hvac design guide

Upload: razanmrm

Post on 06-Apr-2018

278 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 HVAC Design Guide

    1/100

    CALIFORNIARESIDENTIALNEWCONSTRUCTION

    HVACDESIGNGUIDE

    CALIFORNIAENERGYCOMMISSION

    DESIGNGUIDELINE

    JULY2005CEC-500-2005-118-A2

    ArnoldSchwarzenegger,Governor

  • 8/2/2019 HVAC Design Guide

    2/100

    PreparedBy:

    Dr.RobertHammonBuildingIndustryInstituteSacramento,CAContractNo.400-00-037

    PreparedFor:

    CaliforniaEnergyCommission

    PublicInterestEnergyResearch(PIER)Program

    MarthaBrook,

    ContractManager

    AnnPeterson,

    PIERBuildingsProgramManager

    NancyJenkins

    OfficeManager

    ENERGYEFFICIENCYRESEARCHOFFICE

    MarthaKrebs,Ph.D.

    DeputyDirector

    ENERGYRESEARCHANDDEVELOPMENTDIVISION

    B.B.Blevins,ExecutiveDirector

    DISCLAIMER

    ThisreportwaspreparedastheresultofworksponsoredbytheCaliforniaEnergyCommission.ItdoesnotnecessarilyrepresenttheviewsoftheEnergyCommission,itsemployeesortheStateofCalifornia.TheEnergyCommission,theStateofCalifornia,itsemployees,contractorsandsubcontractorsmakenowarrant,expressorimplied,andassumenolegalliabilityfortheinformationinthisreport;nordoesanypartyrepresentthattheusesofthisinformationwillnotinfringeuponprivatelyownedrights.ThisreporthasnotbeenapprovedordisapprovedbytheCaliforniaEnergyCommissionnorhastheCaliforniaEnergy

    Commissionpassedupontheaccuracyoradequacyoftheinformationinthisreport.

  • 8/2/2019 HVAC Design Guide

    3/100

    HVACDesignGuideVersion1.0

    Preface

    ThePublicInterestEnergyResearch(PIER)ProgramsupportspublicinterestenergyresearchanddevelopmentthatwillhelpimprovethequalityoflifeinCaliforniabybringingenvironmentallysafe,affordable,andreliableenergyservicesandproductstothemarketplace.

    ThePIERProgram,managedbytheCaliforniaEnergyCommission(Commission),annuallyawardsupto$62milliontoconductthemostpromisingpublicinterestenergyresearchbypartneringwithResearch,Development,andDemonstration(RD&D)organizations,includingindividuals,businesses,utilities,andpublicorprivateresearchinstitutions.

    PIERfundingeffortsarefocusedonthefollowingsixRD&Dprogramareas:

    xBuildingsEnd-UseEnergyEfficiencyxIndustrial/Agricultural/WaterEnd-UseEnergyEfficiency..RenewableEnergyxEnvironmentally-PreferredAdvancedGenerationxEnergy-RelatedEnvironmentalResearchxEnergySystemsIntegration

    WhatfollowsisanattachmenttothefinalreportfortheProfitability,Quality

    ,andRiskReductionthroughEnergyEfficiencyprogram,contractnumber400-00-037,conductedbytheBuildingsIndustryInstitute.ThisprojectcontributestothePIERBuildingEnd-UseEnergyEfficiencyprogram.Thisattachment,CaliforniaResidentialNewConstructionHVACDesignGuide"(Attachment2),providessupplementalinformationtotheprogramfinalreport.

    FormoreinformationonthePIERProgram,pleasevisittheCommission'sWebsiteat:

    http://www.energy.ca.gov/research/index.htmlorcontacttheCommission'sPublicationsUnitat916-654-5200.

    i

  • 8/2/2019 HVAC Design Guide

    4/100

    HVACDesignGuideVersion1.0

    ii

  • 8/2/2019 HVAC Design Guide

    5/100

    HVACDesignGuideVersion1.0

    TableofContents

    Abstract.....................................................................................................1

    1.0Introduction...................................................................................................2

    1.1Purpose.......................................................................................................................2

    1.2TargetAudience..........................................................................................................3

    1.3Limitations...................................................................................................................4

    2.0TheDesignProcess......................................................................................5

    2.1DesigninghousesaroundtheHVACsystem..............................................................5

    2.2Coordinationwithothertrades....................................................................................7

    3.0DesignMethodology.....................................................................................8

    3.1CodeissuesrelatedtoHVACdesign..........................................................................8

    3.1.1ACCAManualDrequiredby2000UMC............................................................................8

    3.1.2Title24loadcalculations.....................................................................................................9

    3.2ACCAManualsJ/S/D................................................................................................11

    3.2.1TheOverallDesignMethod..............................................................................................11

  • 8/2/2019 HVAC Design Guide

    6/100

    4.0SpecialDesignTopics................................................................................34

    4.1FurnaceLocation.......................................................................................................34

    4.2RegisterLocation......................................................................................................35

    4.3MultipleOrientationDesigns.....................................................................................37

    4.4ZonalControl.............................................................................................................43

    4.5WindowLoads...........................................................................................................44

    4.5.1Heatingloadsfromwindows.............................................................................................44

    4.5.2Coolingloadsfromwindows.............................................................................................45

    4.6DuctLoads................................................................................................................48

    4.7Two-storyConsiderations..........................................................................................49

    5.0OtherMechanicalDesignRelatedIssues.................................................51

    5.1CondenserLocationsandRefrigerantLines.............................................................52

    5.2FurnaceLocations(alsoseepreviousdiscussion)....................................................53

    5.3AtticAccessLocations..............................................................................................54

    5.4Flue(b-vent)locationsandrouting............................................................................55

  • 8/2/2019 HVAC Design Guide

    7/100

    5.5Ductsizesandlocations(soffits,joistbays,chasesanddrops)..............................56

    5.6DuctInstallation,Insulation,andLocation.................................................................57

    5.6.1DuctSealing......................................................................................................................57

    5.6.2DuctLocationandInsulation.............................................................................................57

    5.7Combustionairsupply...............................................................................................58

    5.8Thermostatlocation...................................................................................................59

    5.9VentilationandIndoorAirQuality..............................................................................60

    5.9.1IndoorAirQuality..............................................................................................................60

    5.9.2VentilationSystems...........................................................................................................61

    5.9.3VentilationandIndoorAirQualityStandard......................................................................61AppendixA:References&Resources.........................................................63AppendixB:Glossary....................................................................................64

    iii

  • 8/2/2019 HVAC Design Guide

    8/100

    HVACDesignGuideVersion1.0

    TableofFigures

    Figure1:CeilingRegisterLocations..........................................................................................16Figure2:ExampleHousePlan...................................................................................................18Figure3:ExampleHVACDesign...............................................................................................19Figure4:ExampleVoidinInteriorStairChasewhichoftenoccursadjacenttoroundroomorstairways....................................................................................................................................20Figure5:ExampleVoidinDeadSpace.....................................................................................20Figure6:ExampleExteriorChase.............................................................................................21Figure7:Walk-InClosetwithInteriorChase.............................................................................21Figure8:ClosetChaseExample...............................................................................................22

    Figure9:MediaChaseAgoodlocationforcreatingchasesisinamedianiche.......................22Figure10:WaterClosetChaseAnothergoodlocationforcreatingchasesisinawatercloset23Figure11:ChimneyChaseChasescanalsobeinchimneys,evenasfalsechimneys............23Figure12:RiserCanInstallation................................................................................................24Figure13:RiserCanDetail........................................................................................................26Figure14:FloorJoistDetail.......................................................................................................27Figure15:FloorTruss..........................................................

    ......................................................28Figure16:Duct-to-RegisterConnections.........................................

    ..........................................29Figure17:SoffitChase..............................................................................................................30Figure18:ON/OFFruntimesforthreecoolingconfigurationswithceilingreturns:supplyregisterinteriorceiling;ceilingoverwindows;andin-wall...........................................................36Figure19:SampleSitePlanwithVaryingOrientation...............................................................38Figure20:ComparisonofHVACCycleTimeforCase1,2and3.............................................50

    Figure21:FAUClearance.........................................................................................................53

    iv

  • 8/2/2019 HVAC Design Guide

    9/100

    HVACDesignGuideVersion1.0

    TableofTables

    Table1:MatrixofTrades.............................................................................................................7Table2:OrientationEffectonHeatTransferMultiplier..............................................................37Table3:SubdivisionSitePlanOrientation.................................................................................39Table4:Plan1LoadsandEquipmentSizing............................................................................39Table5:Plan2LoadsandEquipmentSizing............................................................................40Table6:Plan3LoadsandEquipmentSizing............................................................................40Table7:Branchductdiametersundermultipleorientations......................................................41

    v

  • 8/2/2019 HVAC Design Guide

    10/100

    HVACDesignGuideVersion1.0

    Abstract

    Adequatetoolsandmethodsnowexisttodesignenergy-efficientHVACsystems.FailuretocorrectlyapplytheminproductionhomescostsCaliforniahomeowners.Thismajormissedopportunityisafunctionofbothafaultydesignprocessandinaccessibilityofthedesignmethods.Thecost-centricdesign-buildprocesscommonlyemployedbyproductionbuildersrarelyincludesaskilledHVACdesignerearlyinthedevelopmentphasewheretheycanmosteffectivelyintegrateHVACrequirementswiththehousedesign.CurrentlyavailableHVACdesigntoolsandmethodsrequiretimeandhighlevelsofskill,whichnegativelyaffectsthecost/profitagenda.Amoreintegrateddesignprocessandsimplifieddesignmethodsareessentialtoimproveusage,increaseHVACdesignquality,andreduceHVACenergy

    consumption.

    Thisdesignguideisnotintendedtobeastep-by-stepinstructionbookonhowtodesignanHVACsystembecauseadequatemethodologiesalreadyexistforthat.Rather,itisintendedtobeastep-by-stepguideforclarifyingthosemethodologiesandintegratingthemintotheoveralldesignprocessforanentirehouse.ItalsoaddressesimportanttopicsparticularlyimportanttoCalifornia,andspecifictonew-constructionproductionhomes.

    1

  • 8/2/2019 HVAC Design Guide

    11/100

    HVACDesignGuideVersion1.0

    1.0Introduction1.1PurposeThepurposeofthisDesignGuideis:

    1.TobeausefultoolfortheplanningandimplementationofagoodresidentialHVACdesignprocessandtoassistduringthatprocess.2.Toencouragecoordinationbetweenkeyplayerssuchasthearchitect,builder,structuralengineer,framer,HVACdesigner,HVACinstaller,energyconsultant,electricaldesigner,andplumbertominimizeconflictsduringtheinstallationofaproperlydesignedsystem.3.Tohelpidentifyhowallofthedesigners,consultants,andtradespeopleareimpactedbytheprocessandhowtheyneedtocommunicateinordertofurtherminimizeconflicts.

    4.ToexplainandsimplifycurrentHVACdesignmethodologiessothattheyaremoreapplicabletoCaliforniaproductionhomes,moreuseful,andmorewidelyused.5.ToaddresstopicsnotwellcoveredbyexistingHVACdesignmethodologiesandprovideguidanceonissuesthathavebeenofparticularconcerninproductionhomes.Introduction1.1Purpose

    2

  • 8/2/2019 HVAC Design Guide

    12/100

    HVACDesignGuideVersion1.0

    1.2TargetAudienceThetargetaudienceforthisdesignguideis:

    1.HVACdesigners,whethertheyworkforthedesign-buildcontractorwhowilleventuallybeinstallinganHVACsystemoraconsultingengineeringfirmhiredtoprovideadetaileddesignforotherstofollow.2.ArchitectsdesiringtobetterincorporatetheHVACsystemintotheirhousedesigns.3.BuildersdesiringtobettercoordinatetheinstallationoftheHVACsystemintotheirhouses.4.RelatedtradesorconsultantsinterestedinbettercoordinatingtheirworkwiththatoftheHVACdesignerandinstaller.Introduction1.2TargetAudience

    3

  • 8/2/2019 HVAC Design Guide

    13/100

    HVACDesignGuideVersion1.0

    1.3LimitationsThisdesignguideisnotintendedtowalkyouthroughallofthestepsnecessarytodesignanHVACsystem.Therearesomeverysophisticateddesignmethodologiescurrentlyavailablewhicharewell-supportedbytradeandprofessionalorganizations(e.g.,ACCAsManualsJ,S,andD).Unfortunately,theytendtobecomplexandoverlyprecise.Also,thetimenecessarytoproperlyusethem(nottomentionthetimeneededtolearnthem)doesnotfitwellwithinthecurrentdesignprocess.Theytendtobeslantedtowardissuesrelatedtocustomhousesandretrofittingolderhouses.TheyalsodevotemuchtimeandtexttobuildingpracticesatypicalofCaliforniaresidentialnewconstruction,suchasbasementsandsheetmetalducting.ThisDesignguideisintendedtosupplementthosemethodologiesandencouragewiderusebymakingthemmoreconsistentwithcurrentpracticesintheconstructionofCaliforniaproduction

    homes.

