/42

    DESIGN AND ANALYSIS OF

    HORIZONTAL AXIS WIND TURBINE

    GUIDED BY:Prof. Dr. B. S. GAWALI

    SEMINAR BY:SAGAR S. MOREROLL NO.-13

  • 8/10/2019 HAWT

    2/42

    INTRODUCTION

    Wind turbines are reneab!e ener"# de$i%es t&at %on$ert indener"# to e!e%tri%it# $ia 'e%&ani%a! ener"#

    (o t#)es na'e!# &ori*onta! a+is ,AW( and $erti%a! a+is

    ,/AW( ind turbines.

    /arious desi"n 'et&ods $i*. Mo'entu' (&eor# and B!ade

    E!e'ent (&eor#

    0D %an be used as ana!#sis too!

  • 8/10/2019 HAWT

    3/42

    WHY HORZONTAL AXIS WIND

    TURBINE??

    1. (&e rotor so!idit# of an AW( ,and &en%e tota! b!ade 'ass re!ati$e

    to se)t area is !oer &en t&e rotor a+is is &ori*onta! ,at a "i$en

    desi"n ti) s)eed ratio. (&is tends to 2ee) %osts !oer on a )er 2Wbasis.

    . (&e a$era"e &ei"&t of t&e rotor se)t area %an be &i"&er abo$e t&e

    "round. (&is tends to in%rease )rodu%ti$it# on a )er 2W basis.

  • 8/10/2019 HAWT

    4/42

    PRESENT THEORIES ANDPRACTICES:

    Blade Element Theory

  • 8/10/2019 HAWT

    5/42

    OBJECTIVES

    (o desi"n b!ade of &ori*onta! a+is ind turbine

    ,AW(.

    Manufa%ture WA( b!ade

    Insta!!ation of e+)eri'enta! setu) and %arr# out

    e+)eri'entation.

    /a!idation of 0D resu!ts usin" e+)eri'entation

  • 8/10/2019 HAWT

    6/42

    PROPOSED WORK

    Literature sur$e#

    (&eoreti%a! stud# of &ori*onta! a+is ind turbine b!ade desi"n

    'et&ods.

    B!ade desi"n %a!%u!ations.

    Manufa%turin" of AW(

    E+)eri'enta! stud# of AW(.

    0D si'u!ation of AW(.

    0&e%2 $a!idit# of 0D si'u!ation resu!t it& e+)eri'enta!resu!ts.

    Re)ort ritin".

  • 8/10/2019 HAWT

    7/42

    FORCES ON AIRFOIL

    The resultant aerodynamic force acts at theCenter of Pressure c!"!#$ a%out &hich the

    moment is 'ero!

  • 8/10/2019 HAWT

    8/42

    AIRFOIL NOMENCLATURE

    (ean cam%er line: locus of points halfway between uppersurface and lower surface

    Chord line: line joining leading edge & trailing edge

    Chord: distance between leading edge & trailing edgeThic)ness: distance between upper & lower surface measuredperpendicular to chord

    Cam%er: maximum distance between mean camber line andchord

    At leading edge circular shape with radius 0.02c

  • 8/10/2019 HAWT

    9/42

    4 dii! "#$i#" %i$&'i(:

    1 st digit4 'a+ %a'ber in 155 t& of %&ord

    2 nd digit4 !o%ation of 'a+ %a'ber a!on" t&e %&ord fro' !eadin" ed"e in 15

    t& of %&ord

    Last two digits: 'a+ t&i%2ness in 155 t& of %&ord

    E". Airfoi! 6617 'eans8

    Ma+i'u' %a'ber is 5.56%8 at distan%e 5.6% fro' !eadin" ed"e and

    'a+i'u' t&i%2ness is 5.17%

  • 8/10/2019 HAWT

    10/42

    O)#*di+#)"i')%( M'+#)!,+ T-#'$. %)d !-#

    B#!/ Li+i!

    In order to %a!%u!ate t&e 'a+i'u' t&eoreti%a! effi%ien%# of a t&in rotor one i'a"ines it to be

    re)!a%ed b# a dis% t&at it&dras ener"# fro' t&e f!uid )assin" t&rou"& it. At a %ertain

    distan%e be&ind t&is dis% t&e f!uid t&at &as )assed t&rou"& f!os it& a redu%ed $e!o%it#.