    Introduction1.3Limitations

    4

  • 8/2/2019 HVAC Design Guide

    14/100

    HVACDesignGuideVersion1.0

    2.0TheDesignProcess2.1DesigninghousesaroundtheHVACsystemWouldntitbenicehousesweredesignedaroundtheHVACsystem?IfspecialconsiderationwasgiventothearchitecturaldesignformakingtheHVACsystemeasytodesignandinstall?Ifadequatespacewasprovidedforthefurnaceandalloftheductwork?Ifthehousewasdesignedwiththermodynamicsinmind,tominimizestratification,cross-zoneinterferenceandotherproblemsthataredifficultand/orexpensivetoremedywithstandardHVACpractices?

    ThisisunlikelytohappenwithouttheinputofaqualifiedHVACdesigner,andthedesignersinvolvementneedstohappenearlyinthedesignprocess.Moretypically,ahouseisalmostcompletelydesignedbeforeanHVACdesignereverseesit,andtheHVACsystemdesignedwithanemphasisonfittingintothehouseratherthanefficientlyconditioningthehouse.

    Unfortunately,HVACinstallershavebecomequiteproficientatgettingsystemstofitintohouses(whethertheywillworkornot!).Theresulthasbeenundersizedandinefficientductsthataredifficulttobalanceandcreateunnecessaryoperatingpressureonthefanmotor.Tocompensatefortheshortcomingsofsuchductsystems,manyinstallershaveincreasedthesizeofthefurnace,coilandcondenser.Thisisthesamelogicasputtingalargerengineinyourcarbecausethetiresaretoosmall.Thecarmightgofaster,butitsurewouldntperformwellorgetverygoodgasmileage.

    Oftenthereasongivenforaparticularsizeductbeinginstalledis,thatsthelargestthatwouldfit.Ifadequatespaceisacriticalimpedimenttotheinstallationofaproperlydesignedsystem,thenadequatespaceandclearancemustbedesignedintothehomebythearchitectandbuiltintothehomebytheframer.NomatterhowwellanHVACsystemisdesignedonpaper,thedesigneffortsarewastedifthesystemcannotbeinstalledinthefield.

    Typicallyahousegoesthroughthefollowingdesignprocess:

    xConceptualDevelopment:Determinespricerange,squarefootage,numberofstories,lotsizes,generalfeaturesandstyles.xPreliminaryDesign:Developsfloorplansketches,numberofbedrooms,majoroptions,basiccirculationandfunctionlocations,aswellassomeelevationconcepts.Someearly

  • 8/2/2019 HVAC Design Guide

    15/100

    ValueEngineering(VE)meetings.xDesignDevelopment:Preliminarystructural,mechanical,electrical,plumbingandTitle24energycompliance.SomeVEmeetings.

    5

    TheDesignProcess2.1DesigningthehousearoundtheHVACSystem

  • 8/2/2019 HVAC Design Guide

    16/100

    HVACDesignGuideVersion1.0

    ConstructionDocuments:finalworkingdrawingsreadyforbidding,submittal.Backcheckingandcoordinationbyconsultants.SomelateVEmeetings.

    TheHVACdesignersneedtoprovideinputasearlyaspossible.TheyneedtotellthearchitectwhicharchitecturalfeaturescausecomfortissuesandaredifficultorimpossibletoovercomewithtypicalHVACpractices.Theyalsoneedtomakesurethearchitectallowsadequatespacetorunducts.Manyarchitectshavehadtore-designplansenoughtimesduetoHVACissuesthattheyknowfairlywellhowtoaccommodateHVACitems.Still,manyproblemscommonlyarisethatcouldbeavoidedthroughearlierinputandbettercoordination.

    TheDesignProcess2.1DesigningthehousearoundtheHVACSystem

    6

  • 8/2/2019 HVAC Design Guide

    17/100

    HVACDesignGuideVersion1.0

    2.2CoordinationwithothertradesThefollowingmatrixshowsthemaintradesandconsultantswhoareaffectedbytheHVACsystem.Thefirstcolumnliststheitemorissueandeachsubsequentcolumnhoweachtradeisaffectedbyit.

    MatrixofTrades

    ItemArchitectBuilder/Framer/StructuralEngineerHVACInstallerEnergyConsultantElectricalPlumberDrywallorinsulationFAUlocation

    Roofpitch,furnaceclosets,clearanceingarageTrussdesign,platform,clearance,closets,bollards,atticaccessframingTypeofFAU(upflow,

    horizontal),clearance,timingofinstallationModelingcorrectlocationofductsforcomputermodelPower,servicelight,control

    wiring,etc.Condensatelines,gaspipingInsulationunderplatformmaybedifferentEquipment

  • 8/2/2019 HVAC Design Guide

    18/100

    size,loadcalculationsClearances,#ofsystems,buildingfeaturesStructuralimpacts(weight)Materials,labor,costsEnergyfeaturesimpactsizingElectricalloadsSupplyregisterlocationsAesthetics,clearancesRegisterbootsupportMaterials,labor

    SealingaroundregistersReturngrillelocationsAesthetics,noiseissuesFramedopeningsMaterials,laborSealingaroundgrillesCondenser

    locationsandlinesetAesthetics,noiseissuesClearance,accessibilitytoyard(set-backissues),2x6walls,chasesMaterials,labor,serviceabilityPower,

    servicedisconnectAtticaccessAestheticsFramedopening,trussissuesAccess,serviceabilityRoutingB-ventChases,clearances,

  • 8/2/2019 HVAC Design Guide

    19/100

    aesthetics(onroof)Framedchases,roofcapMaterials,labor,installationNoconflictswithventChases,soffits,anddropsAesthetics,feasibilityFraming,clearancesforducts,conflictsMaterials,labor,installationNoconflictswithductsThermostatlocation

    AestheticsMaterials,labor,installationWiringSealholeforwiresEquipmentefficiencyMaterialsEfficiencydeterminedbyenergyconsultantCombustionair

    Atticventcalcs,routingforCAductsAdequateatticvents(roofer)Ducting,ifany

    Table1:MatrixofTrades

    TheDesignProcess2.2Coordinationwithothertrades

    7

  • 8/2/2019 HVAC Design Guide

    20/100

    HVACDesignGuideVersion1.0

    3.0DesignMethodology3.1CodeissuesrelatedtoHVACdesign3.1.1ACCAManualDrequiredby2000UMCItisnotwidelyknownthatthe2000UniformMechanicalCode(2001CaliforniaMechanicalCode)requiresthatallresidentialductsystemsbesizedaccordingtoACCAsManualD,whichitselfrequiresManualJasaprerequisitedesignstep.Theexactlanguageis:

    Chapter6,DuctSystems,Section601.1SizingRequirements.Ductsystemusedwithblower-typeequipmentwhichareportionsofaheating,cooling,absorption,evaporativecoolingoroutdoorairventilationsystemshallbesizedinaccordancewithChapter16,PartIIReferencedStandardsorbyotherapprovedmethods.

    Chapter16,PartIIReferencedStandards.Residentialductsystems,ACCAManualD.

    Veryfewjurisdictionsareenforcingthis,mostofthembecausetheyarenotawa

    reofit.Thisofcoursedoesntmeanthatitisntrequired.ItisunclearwhatexactlyneedstobesubmittedinordertoverifythatahomehasbeendesignedtotheACCAmethod.Onewouldassumethataclearlydrawnmechanicalplanalongwithsupportingcalculationsand/orworksheetswouldberequired.

    TheACCAmanualswerenotwrittenwiththeintentofbeingusedasspecificcodelanguage,thereforeitwillbeuptothelocaljurisdictiontodecideexactlyhowtoenforceadherenceto

    them.TheUniformMechanicalCodestatesthatductsmustbesizedaccordingtoManualD.TherearemanysuggestionsandrequirementsinManualDthatdonotrelateductsizing,someofwhichareimpracticalorsimplyinappropriatetoCalifornianewconstruction.FlexibilityindesignisimportantandsincelittleofManualDisrelatedtohealthandsafety,muchofManualDoutsideofthesizingmethodologyshouldbeconsidereddiscretionary.

    Note:ThenextrevisionoftheCMCmayaltertheManualDrequirementtobeonlyforhomesthatrequireoutdoorair.Ithasbeensuggestedthatthiswastheoriginalinten

    tandwhyitisintheUMC.

    DesignMethodology3.1CodeissuesrelatedtoHVACDesign

    8

  • 8/2/2019 HVAC Design Guide

    21/100

    HVACDesignGuideVersion1.0

    3.1.2Title24loadcalculationsChapter2.5.2ofthe2001ResidentialManualexpandsonSection150(h)oftheEnergyEfficiencyStandards,whichestablishesthecriteriaforsizingresidentialHVACsystemsinCalifornia.Itprovidesforthreedifferentmethodsforcalculatingthebuildingsdesignheatlossandheatgainrates(loads).Italsoestablishesthedesigntemperaturestobeusedforsizingequipment.

    Forthepurposeofsizingthespaceconditioning(HVAC)system,theindoordesigntemperaturesshallbe70degreesFahrenheitforheatingand78degreesforcooling.[note:effective10/1/05,theindoordesigntemperaturewillchangeto75degreesFahrenheitforcooling]TheoutdoordesigntemperaturesforheatingshallbenolowerthantheWinterMedianofExtremescolumn.Theoutdoordesigntemperaturesforcoolingshallbefromthe0.5percentSummerDesignDryBulbandthe0.5percent

    WetBulbcolumnsforcooling,basedonpercent-of-yearinASHRAEpublicationSPCDX:ClimateDataforRegionX,Arizona,California,Hawaii,andNevada,1982.[note:effective10/1/05,theoutdoordesigntemperaturesforcoolingchangesto1.0percentSummerDesignDryBulbandthe1.0percentWetBulbcolumnsforcooling]

    ThethreeapprovedloadcalculationmethodsarewrittenandsupportedbythreedifferenttradeorganizationsASHRAE,SMACNA,andACCA.MicropasandEnergyPro,thetwomostcommonTitle24compliancesoftwareprograms,bothusetheASHRAEmethod.Theygeneratewholehouseheatlossandgaincalculationsinordertomeettherequirementof

    submittingapprovedloadcalculationsaspartoftheenergycompliancepackage.Wholehouseloadsareusefulforsizingtheequipmentbutareoflittleusefordesigningaductsystem,whichrequiresroom-by-roomloads.However,itisveryusefultohaveawhole-houseloadcalculationtocomparetothetotaloftheroom-by-roomloads.Thisensuresconsistentandaccuratecalculationsandhelpscatcherrors.

    TheResidentialManualalsoremindsusthattheUniformBuildingCodeaddressesthesizingoftheheatingsystem,thoughnotthecoolingsystem.Itstates:

    ThesizingofresidentialheatingsystemsisregulatedbytheUniformBuildingCode(UBC)andtheStandards.TheUBCrequiresthattheheatingsystembecapableofmaintainingatemperatureof70Fatadistancethreefeetabovethefloorthroughouttheconditionedspaceofthebuilding.

    NoneofthecalculationsapprovedbyTitle24addressthetemperatureatanydistanceabove

  • 8/2/2019 HVAC Design Guide

    22/100

    thefloor.Theyallassumethatthetemperatureisthesameeverywhereinthehouse,thattemperaturebeingwhatevertheinsidedesigntemperatureis.Thespecificationof3feetabovethegroundsimplyprovidesareferencefortestinganactualsystem.Itisgenerallyassumedthatiftheheaterhasacapacityequaltoorgreaterthantheheatingloadcalculationsandareasonabledistributionsystem,itwillmeetthisrequirement.

    Theresidentialmanualreiteratesthattheloadcalculationsareonlypartoftheinformationusedtosizeandselecttheequipmentandwhocanpreparethosecalculations(presumablybasedontheBusinessandProfessionsCode),butdoesnotgointomuchmoredetailaboutwhatelsegoesintothesizingandselectionprocess.