    Fig. Actuator disc model of a wind turbine; ! mean air "elocity; #! 2! $! and %indicate locations

  • 8/10/2019 HAWT

    11/42

    Fig. An energy extracting actuator disc and streamtube

    A"",+0!i')":o'o"enous8 in%o')ressib!e8 stead# state f!uid f!o9

    . No fri%tiona! dra"9. An infinite nu'ber of b!ades9. :nifor' t&rust o$er t&e dis% or rotor area9. A non;rotatin" a2e9. (&e stati% )ressure far u)strea' and far donstrea' of t&e rotor is e

  • 8/10/2019 HAWT

    12/42

    Applying the conser"ation of linear momentum to the control "olume enclosing the whole

    system! one can *nd the net force on the contents of the control "olume. thrust is e+ual and opposite to the rate of change of momentum of the air stream

    ,ernoulli function can be used in the two control "olumes on either side ofthe actuator disc. -n the stream tube upstream of the disc:

    #

    2

    $

  • 8/10/2019 HAWT

    13/42

    -n the stream tube downstream of the disc

    it is assumed that the far upstream and far downstream pressures are e+ual'p#( p%)and that the "elocity across the disc remains the same '2( $).he thrust can also be expressed as the net sum of the forces on each side ofthe actuator disc:

    -f one sol"es for 'p2 p$) using /+uations '$) and '%) and substitutes thatinto/+uation ')! one obtains

    /+uating the thrust "alues from /+uations '2) and '1) and recogniing thatthe mass 3owrate is also ! one obtains:

    hus! the wind "elocity at the rotor plane! using this simple model! is thea"erage of the

    %

    1

    4

  • 8/10/2019 HAWT

    14/42

    -f one de*nes the axial induction factor! a! as the fractional decrease in wind "elocity betweenthe free stream and the rotor plane! then

    +uantity #a is often referred to as the induced "elocity at therotor

    he power out! 5! is e+ual to the thrust times the "elocity at the disc

    6ubstituting for 2 and % from /+uations '7) and '#0) gi"es:

    where the control "olume area at the rotor! A2! is replaced by A! the rotor

    area! and the freestream "elocity # is replaced by .

    8

    7

    #0

    ##

    #2

  • 8/10/2019 HAWT

    15/42

    9ind turbine rotor performance is usually characteried by its power coecient!5:

    he maximum 5is determined by ta

  • 8/10/2019 HAWT

    16/42

    -n practice! three e>ects lead to a decrease in the maximum achie"ablepower coecient:rotation of the wa

  • 8/10/2019 HAWT

    17/42

    Id#%( H'$i/')!%( A1i" Wi)d T,$2i)# 3i!- W%#

    R'!%!i')

    In t&e %ase of a rotatin" ind turbine rotor8 t&e f!o be&ind t&e rotor rotates in t&e o))osite

    dire%tion to t&e rotor8 in rea%tion to t&e tor

  • 8/10/2019 HAWT

    18/42

    i". Geo'etr# for rotor ana!#sis9 :8 $e!o%it# of undisturbed air9 a8 indu%tion fa%tor9 r8 radius

    (&e "eneration of rotationa! 2ineti% ener"# in t&e a2e resu!ts in !ess ener"# e+tra%tion b# t&e

    rotor t&an ou!d be e+)e%ted it&out a2e rotation

    If it is assu'ed t&at t&e an"u!ar $e!o%it# i')arted to t&e f!o strea'8 =8 is s'a!! %o')ared to

    t&e an"u!ar $e!o%it#8>8 of t&e ind turbine rotor8 t&en it %an a!so be assu'ed t&at t&e )ressure in

    t&e far a2e is e

  • 8/10/2019 HAWT

    19/42

    6o for a small element the corresponding tor+ue will be

    For the rotating annular element

    @e*ne angular induction factor a:

    V2 =V(1a) so:

  • 8/10/2019 HAWT

    20/42

    B(%d# E(#+#)! M'+#)!,+ T-#'$.

    B!ade e!e'ent 'o'entu' t&eor# is de$e!o)ed b# %o'bination of 'o'entu'

    t&eor# and b!ade e!e'ent t&eor#

    56 M'+#)!,+ T-#'$.

    i. A+ia! or%e

    ii. Rotatin" Annu!ar Strea' tube

    76 B(%d# E(#+#)! T-#'$.

    i. Re!ati$e !o

    ii. B!ade E!e'ents

  • 8/10/2019 HAWT

    21/42

    M'+#)!,+ T-#'$.

    Figure : Axial 6tream tube around a 9ind urbine

    A*ial+orce

  • 8/10/2019 HAWT

    22/42

    Rotatin, Annular Streamtu%e

  • 8/10/2019 HAWT

    23/42

    Figure %: he ,lade /lement odel

  • 8/10/2019 HAWT

    24/42

    Relati-e+lo&

    he a"erage rotational 3ow o"er the blade due to wa

  • 8/10/2019 HAWT

    25/42

    local tip speed ratio Br is defned as:

  • 8/10/2019 HAWT

    26/42

    B!ade E!e'ents

    where dL and dD are the lit and drag orces on the blade elementrespectivel! dL and dD can be o"nd rom the defnition o the lit and dragcoe#cients as follows:

    -f there are $ blades%

    he or+ue on an element! d& is simpl the tangential orce m"ltiplied b theradius.