    9

    DesignMethodology3.1CodeissuesrelatedtoHVACDesign

  • 8/2/2019 HVAC Design Guide

    23/100

    HVACDesignGuideVersion1.0

    Thecalculatedheatgainandheatlossrates(loadcalculations)arejusttwoofthecriteriaforsizingandselectingequipment.Theloadcalculationsmaybepreparedby:

    (1)the[Title24]documentationauthorandsubmittedtothemechanicalcontractorforsignature,(2)amechanicalengineer,or(3)themechanicalcontractorwhoisinstallingtheequipment.Title24doesnotspecificallystatehowcoolingloadsshouldbeconsideredwhensizinganairconditioner.Itdoesntevenstatethatanairconditionerhastobeinstalledatall.MostjurisdictionstreattheTitle24coolingloadsasaminimumsizingcriteria.Inotherwords,asystemmustbeinstalledthathasacoolingcapacitythatatleastmeetstheTitle24coolingload.Insomeclimatezones,itiscommonpracticetoofferairconditioningasanoption.So,apparentlythesizingcriteriaonlyapplyifairconditioningistobeinstalled

    .[note:2005amendmentstoTitle-24willofferanalternatesizingmethod.]

    Thefollowinglinkwilldirectyoutoanon-linecopyoftheTitle24ResidentialEnergyManual,AppendixCCaliforniaDesignLocationData.AmapoftheCaliforniaclimatezonescanbefoundinthisappendixalongwithinformationonCaliforniaclimatezonerequirements.http://www.energy.ca.gov/title24/residential_manual/res_manual_appendix_c.PDF.Or,ifyouareconnectedtotheinternet,youcanclickonthelinkbelow:

    Title24ResidentialManual,AppendixC--CaliforniaDesignLocationData

    DesignMethodology3.1CodeissuesrelatedtoHVACDesign

    10

  • 8/2/2019 HVAC Design Guide

    24/100

    HVACDesignGuideVersion1.0

    3.2ACCAManualsJ/S/D3.2.1TheOverallDesignMethodTheoveralldesignstepsfortheACCAJ/S/Dmethodology,asitshouldbeusedintypicalCalifornianewconstructionproductionhomes,isdescribedinthefollowinglist.Throughouttheexecutionofthislist,certaindecisionsaremadethatmayaffectothertrades.Itisimportantthatthiscoordinationbemadeinacontinuousandconsistentmanner.TheMatrixofTrades(page10)isprovidedtohelpguideyouinthiscoordination.

    Step1.DetermineZones

    Step2.CalculateRoombyRoomLoads

    Step3.Select/sizeEquipment

    Step4.Layoutductsystem

    -LocateFAU(s)

    -Locategrillesandregisters-Routeducts-Subzones(trunks)Step5.Determineoperatingconditions

    -Staticpressure-TotalCFM-Equivalentlengths-FrictionratesStep6.Sizeducts

    -Roomairflowisproportionaltoroomload

    -Frictionrateandroomairflowdetermineductsize

    Step7.Finaltouches

    -Locatethermostat-LocatecondenserDesignMethodology3.2ACCAManualsJ/S/D

    11

  • 8/2/2019 HVAC Design Guide

    25/100

    HVACDesignGuideVersion1.0

    Step1.DetermineZones

    Zones,asdiscussedhere,aredefinedasareasofthehousethataretobeindependentlycontrolled,typicallybytheirownthermostat.Smallerhousestypicallyonlyhaveonezone.Ifthemaincriterionforzoningahouseiswhetheritcanbeservedbyasinglesystemornot,thedesignermaywanttowaituntilafterdoingtheloadcalculations.Thenewloadcalculationsoftwareproductsallowyoutoeasilyassignandreassignroomstodifferentzonesandthisstepcanbeintegratedintothenextstepofperformingtheactualroom-by-roomloadcalculations.However,evaluatingahouseforpossiblezoneconsiderationsisstillausefulfirststep.

    Thereareavarietyofwaystozoneahouseandthereareseveralfactorstotakeintoaccount.Theseincludeusepatternssuchaslivingareasandsleepingareas.Thermodynamiczonesplayanimportantroleaswell.Theseareareasofahouset

    hatwillbehavesubstantiallydifferentbecauseoftheirrelativepositionorisolationfromeachothersuchasupstairsanddownstairs,eastwingandwestwing,etc.Sometimesusepatternsandthermodynamiczonesdonotcoincideandyoumayhavetoprioritizeoneovertheother.Usuallythermodynamicconsiderationstakeprecedence.

    Zoningahouseforliving/sleepingcangenerateanenergyefficiencycredittowardTitle241compliance.Thisenergyefficiencycreditisbasedontheabilitytoprogramthe

    thermostatscheduledifferentlyforthesetwozonestherebysavingenergy.Therealenergysavingsofthisstrategyishighlydependentontheoccupantsproperprogrammingandoperationofthethermostats.Itcaneitherbeaccomplishedbyasinglesystemwithzonalcontrol(singlesystemwithdualzonecomponents)orbyseparatesystems.SeeSection4.4.ZonalControlformorediscussiononzonalcontrol.IfthedualzonestrategyisusedforTitle24compliance,theHVACdesignmustensurethatitdoesnothaveanadverseaffectoncomfort.

    Ifallofthespacesdefinedaseitherlivingareasorsleepingareasarenotlocatedinthermodynamicallysimilarzones,specialstepsmayberequiredtoensureconsistentcomfortthroughouteachzone.Forexample,ifatwo-storyhouselargeenoughtorequiretwosystemshasallofthebedroomsupstairsexceptthemasterbedroom,itmaybedifficulttozonethehouseforliving/sleeping.Becauseitisatwo-storyhouse,itwantstobezonedup/downforthermodynamicreasons.Thesleepingzoneissplit

  • 8/2/2019 HVAC Design Guide

    26/100

    betweentwofloorsandmayrequirefurtherzonalcontroltoachievesatisfactorycomfort,resultinginatotalof3thermostats.

    UsuallythefirstquestionaskedfromacostperspectiveisCantheentirehousebeservedbyasingleHVACsystem?Inotherwords,canthetotalcoolingloads,regardlessofotherconsiderations,bemetbyasingle5-tonairconditioner(thelargestsystemtypicallyusedinresidentialconstruction)?Thisisnotknownuntiltheloadsarecalculated.Apreliminaryestimatecanbemadebasedonsquarefootageandwindowareaandthenlaterrevisediftheresultsoftheloadcalculationschangetheassumptions.

    1EnergyEfficiencyStandardsforResidentialandNonresidentialBuildingsPublicationNumber:400-01-024,August2001

    12

    DesignMethodology3.2ACCAManualsJ/S/D(Step1)

  • 8/2/2019 HVAC Design Guide

    27/100

    HVACDesignGuideVersion1.0

    Ashomesgetmoreandmoreefficient,especiallyinregardtowindowtechnologies,largerandlargerhomescanbeservedbyasingle5-tonsystem.Atsomepoint,otherconsiderationsneedtobetakenintoconsideration.Thingssuchasadequateairflow(airchanges)needtobeconsidered.Doesasingle5-tonsystematapproximately2000cfmhaveenoughairmovingcapabilitytoadequatelydistributeairthroughoutaverylargehouse,evenifitcanmeetthesteadystatecoolingload?Also,howsusceptibleisthehousetonon-steadystateconditions?Inotherwords,whathappensifincoolingmodethetemperatureisinadvertentlyallowedtosubstantiallyexceedthecomforttemperature?Willthesystembeabletocatchupinareasonableamountoftime?Thiscanbeacriticalcustomerserviceissueinproductionhomesandisatopicthatneedsfurtherresearch.

    Ifthehousecanbeservedbyalargesinglesystem(i.e.,5-tons)buthasdistinctzones(e.g.,upstairsdownstairs)itisrecommendedthatthosezonesbecontrolledindependently(separatethermostats).Thiscanbeaccomplishedbymultiplesystemsorbyasinglesystemwithzonalcontrols.SeeSection4.4formoreonzonalcontrol

    Step2.Calculateroombyroomloads

    Forroom-by-roomloads,ACCAsManualJisthemostwidelyusedandmostwidelysupportedstandardizedmethodology.Thereareatleasttwosoftwareversionsofit

    (SeeAppendixAforresourceinformation).Eventhoughitwasoriginallyintendedtousehandwrittenformsandworksheets,itisnowvirtuallymandatorytouseacomputermethod(unlessyourareextremelyaccurateandpatientthetypeofpersonwhocanfilloutcomplicatedtaxformsbyhand.).BecauseACCAManualJisallbasedonpublishedtablesandworksheets,somepeoplehavewrittentheirownloadcalculationspreadsheetsbasedonManualJ.

    Thetwoavailablesoftwarepackages(Right-Suite2andElite3)haveverysophisticated

    featuresallowingComputerAidedDesign(CAD)-basedtake-offsforwindowandwallareas.ThismakesveryeasyandquickworkofenteringphysicalbuildingdataifyouhaveaccesstoanarchitectsCADfiles.ThesoftwarepackagesallowyoutoimportaCADfloorplanofthehomeandessentiallytraceoverittocreatetheroomsandzones.Windowsanddoorsaredrag-and-dropcomponents.Ifyoudonothaveaccesstothe

  • 8/2/2019 HVAC Design Guide

    28/100

    architectsCADfiles,youcanusethesoftwaretodoaprettyreasonablejobofrecreatingthefloorplanofahouse.Thesesoftwarepackagesalsohaveusefulductlayoutdrawingfeatures.

    Theunderlyingconceptofroom-by-roomloadsisthateachroom,orareaservedbyasupplyregister,istreatedasanindividualload.Thisprovidesforaveryaccuratedeterminationofhowtodistributetheair.Ifairisdistributedproportionallytoeachroomsload,theneachroomwillbeconditionedappropriately;resultingiseventemperaturedistributionacrossahome.ThisisthebasisforACCAManualD.Itsnotperfectinreality.However,itisthebestmethodwehaverightnowandworksquitewellformostproductionhomes.Themorecomplexandbrokenupthehouselayoutisarchitecturally,thelessthisassumptionisapplicable.

    2WrightsoftSoftware,3EliteSoftware

    13

    DesignMethodology3.2ACCAManualsJ/S/D(Step2)

  • 8/2/2019 HVAC Design Guide

    29/100

    HVACDesignGuideVersion1.0

    Step3.SelectandSizeEquipment

    Usetotalofroom-by-roomloadsforeachzone

    1.Oncethehousehasbeenzonedandtheloadsforeachofthezonesarefinalized,thesystemcanbesizedandselected.ACCAsManualSprovidesdetailedinformationfordeterminingheatingandcoolingcapacitiesofvarioustypesofequipment.InCaliforniaresidentialnewconstruction,themostcommonHVACsystemtypeissplit-systemDirect-Expansion(DX)coolingwithagasfurnace.Theheatingcapacityiseasytodeterminebasedontheratedheatingoutputofthefurnace,whichchangesverylittlebasedonactualconditions.Someadjustmentmayneedtobemadeforhighaltitudes.Determiningthecoolingcapacityatactualconditionsismorecomplex.Itdependsonseveralconditions:a)theoutdoortemperature,b)theindoorenteringwetbulb4anddrybulb5temperatures,andc)theairflow(cfm)acrossthecoil.Inordertoproperlyaccountfortheseconditionsitisnecessarytousedetailedcapacitytablesprovidedbythemanufacturer.Again,ACCAsManualSgoesintogooddetailonthisprocess.

    InCaliforniaresidentialnewconstructionthefollowingconditionsaretypical:

    1.Outdoortemperature:Thisisthetemperatureoftheairthatisblowingthroughthecondensertocooltherefrigerantandisusuallythesameoutdoortemperaturethatisusedforthecoolingloadcalculationsunlessitisknownthatthecondenserwillbelocatedinahotterlocationsuchasonaroof.2.Indoorenteringwetbulbanddrybulb:Thesedescribetheconditionoftheairblowingacrossthecoilandareusuallyassumedtobethesameastheindoorconditionsusedintheloadcalculations.Title24coolingloadsarecalculatedusinganindoortemperature(drybulb)of78degF.Somedesignersusea

    lowertemperature,suchas75degreestobesafe.(Note:lowerindoortemperaturesdriveupthecoolingloadanddecreasethecalculatedcapacity,potentiallyrequiringalargersystem.)Exceptforsomecoastalareas,Californiaisconsideredadryclimate.Asafeindoorwetbulbtemperatureis65degreesF.Thiscorrespondsto78degreesFand50%relativehumidityonthepsychometrictable.(Note:Thehigherthehumidity,thehigherthewetbulbtemperature,andthelowerthecoolingcapacitywillbe.)4Thewetbulbtemperature(WBT)relatesrelativehumiditytotheambientairordrybulbtemperature.Whenmoistureevaporates,itabsorbsheatenergyfromitsenvironmentinordertochangephase(vialatentheatofvaporization),thusreducingthetemperatureslightly.TheWBTwillvarywithrelativehumidity.Iftherelative

    humidityislowandthetemperatureishigh,moisturewillevaporateveryquicklysoitscoolingeffectwillbemoresignificantthaniftherelativehumiditywerealreadyhigh,inwhichcasetheevaporationratewouldbemuchlower.Thedifferencebetweenthewetbulbanddrybulbtemperaturethereforegivesameasureofatmospherichumidity.

    5Drybulbtemperaturerefersbasicallytotheambientairtemperature.Itiscalleddrybulbbecauseitismeasuredwithastandardthermometerwhosebulbisnotwet-ifitwerewet,theevaporat

  • 8/2/2019 HVAC Design Guide

    30/100

    ionofmoisturefromitssurfacewouldaffectthereadingandgivesomethingclosertothewetbulbtemperature.Inweatherdataterms,drybulbtemperaturereferstotheoutdoorairtemperature.

    14

    DesignMethodology3.2ACCAManualsJ/S/D(Step3)

  • 8/2/2019 HVAC Design Guide

    31/100

    HVACDesignGuideVersion1.0

    3.Airflowacrossthecoil:Thisistypicallythesameasthedesignairflowforthesystem.Itcomesfromthefurnaceairflowtablesatthedesignstaticpressure(usuallybetween0.5and0.7incheswatercolumn,0.6isareasonablenumbertousebutitdependsonthespecificdesigncriteria)andrangesfrom350-425cfmpertonofthefurnace.Thefollowingbasicconceptsaregoodthingstokeepinmindwhendesigning(orevaluatingtheperformanceof)asystem:

    1.Astheoutdoordesigntemperaturegoesup,thecoolingcapacityoftheACunitgoesdown(andtheloadonthehousegoesup).Thisisbecausetheoutdoorairistheheatsinkusedbytheairconditionertodumptheheatintothatisextractedfromtheindoorair.Astheoutsideairgetswarmer,itisharderfortheairconditionertodumpheatintoit.2.Astheindoordrybulbtemperaturegoesdown,thecoolingcapacitygoesdown.Thisisbecauseitishardertoextractheatfromcolderair.

    3.Astheindoorwetbulbtemperaturegoesdown,thecoolingcapacitygoesdown.Thisisbecausetheairhasmoremoistureinitandcoolingcapacityisusedupwhenthismoistureiscondensedoutoftheair.4.Astheairflowacrossthecoilgoesdown,thecoolingcapacitygoesdown.Thisisbecausewithlessairpassingacrossthecoil,thereislessopportunityforthecoiltoextractheatfromtheairstream.Step4.LayOutDuctSystem

    oLocateForcedAirUnit(s)(FAU)ThelocationoftheFAU(furnace)dependsona

    varietyoffactors.Theseincludesuchthingsasclearance,accessibility,ductrouting,andventing.Personalpreferenceevencomesintoplay.Ananalysiswasdoneontheimpactsofenergyconsumptionandfurnacelocation(SeeSection4.1fordetailsofthisstudy)aspartoftheresearchprojectthatincludedthewritingofthisdesignguide.Itfoundthatfurnacelocationhadlittleimpactonenergyconsumptionandeffectivenessofthesystem.Theonlynotabledifferencebetweenafurnaceintheatticandafurnaceinagarage,forexample,wasthatthefurnaceinthegarage

    tendedtohavesomewhatlongerducts,whichresultedinmoreconductivelosses/gainsandmoreresistancetoairflows.Italsoshowedabitmorefanpowerconsumptionduetothelongerductruns,butthiscanbecompensatedforbyusinglargerducts,iftheycanbeaccommodated.Firstcost(duetolabor)tendstobethebiggestconsiderationindecidingwheretoputthefurnace.Thegeneraltrendtodayistoputfurnacesinatticseventhoughtheyarelessaccessible.Floorarea,eveninagarage,isatapremium.

  • 8/2/2019 HVAC Design Guide

    32/100

    Also,sinceanatticlocationismorecentrallylocated,ittendstohaveductrunsofmoreequallength.Inotherwords,therearelesslikelytobeverylongductruns.Also,ventingafurnaceismorestraightforwardfromanatticthanfromagarage,especiallyinatwo-storybuilding.Furnacelocation(seeSection5.2)isagooddiscussiontopicforvalueengineeringmeetings.

    oSelectingandlocatinggrillesandregisters-ACCAalsopublishesaManualTTerminalSelection,whichcontainssomegoodinformationontheselectioncriteriaforsupplyregistersandreturngrilles.Itcoverssuchtopicsasregistertype(2-way,15

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

  • 8/2/2019 HVAC Design Guide

    33/100

    HVACDesignGuideVersion1.0

    3-way,etc.),pressuredrop,facevelocity,noisecriteria,andthrowdistance.Inresidentialnewconstructiongrillesareoftensizedbasedonthesizeoftheductservingthem,whichisaltogetherinadequate.Similarly,grilletypesareoftenselectedbasedonpersonalpreferenceandsometimesfaultyreasoning.Muchmorethoughtshouldgointothisprocess.

    Inatypical,square-ishroomsuchasasecondarybedroom,therearefourbasiclocationsforasupplyregisters,fiveifyoucountfloorregisters,whicharealmostalwayslocatedunderawindow.ThefourmainlocationsareshownFigure1.

    Figure1:CeilingRegisterLocations

    16

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

  • 8/2/2019 HVAC Design Guide

    34/100

    HVACDesignGuideVersion1.0

    Astudyontheimpactsofenergyconsumption,comfortandsupplyregisterlocationwasperformedaspartoftheresearchprojectthatincludedthewritingofthisdesignguide.Thisstudyevaluatedandcomparedthemostcommonoftheselocations:2-wayoverawindow,3-waynearaninteriorwall,andhighsidewalloppositeawindow.SeeSection4.2fordetailsonthisstudy.

    Givenachoice,theresultsofthisstudyprovideimportantconsiderations.Sometimes,however,thegeometryoftheroomdictateswhereyoumustplaceregisters.Forexample,inalongnarrowroomwheretheexteriorwallisonthenarrowdimension,youmaybeforcedtoputaregisteroverthewindowbecausetheinteriorwallistoofaraway.Also,structuralandarchitecturalconstraintssuchaslocationsofchases,floorjoistdirectionsandbeamsmaydictateregisterlocations.Anyofthelocationsmentionedabovecanbemadetoworkadequatelywellifcertainconsiderationsaremade.Whatevertheregisterlocation,thefollowingconsiderationsshouldbeemphasized:

    1.

    Registeroverwindoworonexteriorwall.Usea2-wayregisterorientedparalleltothewindow/exteriorwall.Thiswillcreateacurtainorsheetofsupplyairparalleltotheexteriorwallandtheairwillnaturallymoveawayfromthewallandmixwiththeairintheroom.Usinga3-wayregisterpointedawayfromthewindow/exteriorwallwillthrowthebackintotheroomtooquicklyandmaynotadequatelyconditiontheareadirectlyinfromofthewindow.Itmayalsoshortcircuittheairflowbythrowingitbackintothenaturalreturnpathbeforeithasachancetomixwiththereturnair.A3-wayregisterlocatednearawindowbutpointeddirectlyatitwillblowairdirectlyonthewindow.Thiswillheatandcoolthewindow,whichserveslittlebenefitwhenthepurposeistoheatandcooltheairinsidetheroom.Infact,thismostlikelywastessubstantialenergy.

    2.Registernearaninteriorwall.Usea1-wayor3-wayregisterwiththeprimarydirectiontowardthewindow/exteriorwall.Itisimportanttoensurethattheregistersthrowdistanceisadequatetoreachnearthewindow/exteriorwall.3.Registercenteredinaroom.Usea4-wayregister.4-wayregistersdelivertheairequallyinallfourdirections.Considerationmustbegivenforinterferencewithlightfixturesorceilingfans.Ifthisisthecase,thenlocatetheregisteranaestheticallyappropriatedistanceawayfromthefixture,buttowardtheexteriorwall.4.Highsidewallregisters.Useabar-typeregisterthatthrowsair

    perpendiculartothefaceoftheregister.Pointtheregistertowardthewindow/exteriorwall.Aswitharegisternearaninteriorwall,itisimportanttoensurethattheregistersthrowdistanceisadequatetoreachnearthewindow/exteriorwall.Bar-typeregisterslocatedinaverticalwalltypicallyhavemuch,muchgreaterhorizontalthrowdistancesthan3-wayor1-wayceilingregisters,andbetteroverallairflowcharacteristicsingeneral(morecfmpersquareinch,quieter,etc.).DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    17

  • 8/2/2019 HVAC Design Guide

    35/100

  • 8/2/2019 HVAC Design Guide

    36/100

    HVACDesignGuideVersion1.0

    Thebasicthingstokeepinmindwhenselectingandlocatingaregisterare:

    1.Goodairmixing:youwantthesupplyairtomixinwiththeroomairasmuchaspossible.Thisisaidedbydirectingtheairintheoppositedirectionofthenaturalpathbacktothereturn(e.g.,outthedoor).2.Goodairdistributionandnostagnantareas:youwantthesupplyairtoreachalloftheoccupiedareasofaroom,especiallyareasclosetoaload(e.g.,window).Throwdistanceisanimportantconsiderationforthis.oDeterminingsub-zones(trunks)andtheuseofbalancingdampersInproductionbuilding,adesigneristypicallydesigningthesystemforahomethatmaybebuiltinseveraldifferentorientations.(SeeSection4.3fordiscussionondesigningformultipleorientations.)Thesystemistypicallydesignedfortheworst-caseorientationwithconsiderationforairflowsneededinotherorientations.Thesystemmustat

    leastbeabletobeeasilybalancedtoworkinallorientations.Astrategythathelpsaccomplishthisistodividethemainzonesofthehouseintosub-zones.Thesesub-zonesareareasinthemainzonethatwillbeaffectedsimilarlywhenthehouseisinanorientationotherthanworstcase.Forexample,Figure2showsabasicsingle-story,single-zonehouseinitsworst-caseorientation.Figure2:ExampleHousePlan

    Ifthehouseisrotated180degrees,bedrooms2and3willgofromthesouthside

    ofthehousetothenorthsideofthehouseandprobablyneedmuchlessair.Ifthesetworoomsareonthesametrunk,thiscanbeaccomplishedeasilybyusingamanualbalancingdamperlocatedrightatthesupplyplenum.Thefamily/kitchenarea,living/diningareamasterbedroommaybetreatedsimilarly.

    18

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

  • 8/2/2019 HVAC Design Guide

    37/100

    HVACDesignGuideVersion1.0

    Figure3showsareasonablelayoutandapproachtoaccomplishorientation-dependentbalancingusingmanualbalancingdampersthatareeasilyaccessible.

    Figure3:ExampleHVACDesign

    oRoutingductsTheactualroutingofductsisafunctionofthenumberandlocationofsupplyregisters(andtoalesserextentreturngrilles),architecturalandstructuralconstraints,ductsize,ductlength,andotherpracticalissuessuchaspreferredtypesoffittings(t-wyesvs.duct-boardtransitionboxes).Inasingle-storyhousewithampleatticspacethisisprettystraightforward.Youcanlocatetheregistersfirstandthensimplysketchtheductsin.Inamultiple-storyhouse,thisisamuchgreaterchallenge,atleastforallbutthetopfloor.Assumingthesystemservingthef

    irstfloorislocatedintheattic(atypicalscenario),theductsservingthefirstfloormustpassverticallythroughtheupperfloor(s),andthenhorizontally(unlessyouarelucky)totheceilingregistersonthefirstfloor.Thereisusuallyagreatdealofframing(suchastrusses,blocks,joists,beams,headers,andtop/bottomplates)betweenthefurnaceandtheregister.Infact,veryoftentheframingisthedecidingfactorindeterminingwhereregistersareultimatelyplaced.Thefollowingaresomeideasforgettingductsfromonepointtoanother.

    VerticalDuctRuns

    ChasesandvoidsTheseareshaftsbetweenwalls,eithercreatedintentionally(chases)orincidentally(voids)thatcanbeusedtorunductsfromtheattic,throughtheupperfloor(s),tothelowerfloor(s).

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    19

  • 8/2/2019 HVAC Design Guide

    38/100

    HVACDesignGuideVersion1.0

    SamplesofIncidentalVoids

    Figure4:ExampleVoidinInteriorStairChasewhichoftenoccursadjacenttoroundroomorstairways

    Figure5:ExampleVoidinDeadSpace(wherespacesofunequalsizeorshapeareadjacenttoeachother)

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    20

  • 8/2/2019 HVAC Design Guide

    39/100

    HVACDesignGuideVersion1.0

    SamplesofChases

    Figure6:ExampleExteriorChaseVoidscanbefoundinthebumpoutsofexteriorarchitecturaldetails,butcaremustbetakentoensurethatthatparticulararchitecturaldetailoccursinallelevationstyles

    Figure7:Walk-InClosetwithInteriorChaseChasescanbecreatedincornersofclosets.Thedeadcornerofawalk-inclosetisanidealplacebecauseithasminimalimpactorhangingspaceanditprovidesaconvenientwayfortheshelfandpoletobesupported.