  • 8/10/2019 HAWT

    27/42

    where C is called the local solidity and is defined as

    Ti0 L'"" C'$$#8!i')

  • 8/10/2019 HAWT

    28/42

    Airfoils commonly used in wind turbine blades are DAA %%xx and DAA

    2$0xx series due to maximum lift coecients! low pitching moment! andminimum drag. For the present study! DAA %%#8 airfoil section has beenused. he aerodynamic characteristic of DAA %%#8 is gi"en below:

    aximum lift coecient Emaxof .!/0/which corresponds to criticalangle of attac< 'stall point) of #

    Gerolift angle of attac< of %

    aximum lift to drag ratio or glide ratio 'E = @)max of 11!11/whichcorresponds to angle of attac< of 1. and lift coecient of #.207 'whereEis the lift coecient and @is the drag coecient)

    he blade was twisted in such a way that angle of attac< remains

    constant at all sections. he angle of attac< of the blade at each sectioncorresponds to a maximum "alue of 'E= @). he angle of attacerent chord lengths werecalculated by multiplying coordinates

    in per cent of chord by chord length.2B36 2A34c9here c is chord length calculatedfrom ,/ method

  • 8/10/2019 HAWT

    33/42

    i". hese coordinates are translated by distance 0.2Ic in xdirection so that origin is at aerodynamic center of airfoil.

    0.2Ic 0 00.2cI 0 0

    JK(J,K . . .. . .. . .0.2Ic 0 0

    ". Final coordinates with calculated twist angle were obtainedby multiplying coordinates with rotation matrix.

    cos'L) sin'L) 0J@K(JK I sin'L) cos'L) 0

    0 0 #9here L is twist angle for that airfoil.

    "i. hen using acro commands in icrosoft excel andgenerati"e shape design feature of catia! blade geometry wasgenerated automatically in atia.

  • 8/10/2019 HAWT

    34/42

    "o&er out"ut Estimation

    M(280 mm(0.28 m

    rh($0 mm( 0.0$ m

    5ower deli"ered by wind '5w);

    -deal the power output of the wind turbine in watts '5i)

    considering ,et limit;

    5i(0.727I5w

    he power output of the wind turbine in watts '5) is gi"en by;

    Assuming p (0.$

    5(0.$I5w

  • 8/10/2019 HAWT

    35/42

    7ra"h of "o&er 8s &ind-elocity

    # 2 $ % 1 4 8 7 #0

    0.000

    20.000

    %0.000

    10.000

    80.000

    #00.000

    #20.000

    #%0.000

    #10.000

    59

    5i

    5

  • 8/10/2019 HAWT

    36/42

    B9ADE

  • 8/10/2019 HAWT

    37/42

    @-/

  • 8/10/2019 HAWT

    38/42

    F@ 6-EA-?D

  • 8/10/2019 HAWT

    39/42

  • 8/10/2019 HAWT

    40/42

    W A !i i! J ( A S O ! N D J F 2 M A M J

  • 8/10/2019 HAWT

    41/42

    W'$ A8!ii!. J,(. A, S#0 O8! N' D#8 J%) F#2 M%$ A0$ M%. J,)#

    Prob!e' Identifi%ation

    Literature sur$e#Sur$e#.

    AW( B!ade desi"n %a!%u!ations

    Manufa%turin" of AW(

    E+)eri'enta! stud# of AW(

    0D si'u!ation of AW(

    /a!idation of 0D si'u!ationresu!t

    Re)ort ritin"

  • 8/10/2019 HAWT

    42/42

    REFERENCES

    1 . . Mane!!8 . G. M%Goan8 HWind ener"# E+)!ainedH8 se%ond edition8o&n Wi!e# and Sons8 511.

    (on# Burton8 Ni%2 en2ins8 Da$id S&ar)e8 Er$in Bossan#i8 HWind Ener"#andboo2H8 se%ond edition.

    3 o2i is&ina'ia8 iros&i (ani"u%&ib8 un Su*u2ia8 iros&i Ibano%8

    (a2as&i a*unoud8 Masato (uru&a'ie8 H(&eoreti%a! and e+)eri'enta!stud# on t&e aerod#na'i% %&ara%teristi%s of a &ori*onta! a+is ind turbineH8 Ener"#8 55

    6 M. eert&ana8 M. Srira'2ris&nan8(. /e!a#ut&a'8 A. Abra&a'8 S. Se!$iRaJan8 . M. Para''asi$a' HAerod#na'i% ana!#sis of a s'a!! &ori*onta!a+is ind turbine usin" 0DH8Journal of wind and engineering, vol. 9,No.2,july 2012,pp 1!2"

    ei-Bin siao8 0&i-en" Bai and Wen-(on" 0&on"KK8 H(&e Perfor'an%e(est of (&ree Different ori*onta! A+is Wind (urbine ,AW( B!adeS&a)es :sin" E+)eri'enta! And Nu'eri%a! Met&odsH 8#nergies 5138 $8C76-753