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    21

  • 8/2/2019 HVAC Design Guide

    40/100

    HVACDesignGuideVersion1.0

    Figure8:ClosetChaseExampleChasesmayalsobeaddedtoeitherendofaflatcloset.Ifgiventhechoice,itispreferablenottohaveachaseadjacenttoanexteriorwallwhentheroofslopesdowntothatwall(i.e.,hiproof),becausetheroofcaninterferewiththeductgettingdownthroughthetopofthechase.Ifthiscannotbeavoidedtherearevariouswaystodroptheceilingintheclosettobetteraccommodatetheduct.

    Figure9:MediaChaseAgoodlocationforcreatingchasesisinamedianiche

    22

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

  • 8/2/2019 HVAC Design Guide

    41/100

    HVACDesignGuideVersion1.0

    Figure10:WaterClosetChaseAnothergoodlocationforcreatingchasesisinawatercloset

    Figure11:ChimneyChaseChasescanalsobeinchimneys,evenasfalsechimneys

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    23

  • 8/2/2019 HVAC Design Guide

    42/100

    HVACDesignGuideVersion1.0

    RisercansThesearerectangularducts,usuallysheetmetal,whichfitinawallcavitybetweenthestuds.Theyarerelativelycommon,butduetopotentialnoiseproblems,highresistancetoairflow(highequivalentlength),structuralconstraints,andinstallationcosts,theyaretypicallyusedonlyasalastresort.Ifcareistakenintheirdesignandconstruction,theycanhoweverbeaviablesolutiontomanyroutingproblems.Youshouldkeepthefollowingthingsinmindifconsideringrisercans:

    1.NoiseThermalexpansionandcontractioncancausesheetmetalrisercanstomakesubstantialamountsofnoise.Thisiscalledoilcanningandcanmanifestitselfinclicking,popping,clanking,squeakingandotherannoyingnoises.Manycontractorshavehadtotearoutrisercansduetocustomerservicecomplaints.Thisisaveryexpensiveandmessyretrofit.Somecontractorswillflat-outrefusetoinstallthem.Avoidputtingrisercansinbedroomwallsifatallpossible.Someprecautionstopreventingnoiseareusingheavier

    gaugemetal,caulkingbetweenallmetal-to-metalseams,andusingleadtapeasasounddampener.Youmightalsoconsiderusingductboardratherthansheetmetal.Itrequiresalargercrosssectionalareathansheetmetalbutisvirtuallysilentandhasmuchbetterinsulationproperties.2.HighResistancetoairflowTheavailablespaceinatypical(16oncenter)2x4and2x6studwallis3x14and5x14.Thetypicalsizerisercansusedinthesewallsare3x14and5x14,whichcorrelatetoroundflexductequivalentsizesof8and9,respectivelyThehighresistancetoairflowcomesnotsomuchfromtherisercanitself,butfromtheround-to-rectangularandrectangular-to-roundtransitions.Itishighlyrecommendedthatsmooth,roundedtransitions

    beusedwherepossible.Itishighlydiscouragedtosimplycutaroundholeinthesidefaceoftherisercan.Figure12:RiserCanInstallation

    24

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)DesignMethodology3.2ACCAManualsJ/S/D(Step4)

  • 8/2/2019 HVAC Design Guide

    43/100

  • 8/2/2019 HVAC Design Guide

    44/100

    HVACDesignGuideVersion1.0

    Figure13:RiserCanDetail

    Caremustbetakentoensurethatnotrusssitsontopofthestudbaythatyouintendtouseandthestudbaymustlineupwiththefloorjoistsbelow.TheuseofrisercansrequirescarefulcoordinationbetweentheHVACsubcontractor,thearchitect,thestructuralengineer,andtheframer.

    HorizontalDuctRuns

    FloorJoistBaysThesearethespacesbetweentheparallelfloorjoists.CaliforniabuildersoftenusewoodenI-beamtypefloorjoists.

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    26

  • 8/2/2019 HVAC Design Guide

    45/100

    HVACDesignGuideVersion1.0

    Figure14:FloorJoistDetail

    Commonsizes(heights)are12,14,andsometimes16.Whileitispossibletocutholesinfloorjoistsasbigastheheightoftheweb,therearestrictlimitationsonthisandjoistpenetrationsmustalwaysbeapprovedbythestructuralengineer.EvenifyoudocuttheI-joistsitcanbedifficulttopullflexductthroughtheseholes.Theothercoordinationthatmusttakeplaceiswiththetradesthatwillbesharingthisspace,especiallyplumbers.Gaspiping,sanitarydrainsandwaterpipingcanallberuneitherperpendiculartoorparallelwiththeI-joists,andcaninterferewithducts.

    SomebuildersusefloortrussesratherthanI-joists.Theseconsistofdiagonalframingmemberssimilartoarooftrussratherthansolidwebbing.

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    27

  • 8/2/2019 HVAC Design Guide

    46/100

    HVACDesignGuideVersion1.0

    Figure15:FloorTruss

    Thesearemuchmoreaccommodatingofductswithoutcuttingholesbutsimilarcoordinationmustbemadewiththeplumbers.

    Oneimportantthingtokeepinmindwhenrunningductsinfloorjoistbaysisthatthebestpracticeforconnectingtoaceilingregistermayrequireaspecialtransitionfittingratherthansimplymakinga90-degreebendintheduct.

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    28

  • 8/2/2019 HVAC Design Guide

    47/100

    HVACDesignGuideVersion1.0

    Figure16:Duct-to-RegisterConnections

    DroppedceilingsandSoffitsSometimestheonlywaytogetpastabeam,wallorfloorjoistsistocreateadroppedorfalseceilingbelowtheobstructionthatprovidesroomtorunaduct.Whenconsideringtheseasanoptiononemustrealizethattheycanberelativelyexpensivetobuildandoftenhaveaestheticdisadvantagesbecausetheylowertheceilingheight.Usuallyloweringtheceilinginasmallroomsuchasabathroom,laundryroom,orhallwayisnotabigproblem.Thetotaldroprequiredtorunductsistheouterdiameteroftheductplus3fortheframing.Insmallerroomsthedroppedceilingcanbeflatstudded(withthe2x4sturnedsideways)andthenyouonlyneedtoadd1totheouterdiameteroftheduct.Mostbuildersandarchitectsdonotliketogowithlessthanan8ceilingheight,butmaysometimesallowa76ceilingheightifabsolutelynecessary.

    DesignMethodology3.2ACCAManualsJ/S/D(Step4)

    29

  • 8/2/2019 HVAC Design Guide

    48/100

    HVACDesignGuideVersion1.0

    Figure17:SoffitChase

    Soffitsaresimilartodroppedceilingsexceptthattheyarelocalizedandresembleahorizontalchase.Soffitsprovideaboxed-inareawhereawallmeetsaceilingasanalternativetodroppingtheentireceiling.Theyarecommoningarages.Whenbuildingasoffitinagaragecaremustbetakentomaintaintheintegrityofthe1-hourfireseparationbetweenthegarage(GroupUoccupancy)andthehouse(GroupRoccupancy).

    Step5.DetermineOperatingConditions

    oStaticpressureStaticpressureisthepressureatwhichthefan(inthefurnace,FAU,orfancoil)mustoperate.Itistheabsolutesumofthesupplypressure(positive)andthereturnpressure(negative).Thehigherthispressure,thelowertheairflowwillbe.

    TheACCAmethodallowsyoutosizeyourductsaroundaspecifiedstaticpressure,ensuringthatthefanwilloperateatconditionssuitabletoproperairflowandfanperformance.

    Mostfurnacesareratedatanominal400cfmperton.Thisusuallycorrespondstoastaticpressureof0.5inchesofwatercolumns(iwc).Becauseofthis,manysubcontractorsassumethattheyareoperatingat0.5iwcand400cfm/tonjustbecausetheyinstallacertainsizepieceofequipment.Manydontrealizejusthowdependentstaticpressureandairflowareonhowtheysizetheducts.Iftheductsizingmethodologydoesnotproperlyaccountforpressurelossesinthe

    distributionsystem(e.g.,coils,fittings,filters,bends,andregisters),thestaticpressurewillbetoohighandpossiblyoutsidethefurnacemanufacturers

    30

    DesignMethodology3.2ACCAManualsJ/S/D(Step5)

  • 8/2/2019 HVAC Design Guide

    49/100

    HVACDesignGuideVersion1.0

    recommendedrange,resultinginpoorperformanceandprematureequipmentfailure.Inaddition,theairflowwillbetoolow,decreasingtheperformanceofthesystemandpossiblyreducingcoolingcapacitytobelowthecoolingload(ineffectmakingtheairconditionertoosmall).

    Adesignstaticpressurethatgivesgoodairflowandresultsinreasonablysizedductsis0.6iwc.ACCAutilizesavaluecalledAvailableStaticPressureinitsimportantequations.Itistheoperatingstaticpressureacrossthefurnacelessthestaticpressuredropsofvariousitemssuchas,thecoil,filters,heatexchangers(externaltofurnace),registers,grilles,etc.ThevaluesforallofthesepressurelossesaregiveninManualD.

    oTotalCFMTotalCubicFeetperMinute(CFM)canbedeterminedbypickingthedesignstaticpressureandreferringtothefurnacemanufacturersairflowtablefortheairflowatthatstaticpressure.Usehighspeedforcooling.ThetotalCFMis

    usedtodetermineactualdesigncoolingcapacity.Thisnumberisdistributedtoeachroomproportionalthateachroomsload.Aslongastheductsaresizedproperly,thistotalairflowwillbemetorexceededinthefield.

    oEquivalentlengthsThepressuredropofductandductfittingsareaccountedforusingequivalentlengths.Theyareexpressedinunitsoffeet,whichmakesenseforalengthofductbutisabitunusualforafittingsuchasat-wyeorelbow.Itissimplyawayofaccountingforpressuredropofafittingbyequatingittoanequivalentlengthofduct.Equivalentlengthsareusedinthecalculationforfrictionrate.

    oFrictionratesThefrictionrateisthecriticalfactorfordeterminingwhatsizeductisneededtoprovideacertainamountofCFM.Theunitsareinchesofwaterper100feet.Itdescribesthepressurelossforevery100feetofduct.Theequationforfrictionrateisfairlysimple:

    FrictionRate(AvailableStaticPresssure*100)/(TotalEquivalentLength)

    ItisusedinthefrictionchartsinAppendixAofManualD.Itisalsousedinductsliderules,whichareessentiallythefrictionchartsputintoaslideruleorwheelformat.Notethatthereisadifferentfrictionchartfordifferentducttypes.Chart7isforFlexible,SpiralWireHelixCoreDucts,a.k.a.flexductorvinylflex.Foracommonfrictionrateof0.1and200cfm,thechartshowsthatyouwouldneedbetweenand8anda9duct,soa9ductmustbeinstalledtoensurethatatleast200cfmisdelivered.

  • 8/2/2019 HVAC Design Guide

    50/100

    IntypicalCaliforniaresidentialnewconstruction,frictionratesbetween0.9and

    1.2aremostcommon.Lookingonchart7,thisisaverysmallareaonthechart.Also,whenyouconsiderthatthetypical5-tonsystemonlygoesuptoabout200031

    DesignMethodology3.2ACCAManualsJ/S/D(Step5)

  • 8/2/2019 HVAC Design Guide

    51/100

    HVACDesignGuideVersion1.0

    cfm,theareaofchart7thatiscommonlyusedisverysmallandtheaccuracyisquestionable.Itisrecommendedthatadesignernotusingthesoftwareuseagoodqualityductsliderulesuchasthewheel-typeduct-sizingcalculatorpublishedbyACCA.

    Severalductsliderulemanufacturersrecommendthatyouuseafrictionrateof

    0.1.Thisonlyworksifyoucandesignthesystemtoensurethecorrectavailablestaticpressureandtotalequivalentlength.However,simplyusingafrictionrateof0.1andtheroom-by-roomairflowsgeneratedbyManualJforaresidentialnewconstructionhomewouldbebetterthanmostrulesofthumbscurrentlybeingused.Herearesomeexamplesusingthefrictionrateequationandfrictionchart:

    .Theavailablestaticpressure(ASP)iscalculatedtobeabout0.25Example1

    iwc.Thetotalequivalentlengths(TEL)areestimatedtobeabout250feet.Theequationforfrictionrate(FR)yieldsavalueof0.1.If130cfmarerequired,

    theductcalculatorshowsthata7flexductisnotadequatesoan8mustbeused.Inthefield,itisdeterminedthattheductcannotberunasexpectedandanewrouteisdetermined,whichadds30ofextralengthtotheduct.Willthisaffecttheductsizing?Inthiscase,no,itwouldnot.Adding30feetchangesthefrictionrateto0.09.Usingtheductcalculator,an8ductisstilladequate.Infact,an8ductwouldworkaslongasthefrictionratewas0.065orhigher.Thismeansthatupto130feetofextralength(actualorequivalent)couldbeaddedandtheduc

    twouldstillsupplyatleast130cfm.

    Thisisnotalwaysthecase,however.Eachductdiametercanhandlearangeofairflows.Itdependsonhowcloseyouaretotheupperlimitofthatrange.Theoretically,addingjustonefootofextralengthcouldrequireincreasingthe

    ductsize.Example2:UsingthesamestartingpointasExample1(ASP=0.25,TEL=250andFR=0.1),thebuilderwantstoofferelectronicfiltersandneedstoknowiftheywouldaffecttheductsizing.Thefiltermanufacturerlistsastaticpressu

    redropof0.10iwc.

    Thischangesthefrictionratefrom0.1to(0.25-0.10)*100/2500.06,whichwouldrequirethata9ductbeusedtodeliver130cfmandbecausethefilteraffectstheentiresystem,manyotherductsmaybeaffectedaswell.

    Thisscenarioassumesthatthedesignerintendstomaintaintheoperatingstaticpressureof0.6iwcinordertomaintainacertaintotalairflow.Adifferent

  • 8/2/2019 HVAC Design Guide

    52/100

    approachwouldbetokeeptheductsthesamesizeandletthestaticpressurechange.Fortheductstostaythesamesize,thefrictionratemustnotchange.Forthistobetruetheavailablestaticpressureneedstostaythesame(assumingthattheequivalentlengthsarenotgoingtochange,inotherwordsthebasicductlayoutdoesnotchange),whichmeansthatthestartingstaticpressure

    32

    DesignMethodology3.2ACCAManualsJ/S/D(Step5)

  • 8/2/2019 HVAC Design Guide

    53/100

    HVACDesignGuideVersion1.0

    acrossthefanhastogoupbythesameamountthattheelectronicfilterwilluseup.Ifweassumeanoperatingstaticpressureacrossthefanof0.7iwc(0.6originally+0.10forthefilter),themostobviousimpactwillbethattheairflowwillgodown.Thiscanbequantifiedusingthefurnacefanflowtable.Whatneedstobeconfirmedisthattheairflowisstilladequatetomeetthesensiblecoolingcapacity(rememberthatasairflowgoesdown,sodoescoolingcapacity).Also,maximumairvelocitiesmustbeconfirmedasdoesthefurnacemanufacturers

    recommendedoperatingrangeforstaticpressure.Step6.SizeDucts

    Roomairflowshouldbeproportionaltoroomload.Oncetheroom-by-roomloadshavebeencompletedandtheequipmenthasbeenselected,itisasimplemattertodeterminehowmuchaireachroomorspaceneeds.Theairflowrequiredineachroomisproportionaltoeachroomsload.Inotherwords,iftheroomaccountsfor10%oftheloaditmustget10%oftheairflow.

    Frictionrateandroomairflowdetermineductsize.Onceairflowisdetermined,aductcalculator(ductsliderule)canbeusedtodetermineductsizeusingthefrictionrate.

    Step7.FinalTouchesLocatethermostat(refertoSection5.8ThermostatLocation.)Locatecondenser(refertoSection5.1CondenserLocationsandRefrigerantLines.)

    33

    DesignMethodology3.2ACCAManualsJ/S/D(Step6&7)

  • 8/2/2019 HVAC Design Guide

    54/100

  • 8/2/2019 HVAC Design Guide

    55/100

    HVACDesignGuideVersion1.0

    4.2RegisterLocationAspartofthetaskofdevelopingthisdesignguide,astudywasconductedtoevaluatetheimpactoffurnaceandregisterplacementonenergy,comfort,andquality.

    Threesupplyregisterconfigurationswereevaluatedusingacomputationalfluiddynamicsmodel(CFD)forbothheatingandcooling.ThesethreeconfigurationsrepresentthemostcommonpracticeinCaliforniaproductionhomebuilding:registercenteredintheceiling,registeroverwindow,andhighsidewall.Tworeturnlocations,ceilingandlow-wall,werealsoevaluated.

    Thisstudyusedacomputersimulationandisnotaperfectmodelofreality.Forexample,interiorfurnishingswerenotincludedinthemodel.However,theresultsdoprovideareasonablepicturethatmatcheswellwithreal-worldexperience.DetailedinformationonthisstudyisavailablefromtheCaliforniaEnergyCommissionasAttachment2tothe

    FinalReportfortheProfitability,Quality,andRiskReductionthroughEnergyEfficiencyprogram.ThereportisalsoavailablethroughtheBuildingIndustryInstitute(BII)orConSol.

    Thestudiesindicatethatthemostenergyefficientlocation,withnonegativeimpactoncomfort,istoplacethesupplyregisteronahighsidewall.Thestudyresultsshowthatthislocationprovidesthebestmixingandisthepreferredlocation.Ingeneral,highwallregistersareagoodideasincetheyallowtheairstreamtomixwithroomairabovetheheadsoftheoccupantsand

    minimizeairvelocityandtemperaturenon-uniformitiesintheoccupiedpartoftheroom.ThereareotherconsiderationsinselectingthesupplyregisterlocationandthesearecoveredinStep4oftheOverallDesignMethod.

    Thefigurebelowisanexampleoftheinformationgeneratedbythisstudy.Thisexampleshowsthedutycycleforthethreesupplyconfigurationswithaceilingreturnundercoolingconditions.ThedurationoftheHVACONtimeisnotablyshorterforthein-wallsupply.Alsonotethatthetotaldutycycletimeforthein-wallconfigurationisnearly25%longerthanth

    eothercases.

    SpecialDesignTopics4.2RegisterLocation

    35

  • 8/2/2019 HVAC Design Guide

    56/100

    HVACDesignGuideVersion1.0

    75.0076.0077.0078.0079.0080.0081.000.005.0010.0015.0020.0025.0030.0035.0040.00Time(mins)TemperatureatThermostat(F)CeilingInteriorACON#1CeilingInteriorACOFF#1CeilingInteriorACON#2CeilingInteriorACOFF#2OverWindowsACON#1OverWindowsACOFF#OverWindowsACON#2OverWindowsACOFF#2InWallsACON#1InWallsACOFF#1InWallsACON#2InWallsACOFF#2Figure18:ON/OFFruntimesforthreecoolingconfigurationswithceilingreturns:supplyregisterinteriorceiling;ceilingoverwindows;andin-wall

    36

    SpecialDesignTopics4.2RegisterLocation

  • 8/2/2019 HVAC Design Guide

    57/100

    HVACDesignGuideVersion1.0

    4.3MultipleOrientationDesignsInacoolingdominatedclimate,whichincludesmostofCalifornia,orientationhasadramaticimpactonequipmentsizingbecausemosthomes,especiallynewproductionhomes,havethelargestconcentrationofglazingonthebackofthehome.Therequiredcoolingequipmentofatypical2300squarefoothomecanchangefrom3.5-tonto5-tons,a30%increaseincapacity,justbyrotatingthehousefromsouth-facingtoeast-facing.Theorientationofahome,ormorepreciselyitswindows,iswhatdeterminesthemajorityofitsheatgain.East-andwest-facingwindowshavethegreatestheatgainbecausethesunislowerintheskyandshinesthroughthewindowatananglemoreperpendiculartothewindows,increasingtheamountofradiationenteringthehome.

    Sunangleandwindoworientationareaccountedforintheheattransfermultipliersusedinthe

    loadcalculationmethods.Heattransfermultipliers(HTM)arevaluesthatwhenmultipliedbytheareaofthewindowproducestheheatgainofthatwindowincludingconductiveaswellasradiativeheatgains.TheunitsareBtuh/sf.ThefollowingHTMsforadual-pane,low-e,

    aluminum-framedwindowillustratetheimpactoforientationonheatgain.NorthEast/WestSouthSE/SWNE/NW21.461.032.853.144.3Table2:OrientationEffectonHeatTransferMultiplierAsthisshows,eachsquarefootofeast-orwest-facingglasshasnearlytwicetheheatgainof

    southfacingglassandnearlytriplesthatofnorthfacingglass.Mosttypicalhomestendtohavethemajorityoftheglassonthebackofthehouse.Thisiswheremostoftheslidingglassdoorsandlargefamilyroom/greatroomwindowsaretypicallylocated.Whensomuchoftheglassisloadedononesideofthehouse,thevariationintotalcoolingloadismuchgreaterbetweenorientations.Conversely,iftheglazingareaofahousewereexactlyevenlydistributedonallfoursidesofthehome,thetotalcoolingloadwouldbeequalinallorientations.Thisisrarely,ifever,thecaseintypicalproductionhomedesign.

    BecausethemajorityofhomesbuiltinCaliforniaareproductionhomesusingthemasterplanconcept(severalplantypesusedoverandover,andbuiltmultipletimesinvariousorientations),thevariationbetweenbestandworstcaseorientationmustbeconsidered.Standardpracticeistodesignforworst-caseorientation.Thisisanacceptablepracticeforthevastmajorityofplans.Theriskofthisapproachisthattheequipmentinthebest-caseorientat

  • 8/2/2019 HVAC Design Guide

    58/100

    ionisoversizedtoadegreethatcannegativelyimpacteffectivenessandefficiency.

    Notonlydoesorientationimpactthetotalcoolingloadofahome,ithasanevengreaterimpactonanindividualroomsload.Thekeytoagoodductdesignisevendistributionofairinamountsproportionaltotheloadfromeachroom.Ifahouseisbuiltinmultipleorientations,theneachofitsroomscanandwillfaceanyorientation.Thismeansthatanindividualroomscalculatedcoolingloadcanchangebyafactorofnearlythreetimes(recallthedifferencebetweentheNorthHTMandEast/WestHTM.)This,inturnmeansthataroomsairflowrequirementcannearlytriple.Thenetresultisthatductsizingrequirementsforagivenroomcanchangeastheorientationchanges,butitisextremelyimpracticaltorequiredifferentductlayoutsforasinglemasterplandependingonwhatorientationitistobebuiltin.Thus,theworst-caseorientationisusedeventhoughitmaynotprovidethebestlayoutforallorientations.

    37

    SpecialDesignTopics4.3MultipleOrientationDesigns

  • 8/2/2019 HVAC Design Guide

    59/100

  • 8/2/2019 HVAC Design Guide

    60/100

    SpecialDesignTopics4.3MultipleOrientationDesigns

  • 8/2/2019 HVAC Design Guide

    61/100

    HVACDesignGuideVersion1.0

    Example:

    Thefollowingexampleisfora30-lotsubdivisionwiththreeplantypes.Plan1isa2000squarefootsingle-storyhome.Plan2isa2400squarefoottwo-storyhome.Plan3isa2850squarefoottwo-storyhome.Eachplanistobebuilt10timesasshownbelow.

    Table3:SubdivisionSitePlanOrientation

    LotPlanFrontOrientation11N22N33NE41NE52NE63E71E82NE93NE

    101N112NW123NW131NW142W153W

    LotPlanFrontOrientation161SW172SW183SW191S

    202S213S221SE232SE243SE251E262NE273NE281N292N303E

    Theloadsandequipmentsizingcanbetabulatedasshownbelow.

    Table4:Plan1LoadsandEquipmentSizing

    Plan1OrientationLotsSensibleLoad(Btuh)Cond/coil/furnace(tons)N1,10,28290673.5/4/4NE4332014/4/4

  • 8/2/2019 HVAC Design Guide

    62/100

    E7,25330714/4/4SE22268713.5/4/4S19250673/4/4SW16267213.54/4W-339724/4/4NW13328714/4/4

    39

    SpecialDesignTopics4.3MultipleOrientationDesigns

  • 8/2/2019 HVAC Design Guide

    63/100

    HVACDesignGuideVersion1.0

    Table5:Plan2LoadsandEquipmentSizing

    Plan3OrientationLotsSensibleLoad(Btuh)Cond/coil/furnace(tons)N2,29349995/5/5NE5,8,26380715/5/5E-370885/5/5SE23332814/5/5S20330184/5/5SW17336974/5/5W14400215/5/5NW11358815/5/5

    Table6:Plan3LoadsandEquipmentSizing

    Plan3DownstairsSystemUpstairsSystemOrientationLotsSensible

    Load(Btuh)Cond/coil/furnace(tons)SensibleLoad(Btuh)Cond/coil/furnace(tons)N-225553/3/3289003.5/4/4NE3,9,27240823/3/3307212.5/4/4E6,30236213/3/3300203.5/4/4SE24219213/3/3272223.5/4/4S21210022.5/3/3261993.5/4/4

    SW18208222.5/3/3267893.5/4/4W15250173/3/3311103.5/4/4NW12232213/3/3291813.5/4/4

    Plan1:Sinceonlylot19hadaloadlowenoughtomakeita3/4/4,itwouldberecommendedthata3.5/4/4beusedhereandontheotherlotswhereappropriate.Theotherlotswouldget4/4/4systems.

    Plan2:Thesizingshownisareasonablebreakdown.Notethatthereisnosuchthingas4.5tonsystem.Iftherewere,therewouldbethreesizesofsystems.

    Plan3:Thesizingshownisareasonablebreakdown.Notethatallofthelotshadthesameequipmentsizingupstairs.Thisisbecausethesecondfloortypicallyhasamoreevenwindowdistribution.

    40

    SpecialDesignTopics4.3MultipleOrientationDesigns

  • 8/2/2019 HVAC Design Guide

    64/100

  • 8/2/2019 HVAC Design Guide

    65/100

    HVACDesignGuideVersion1.0

    Notethatthisapproachwouldresultintheopportunitytodownsize10outof40condensersbyatleastone-halftonatasubstantialcostsavings.

    Anexampleofhowthefrontorientationofthehouseaffectstheductlayoutforanexamplehouseistabulatedbelow.Thenumbersarethediameterofthebranchductservingtheroomsshown.Thenumbersvarybecauseasthehouseturnstheorientationofeachroomchanges,whichchangeseachroomsloadandsubsequently,itsairflow.

    Trunkductsarenotshownbutareaffectedsimilarly.

    Table7:Branchductdiametersundermultipleorientations

    RoomNNEESESSWWNWMaxLiving766777677Dining766777677Living766777677Family777777777

    Family777777777Kitchen777777777Nook777777777Den666656666Bath3444444444Laundry555555555Mbed888878888Mbath666666666Mwic444444444Bed2666666566Bath2444444444Bed3666666666Bed4666666666

    Asonecansee,therequiredductsizesnevervarymorethanonesizeforanyparticularroom.Also,manyroomsareunaffectedbyorientation.Thisparticularhousehadafairlygoodfenestrationdistribution.Asglazinggetsmoreloadedonanysingleside,thevariationinductsizesgetsgreater.

    Designingtothemaximumsizeforeachroomdoesnotresultinalargeamountofchangeformosthomesbutitdoesinsurethatallroomswillhaveductinglargeenoughtoprovideitsfair

    shareinallorientations.

    41

    SpecialDesignTopics4.3MultipleOrientationDesigns

  • 8/2/2019 HVAC Design Guide

    66/100

  • 8/2/2019 HVAC Design Guide

    67/100

    HVACDesignGuideVersion1.0

    4.4ZonalControlZonalcontroltypicallyreferstoasingleHVACsystemwith2ormoreindependentzones.Thisindependenceisaccomplishedthroughacontrolpanelandmotorizeddampersthatsendairtothezonesthatrequireitandlimitorstopaltogethertheairgoingtozonesthatdonotrequireit.Eachzonehasitsownthermostat.

    Ashomesgetmoreandmoreefficient,thesizeofahomeservedbyasinglesystemgetslargerandlarger.Thelargerahouseis,themoredifficultitcanbetoadequatelycontroltheindoortemperaturewithasinglethermostat.Zonalcontrolisaneffectivewaytoaddzoneswithouttheexpenseofmultiplesystems.Zonalcontrolshouldbeusedforcomfortonly.Itwillnotreducetheloadoftheenvelopenorwillitincreasethetotalcapacityofthesystematpeakconditions.

    Indecidingwhetherzonalcontrolisneededornot,thedesignermustconsidert

    hediversityofthehome.Forexamplea3000squarefoot1storyhousethatissprawlingandspreadoutwithmanywingsandappendageswouldbemorelikelytoneedzonalcontrolthanahousewiththeexactsamecoolingloadbutthatislargerbutmorecompact.

    Thedesignermustalsoconsidertherelativeairflowrequirementsbetweenthetwozonesastheychangebetweenheatingandcoolingmodes.Forexampleatwo-storyhousemayrequiremoreairdownstairsthanupstairsinheatingmodebutthatmayreverseincoolingmode.

    Becausetheductsaresizedforcoolingairflow(duetothehigherfanspeed)thehomemayneedtobebalancedseasonallybyclosingdampersand/orregistersinordertogetadequatecomfortdistributionbetweentheupstairsanddownstairsinheatingmode.Thisisnotanunreasonableexpectationbutazonalcontrolsystemwouldhelpalleviatethiseffort.Ifazonalcontrolisnotinstalledinthissituation,theoccupantsshouldbeinformedoftheseasonalbalancingrequirementandeducatedonhowtoperformit.

    Formorediscussiononzonalcontrol,seeSection3.2.1TheOverallDesignMetho

    d,Step1.

    SpecialDesignTopics4.4ZonalControl

    43

  • 8/2/2019 HVAC Design Guide

    68/100

    HVACDesignGuideVersion1.0

    4.5WindowLoadsWindowsaccountforaverylargefractionofcoolingandheatingloadsinabuilding.Theglazingtype,theamountofglazing,insulationandshadingdevicesusedallcontributetoasignificantportionoftheoverallcoolingloads(mainlysolargains)andheatingloads(conductiveheatlosses)inabuilding.

    Asanexample,a1940squarefoothomewithan18.6%window-to-wallratiowasanalyzedin4climatezones(zones7,10,12,and14)andfourorientationsusingMicropas6.Heatingloadsattributedtoglazedsurfacesremainedapproximatelyequal(16.5%-18.0%,dependingonclimatezone).Coolingloadsvariedbetween32.0%and41.3%dependingonbothorientationandclimatezone.Becausewindowsrepresentsuchahighpercentageofheatingandcoolingloads,itisimportantthattheirimpactbeaccuratelyquantified.

    4.5.1HeatingloadsfromwindowsIncalculatingheatingload,onlyconductiveheatlossiscalculatedbecausesolargainsreducethenetheatlossandactuallyassisttheheater.Heatlosscalculationsarethereforebasedonnighttimeconditionswhentherearenosolargains.AsimpleUA..Tcalculationisused:

    qUA..TA..T

    R

    Inthisequation,Uistheoverallwindowu-valueincludingglassandframe;Aist

    eroughopeningofthewindow;and..Tissimplythedifferencebetweentheindoorandoutdoorwinterdesigntemperatures.

    TheabilityoftheUA..Tformulatopredictactualheatlossesislimitedbytheaccuracyoftheinputparameters.Areaisnotaproblemsinceitisafixedvalue.U-valueislimitedbytheaccuracyofgenericwindowdescriptionstoaccuratelyreflecttheactualU-valuesofallthedifferentbrandsofwindowsthatmaymeetthegenericdefinition.Ifthemakeandmodelofthe

    windowtobeinstalledisknownanditisawindowthathasbeentestedtoNationalFenestrationRatingCouncil(NFRC)standardstherewillbeareasonablyaccurateU-valuethatcanbeusedforthatwindow.Eventestedvalueshavetheirlimitations.U-valuewithinaparticularmakeandmodelofwindowwillvarybywindowsizebecausetheframe-to-glassratiochanges.Asareasonablesimplificationandtokeepthecostoftestingwindowsdown,onlyasinglecommon

  • 8/2/2019 HVAC Design Guide

    69/100

    sizewindowistestedandthattestedU-valueisusedforallwindowsinthatproductline.

    Theactual..T(differencebetweentheindoorandoutdoorwinterdesigntemperatures)valuecanvarysomewhatfromthenumberusedinthecalculations.Ofcourse,outdoortemperaturevarieswithseasonandtimeofday,butthe..Tusedinthecalculationcanbewrongevenatthetimewhentheyaresupposedtobecorrect.Tounderstandthis,itisimportanttounderstandhowthesetemperaturesareselected.

    Theindoordesigntemperatureisthedesiredindoortemperature.Itcanbethoughtofasthethermostatsetpoint.However,evenwhenathermostatreadsacertaintemperature,70degreesforexample,itwillnotbe70degreeseverywhereinahouse.Therecanbeplacesinthehousewherethetemperatureissubstantiallyhigherorlowerthan70degrees.Forexample,supplyairregistersarecommonlyplaceddirectlyaboveorbelowwindows.Whentheheaterisoperating,hotairofupto150degreesisblowingonornearthewind

    ow.Withan

    6Enercomp,Inc

    44

    SpecialDesignTopics4.5WindowLoads

  • 8/2/2019 HVAC Design Guide

    70/100

    HVACDesignGuideVersion1.0

    outdoortemperatureof30degrees,thisyieldsareal..Tof120degrees.Ifthedesigntemperatureswereassumedtobe70degreesindoorsand30degreesoutdoors,thereal..Tisthreetimesthedesign..Tof40degrees,triplingtheheatloss.

    Theoutdoordesigntemperatureisastatisticallyderivedtemperaturebasedonhistoricaltemperaturedatacollectedatanearbydatacollectionpoint.Therearehundredsofthesethroughoutthestate.Becauseitisastatisticallyderivedvalue,ratherthanthecoldesttemperatureonrecord,forexample,itisunderstoodthatthistemperaturewill,bydefinition,beexceededacertainnumberofhoursperyear.Thestatisticalnumberthatisusedisdeterminedtobeonethatmakestheseexcessivetemperatures(i.e.,temperaturescolderthantheassumedoutdoordesigntemperature)anacceptableoccurrence.Variationsfromthisdatacanbecausedbymicroclimatesornormal(orabnormal)macroclimaticchangesandwillthrowo

    ffthestatisticalaccuracyloadcalculations,butproblemswiththeindoortemperatureasdescribedabovewillhaveanevengreaterimpactinthestatisticalaccuracyoftheloads.Inotherwords,theactualnumberofhoursthattherealheatloadexceedsthecalculatedheatloadmaybedangerouslyhigh;theheatermaybeunablemaintainacomfortableindoortemperatureduringlongperiodsofextremecoldwhenrealityexceedsthedesignmargin.

    4.5.2CoolingloadsfromwindowsCoolingloadslargelyconsistoftheincomingsolarradiationthroughthewindow

    sandconductiveheatgain.Heatgaincalculationsaremadeupofaconductivecomponent,verysimilartoheatlosscalculations,buttheheatistravelingintothehouseratherthanoutofthehouse.Heatgaincalculationsaresusceptibletothesamefactorsthatmakeheatlosscalculationsinaccurate.Theyarealsomadeupofamuchlargerradiantcomponent.Thisistheheatgainassociatedwithsunlightpassingthroughthewindowsandiseffectedbyaverylargenumberoffactors,onlyafewofwhichareaccountedforintheloadcalculations,for

    simplicityreasons.Also,forsimplicityreasons,theloadassociatedwithsunlightisaveragedthroughouttheday.Thisiscalleddiversityandhastodowiththefactthatthesuntravelsacrosstheskyandtheactualloadonroomsinahousewillnotmatchthisaveragedvalue.Somecalculationmethodsallowapeakloadtobecalculatedwhenappropriate.Thisisthehighestcoolingloadthatwilloccuratanytimeduringagivenday.

  • 8/2/2019 HVAC Design Guide

    71/100

    Factorsthateffectwindowheatgainandloss,calculatedandactual,aresummarizedbelow:

    xWindowareatotalandforeachorientation.Becausewindowsarealessefficientpartofthebuildingshellthanwalls,floorsorceilings,themorewindowsyouhave,thehighertheheatingandcoolingloadswillbe.Somewindowshaveahigherheatgainpersquarefootbecauseoftheirorientation.Seetheorientationdiscussioninthenextsection.xLocationThegeographiclocationofthehousecanimpactthecoolingloadsassociatedwithwindowsotherthansimplyaffectingtheoutdoordesigntemperatures.Thelatitudeofhousedeterminestheangleofsunandsunspathacrossthehorizon.Localfactorscanaffecttheintensityofsun.Theseincludecloudcover,pollution,andhumidity.xWindowsolarheatgaincoefficient(SHGC).Thisisapropertyoftheparticularwindow

    andisdefinedastheratioofthesolarheatgainenteringthespacethroughthefenestrationareatotheincidentsolarradiation.Solarheatgainincludesdirectlytransmittedsolarheatandabsorbedsolarradiation,whichisthenradiated,conducted,orconvectedintothespace.TheSHGCofawindowisaffectedbythenumberofpanes,thicknessandclarityoftheglasspanes,anytintingorotherspecialcoatings,

    45

    SpecialDesignTopics4.5WindowLoads

  • 8/2/2019 HVAC Design Guide

    72/100

    HVACDesignGuideVersion1.0

    thicknessoftheframe,mullionsandotherdetails.SHGCcanbedramaticallyimprovedthroughtheuseofspecialcoatingsthatblockcertainwavelengthsoflight,particularlythoseresponsibleforheatgain.

    xU-value.TheU-valuedescribesawindowassemblysabilitytotransmitheatconductivelyandisafunctionofthepropertiesofboththeframeandglasspanes.LiketheSHGC,itcaneitherbeagenericnumberbasedonthegeneraldescriptionofthewindoworitcanbeaNationalFenestrationRatingCouncil(NFRC)testedvalue.

    xEmissivityofwindow.Thisnumberdescribestheamountofheatthatisemittedfromawindowduetoitsbeingwarmerthanthesurroundings.Thelowerthelevelofemissivity,themoreefficientthewindow.Emissivitylevelsgenerallyrangefrom0to1and

    canbedramaticallyimprovedthroughtheuseofspecialcoatings.EmissivityisusuallyaccountedforinloadcalculationsbyadjustingthewindowU-value.

    Shading.Shadingdevicesareeitherinteriororexterior.Theycanbefurthersubdividedintoremovable(orotherwisecontrollable)andfixed.Thiscontrollabilityisimportantbecausetheycanassistinreducingheatgainincoolingmodebuttheycanalsoreduceheatgaininheatingmodewhenheatgainmaybedesired(i.e.,ona

    coldbutsunnyday).Anadditionaltypeofexteriorshadingincludesthosethatarenotnecessarilyintegraltothebuildingandarecategorizedasadjacentstructures.

    Interiorshadingdevices.Curtains,blinds,rollershadesandothersuchinteriorwindowtreatments,thoughoftenaestheticinpurpose,canhaveasubstantialimpactonheatgainswhenusedcorrectly.Themoreopaqueandreflectivethematerial,themoreitwillreducesolarheatgain.Forexample,awhite,opaquerollershadew

    illreducesolargainsbetterthanadarkdrape.Onedisadvantageofinteriorshadingdevicesisthatsolargainshavealreadyenteredthespacebythetimetheyareinterceptedbytheinteriorshadedevice.Thisheatistrappedbetweentheshadingdeviceandthewindow.Someoftheheatisreflectedorradiatedbackoutofthewindow,butmuchofitremainsinside.

  • 8/2/2019 HVAC Design Guide

    73/100

    Exteriorshadingdevices.Thesearedevicesthatarepartofthebuildingorwindowassemblyandincludeoverhangs,bugscreens,solarscreens,andawnings.Overhangsareoftenoverlookedasveryefficientdevicesforreducingloadsandenergyconsumption.Architecturalfashiontypicallyoutweighstheirpracticality.Thoughapermanentcomponentofthebuildingtheycanbedesignedtomaximizethebenefitinthesummerandminimizetheirimpactinthewinter.BugscreensarenotconsideredanenergydevicebutcanhaveanoticeableimpactontheSHGCofawindowassembly.Sun-screens(a.k.a.solarscreens)canbeaverycosteffectivemeansofreducingheatgain.Also,becausetheyareremovable,theirimpactintheheatingseasoncanbeminimized.Awningsbehaveasanoverhangandarealsoseasonallyremovable.

    Adjacentstructures.Thesecanincludebuildings,trees,fences,andterrainsuchashills.Theymayhaveasubstantialimpactonactualloadsbutarerarelyaccounted

    forinthecalculations.Theymostcommonlyshadeawindowbutcanhavetheoppositeimpactofreflectinglightintoawindow.Inthisregard,thegroundadjacenttoabuildingisconsideredanadjacentstructurebecauseitcanreflectadditionallightintoawindow.Imaginethedifferenceinsolargainsbetweenahousesurroundedbylushlawnandahousesurroundedbyabrightwhiteconcretesurface.

    SpecialDesignTopics4.5WindowLoads

    46

  • 8/2/2019 HVAC Design Guide

    74/100

    HVACDesignGuideVersion1.0

    BestPractices

    Bestpracticefornewconstructionloadswouldbetomodelnointernalorexternalshadesintheloadcalculations,buttomodeloverhangsbecausetheyarefixedarchitecturalfeaturesofthebuildingthatareunlikelytoberemoved.Internalandexternalshadesarefrequentlyleftopen,leftofforotherwiseremoved.Toassumethattheyareinplacewhencalculatingcoolingloadsisrisky.Somedesignersbelievethatinteriorshadesshouldbeassumedclosed.Thisresultsindramaticallylowersolargainsandcoolingloads.However,ifthecoolingequipmentissizedundertheseassumptions,thehomewillnotcoolproperlyonhotdaysifthehomeownerdoesnotclosethedrapes.Whileclosingdrapesonahotdayisapraiseworthybehavior,thisdesignphilosophyisnotconsistentwiththeexpectationsofmosthomebuyers.

    TheapproachusedformodelingfeaturesinTitle24complianceisusuallyappropriateforloadcalculationsinnewconstruction.InManualJ,Version8,thedesignershouldalwaysassumeNFRCratedwindowswillbeusedinnewconstruction.Ifnon-ratedwindowsareuseddefaultperformancevaluescanbeusedthatareconsistentwithTitle24calculationsbutenteredintheloadcalculationsasthoughtheyareratedwindows.Assumethesameminimumfeaturesnecessaryforcompliance,ifslightlybetterfeaturesgetinstalled,fine.If,however,better

    featuresgetinstalledthanwereassumedintheloadcalculations,thereisasmallriskofoversizingtheequipmenttoapointofreducedenergyefficiencyandconditioningperformance.However,thepotentialexpensetoabuilderofundersizingequipmentisfargreaterthanthatofoversizing.

    Performancevaluesusedintheloadcalculations(U-value,SHGC,andshadingcoefficientofscreensandothershadingdevices)shouldbeconsistentwiththoseusedintheTitle24calculations.ThecurrentcomputerizedversionsofManualJ,Version8,forroom

    -by-roomloadsandthecurrentmethodologyusedbyMicropasforwhole-houseloadsdoaveryadequatejobaccountingforloadsassociatedwithwindows.ItisausefulexercisetocomparetheMicropasloadtothetotaloftheroom-by-roommanual.Thisprovidesatrustworthychecktohelpensurethatnocalculationerrorshavebeenmade.Thisisanotherreasonwhyitisimportanttousethesamewindowperformancevaluesinbothcalculations.

  • 8/2/2019 HVAC Design Guide

    75/100

  • 8/2/2019 HVAC Design Guide

    76/100

    HVACDesignGuideVersion1.0

    4.6DuctLoadsDuctleakageratesofupto45%werenotuncommoninnewhomesbuiltandtestedpriortothelate90s.Thisisadirectlossofconcentratedenergy;theheatedorcooledairisdumpeddirectlyintounconditionedspaces(e.g.,supplyleaksintoattics),orconditionedairisdisplacedbyunconditionedair(returnleaksinatticsorgarages).

    ManualJdoesareasonablejobofaccountingforductleakageloads,givenaknownleakage.Theproblemliesnotinquantifyingaknownleakageratebutinestimatingtheactualleakageamount.Priortoconstructionand/orwithoutactuallytestingthesystemleakage,itisverydifficulttopredict.Field-testinghasshownthatusingverysimilarinstallationprotocolsontwosimilarhousescanstillresultinleakageratesthatarevastlydifferent.Eventhebrandoffurnacecanaffecttheleakageratebyone-thirdormore.

    Title24softwareassumesthatthesystemistightifitisknownthatthehomewillbetested,andrepairediftheleakageisgreaterthan6%.Ifthehomeissubsequentlytestedandtheleakageisindeedlessthan6%thenthedesignercanrestassuredthattheloadcalculationsarevalid.Howeverifthesystemisnottestedandtheleakageissignificantlymorethan6%,theequipmentmaybeundersized.Commonly,ifthesystemisnotgoingtobetested,currentpracticeistoassumethatthesystemisguiltyuntilproveninnocenti.e.itleaksmorethan6%.Thesystemisassumedtobetypical,withaleakageof22%.Ifthedesigneras

    sumesthishigherleakageandtheinstallerdoesanexcellentjobofinstallingthesystem,thesystemmaypotentiallybeoversized.

    Eventestingasystemusingcommonproceduressuchasaductblastertestdoesnotguaranteethattheactualloadoftheductleakagewillbeaccuratelyestimated.Limitationsofcurrentductleakagetestsresultinsubstantialvariancesbetweentestedleakageandactualleakage.Theselimitationsincludetheinabilityofthetest,usingcommonpractices,to

    distinguishbetweensupplyandreturnleaksandtheinabilitytoidentifythelocationofaleak,whichmaybelocatedinaveryhighpressurepartofthesystem(nearthefan)orinaverylowpressurepartofthesystem(neararegisterorgrille).Note:Theductblastertestpressurizestheentiresystemtothesamepressurelevelandtherebytreatsallleaksequally.

    BestPractices

  • 8/2/2019 HVAC Design Guide

    77/100

    Thebestwaytominimizevariancesbetweenestimatedandactualleakageistoassumethattheleakageisattainablylowandthenmaketheappropriateefforttoensurethatitisinstalledthatway.Moresophisticatedtestmethodsmayimprovetheaccuracyofmeasuringleakage,butthetighterthesystemsbecome,thelawofdiminishingreturns

    makesmoretestingexpensiveandunnecessary.48

    SpecialDesignTopics4.6DuctLoads

  • 8/2/2019 HVAC Design Guide

    78/100

    HVACDesignGuideVersion1.0

    4.7Two-storyConsiderationsAshomesbecomemoreandmoreefficient,theirheatingandcoolingloadsdecrease.TheresultofthisisthatlargerandlargerhomesarebeingservedbysingleHVACsystems.InatypicalCaliforniasubdivisionthatoffersfourfloorplans,threewillbetwo-storyhomes.Manyofthoseareservedbyasinglesystem,averycommondesigninCalifornianewconstructionandonethattendstohavemanycustomerservicecomplaintsrelatedtotemperaturevariations(stratification)inthehome.

    ManyHVACsubcontractorsbelievethatatwo-storyhomewithasinglesystemmusthaveasubstantialamountofthereturnairtakenfromthefirstfloor.Whilethereisnoevidencetosupportthis,HVACsubcontractorswillinsistthatarchitectsandbuildersgotogreateffortandexpensetoaccommodatearelativelylargereturnductandgrilltothefirstfloor.Some

    designersbelievethatareturnintheceilingofthesecondfloorisadequateaslongasthedownstairssupplyductsareproperlysized.

    Thereisalsomuchdebateanddisagreementovertheproperlocationofathermostatinatwo-storyhomeservedbyasinglesystem.Somedesignerslocateitupstairsbecauseheatrisesandthatiswherethemostcoolingisneeded(coolingemphasized).Otherslocateitdownstairsbecauseinthewinterthefirstfloortendstobecolderandthatiswherethemostheatingisneeded(heatingemphasized).

    Aspartofthetaskofdevelopingthisdesignguide,astudywasconductedtoevaluatetheimpactofthenumberandlocationsofreturnsandtheplacementofthethermostatinatwo-storyhomeservedbyasingleHVACsystem.

    Threereturnconfigurationswereevaluatedforcoolingusingacomputationalfluiddynamicsmodel(CFD).ThesethreeconfigurationsweredesignedtoaddressthecommonpracticesinCaliforniaproductionhomebuilding:

    xCase1:splitreturnsupstairsanddownstairs;thermostatupstairsxCase2:returnupstairs;thermostatupstairsxCase3:returndownstairs;thermostatdownstairs

    Thefigurebelowisanexampleoftheinformationgeneratedbythisstudyshowingthetemperaturesanddutycyclesforthethreeconfigurations.Case2(returnupstai

  • 8/2/2019 HVAC Design Guide

    79/100

    rs/thermostatupstairs)andCase3(returnupstairs/thermostatdownstairs)cycletwiceasoftenasCase1(returnsupstairsanddownstairs/thermostatupstairs).Case1,withsplitreturnupstairsanddownstairs,providesabettermixingofair,delayingthereturntoambienttemperature.

    SpecialDesignTopics4.7TwoStoryConsiderations

    49

  • 8/2/2019 HVAC Design Guide

    80/100

    HVACDesi